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ABSTRACT

Many applications require information on dimensions of a geometric model, but these
are usually not all explicitly present in the model. A method is introduced that extracts
and visualizes information on dimensions from a geometric model. It first computes
the medial axis of the model, and then uses this representation to determine certain
dimensions in the model, in particular thicknesses and angles, and to visualize these
on the boundary of the model. Presented results show that the method can visualize
important dimensional information in a geometric model.
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1 INTRODUCTION

Dimensions, such as thicknesses and angles, play an important role in many CAD/CAM applications.
An example is in the design of products to be manufactured by injection molding. There are many
design guidelines related to thicknesses and angles for a proper CAD model, to avoid potential
problem areas that cause warpage and surface sink marks during the injection molding. This research
focuses on thickness and angle dimensions, because these two dimensions are sufficient to get the
required insight into the dimensions of the geometric model for injection molding and many other
applications.

A major problem is that usually not all dimensions are explicitly present in a model, and thus have
to be made explicit when needed. Three situations where this occurs will be mentioned here. First, in a
CAD system only a limited number of dimensions are explicitly input by the designer, and all other
dimensions are implicitly defined. Second, when a CAD model is transferred from one system to
another system, often the parametric design dimensions do not transfer, and only a geometric model
remains. If dimensions are needed in the other system, these have to be recovered from the geometric
model. Third, when an object model has been created with reverse engineering, e.g. with laser
scanning, again no dimensions are present in the geometric model, and so, if needed, have to be
computed.

In this paper, a method is introduced for extracting dimensions from a geometric model in a
consistent way. It computes the medial axis, or skeleton, of the model, determines dimensions on the
basis of this representation, and visualizes these in a straightforward way on the boundary of the
model.
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With the method, dimensions in a model can be verified, e.g. in designs for injection molding as
mentioned above, but also certain properties, such as symmetry or the lack thereof, can be detected.
For example, a model created with reverse engineering can contain multiple instances of the same
feature and visualizing the dimensions of each of these features, allows the user to see whether they
are indeed the same. One of the features may differ from the others, because it endured larger forces
and has therefore a larger amount of wear.

Section 2 gives background information on the definition and possible computation of the medial
axis transform of a model. Section 3 explains how we define dimensions on the basis of the medial
axis and how they can be calculated. Section 4 describes how the medial axis is computed in our
method and how the dimensions are visualized on the boundary of the model. Section 5 shows some
results. Section 6 enumerates our conclusions on the method.

2 MEDIAL AXIS TRANSFORM

The medial axis transform was introduced in [1] to describe biological shapes and is sometimes
referred to as the skeleton of an object. Since then the medial axis transform has been extensively
researched and developed in many areas involving shape analysis. The medial axis is used in shape
simplification [9], shape matching [8], routing in sensor networks [2], etc.

The definition of the medial axis transform given in [7] is as follows. Let D be a subset of Rn. The
medial axis is the locus of points which lie at the centers of all closed spheres which are maximal within
D, together with the limit points of this locus. A closed sphere is said to be maximal in D if it is contained
in D, but not a proper subset of any other sphere contained in D. The radius function of the medial axis
of D is a continuous, real-valued function defined on the medial axis, whose value at each point on the
medial axis is equal to the radius of the associated maximal sphere. The medial axis transform is the
medial axis together with its associated radius function. Fig. 1 illustrates an example of a medial axis in
3D, and Fig. 2 examples of 2D medial axes.

(a) (b) (c)

Fig. 1: An example of a 3D medial axis: (a) original model, (b) cut-away view, (c) the medial axis (with
the original object boundary transparent), which shows information about relationships between faces,
edges and vertices not apparent in the original model (a), without further inspection (b).

Another way to look at the medial axis is the grassfire analogy, which is a more dynamic interpretation
of the medial axis. In this analogy, each point on the boundary is considered to be a point of fire, all
points burning with the same intensity. The fire spreads perpendicular from the boundary point, at
which it starts, towards the inside of the object, and burns with a constant rate of one unit distance
per unit time. At time t the outer extent of the burned area is the curve parallel to the boundary offset
by distance t. The medial axis consists of the closure of the quench points of the fires, i.e. the points
where the fires meet and douse one another.

There is a one-to-one correspondence between the geometric model and its medial axis transform.
To each geometric model belongs a unique medial axis transform, and vice versa. The geometric model
can be determined from a medial axis transform by taking the union of all points on the medial axis
and the associated maximal spheres. This reconstructability relies on the fact that, although the
medial axes of two geometric models can be the same, the medial axis transforms, which include the
radius functions, are different if the two models are different.
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Many algorithms that compute the medial axis transform from a geometric model make use of
some basic concepts related to the medial axis transform. These basic concepts involve a classification
of the points on the medial axis, which is determined by so-called foot points. A foot point is a point
of contact with the object boundary of the maximal circle, or in 3D the maximal sphere, of a point on
the medial axis. In the footpoint, the circle is tangent to the object boundary. Depending on the shape
of the object boundary, there can be either a discrete point contact or an area contact. In the latter
case, the maximal circle coincides over an area with the boundary, i.e. the radii of curvature of the
boundary and the circle are equal. Since the maximal circle is tangent to the object boundary, the lines
from the medial axis point to its footpoints are perpendicular to the object boundary. Together with
the notion of a foot point, comes the notion of a governor, which is the face, edge or vertex in which
the foot point lies, as illustrated in Fig. 2.

(a) (b)

Fig. 2: Examples of 2D medial axis transforms; the red lines indicating the medial axis, the green lines
the boundary of the object, and the black circles maximal circles, with their centers at a, b and c and
their footpoints at a’, b’ and c’; (a) having four edges and four vertices as governors, and (b) having one
curved edge and one vertex as governors.

Based on the number of governors of a point on a 3D medial axis, the medial axis can be subdivided
into several types of points, see [7]:

 a seam point: a point that has three or more governors (a seam is a connected curve of seam
points)

 a seam-end-point: a point where a seam runs into the boundary
 a junction point: a point where three or more seams intersect
 a sheet point: a point with exactly two governors (a sheet is a connected surface of sheet

points).
The types of points are illustrated in Fig. 3, where (a) is the original shape and (b) the corresponding
medial axis.

(a) (b)

Fig. 3: Classification of points on a medial axis: (a) the original shape and (b) the medial axis; black
lines indicate seams and edges, blue dots junction points, and red areas sheets. This medial axis
contains 13 sheets, 4 junction points, 8 seam-end points and 12 seams.

One of the drawbacks of the medial axis transform is its sensitivity to small changes in the boundary,
as illustrated in Fig. 4, where it can be seen that a small change in the object boundary can lead to a
significant change in the medial axis. Some algorithms try to alleviate this problem by classifying
offshoots of the medial axis as less significant, based on a substance measure, see [5]. These
extraneous axes are then removed and only the major portions of the medial axis are maintained.
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Some shapes exhibit special cases. The most common ones are a junction point with more than
four governors and a seam with more than three governors. These special cases are incompatible with
the generic case algorithms and thus separate, special treatment is needed for them.

Fig. 4: The problem of sensitivity of the medial axis transform, illustrating that a small change in the
object’s boundary can lead to a significant change in the medial axis transform.

The computation of the medial axis transform is hard in general, because of numerical instabilities
and because the medial axis transform is sensitive to small changes in the boundary. Therefore there
are many algorithms that compute the medial axis transform for various types of shapes. These
methods can be subdivided into continuous and discrete methods.

Continuous methods rely on the fact that the algebraic form is explicitly known for each sheet.
The continuous method [7] calculates the medial axis transform for 3D polyhedra based on the
relationships that exists between the various types of points. For example, if G1 is a governor of one
sheet and G2 of another, then the seam connecting the sheets has as governors G1 and G2.

Discrete methods usually employ a surface sampling approach [4] or some spatial subdivision.
Surface sampling algorithms represent the initial object as a dense cloud of sample points, presumed
to be on the boundary. The medial axis is then approximated with a subset of the Voronoi diagram of
the point cloud. One of the main issues when applying these discrete methods is the generation of an
appropriate set of point samples on the boundary, to ensure a close approximation of the medial axis
transform. Under-sampling may result in an approximation of the medial axis that is not accurate
enough and thus in jagged results. One method that achieves a good approximation of the medial axis,
using surface sampling, keeps a link to the original CAD model [3]. This allows for a better
approximation using certain heuristics.

3 THE MEDIAL AXIS AND DIMENSIONS

In this section it will be shown how the medial axis can be used to extract dimensional information, in
particular thicknesses and angles, from a geometric model.

The dimension thickness is, in general, not properly defined. For instance, when people are asked
what the thickness of a 5 by 5 by 5 cube is, most would answer 5. However, for a cube-like model,
which does not have all angles at 90°, there is ambiguity, since the thickness can now be measured in
multiple directions.

The medial axis is a dimensionally-reduced structure that captures, in a consistent way, a notion
of thicknesses and also of angles. As mentioned in Section 2, there is a one-to-one correspondence
between the medial axis transform and the original model, which reduces to a relation between each
medial axis point and its corresponding foot points and governors. We make use of this by extracting
a dimensional value for each medial axis point, by looking at its foot points and governors, and
assigning this value to these foot points.

To determine both types of dimensions, thickness and angle, a further classification of points on
the medial axis is needed. Sheet points of which the governors are not directly connected give a good
indication of thickness. Since angles are defined between edges or faces sharing a vertex or edge, sheet
points of which the governors are directly connected, i.e. share a vertex or an edge, correspond to
angle dimensions.

This distinction between thickness and angle sheet points subdivides the medial axis into areas
capturing thicknesses and areas capturing angles, as illustrated for a 2D medial axis in Fig. 5(a), where
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the area a-b captures thicknesses and all other areas capture angles. The subdivision is based on the
junction points of the medial axis. The foot points of these junction points (a’ and b’), in their turn,
subdivide the governors, and hence the boundary, into areas capturing thicknesses (blue areas) and
areas capturing angles (grey areas). These areas thus correspond to specific areas of the medial axis.
The sheets on a 3D medial axis are bounded by junction points, seam-end points and seams, as can be
seen in Fig. 5(b). This figure illustrates the two types of sheets capturing thicknesses (blue) and angles
(grey), respectively. In a similar way as in 2D, areas on the governors capturing thicknesses and angles
are determined.

For the case in Fig. 5(c), there are no parts of the medial axis that can be directly classified as
being a thickness or an angle area, since there is no junction point that divides the medial axis.
Considering the area at c, which clearly is an angle, the question arises where the angle area should
stop and the thickness area should begin. In this case, the medial axis at point a, and hence the foot
points a’ on the boundary, give a good subdivision, because the angle of the normals at the foot points
a’ changes compared to the angle at c. If the object boundary from c to the footpoints a’ would
consists of curves, the angle of the normals would change immediately and only point c would remain
as the angle area. If this is not desirable, a value can be specified that defines how far along the curved
edges the angle area is extended.

(a) (b)

(c)

Fig. 5: The division between thickness and angle areas, (a) the 2D example of the medial axis, a’ and b’
indicating foot points of the junction points, dividing both the medial axis and the boundary into
areas capturing thicknesses (blue) and areas capturing angles (grey), (b) an example in 3D of the two
types of sheets on the medial axis, blue again capturing thicknesses and grey angles, and (c) an
example of a medial axis without junction points, but still with a proper identification of areas
capturing thicknesses (blue) and angles (grey).

The calculation of the actual thickness value if two foot points m’ correspond to a point m on the
medial axis, is illustrated in Fig. 6(a). We take the distance d between the two foot points. In the case of
Fig. 5(c), there is ambiguity when calculating the thickness at the rightmost limit point of the medial
axis, because the maximal circle and the object boundary coincide. The thickness can here be
calculated between different combinations of two footpoints, which can result in different thickness
values. In such cases, the radius value is taken as the thickness value, since this gives a good
indication of the thickness. In general, this occurs at rounded regions of an object.

The calculation of the value for an angle a corresponding to a point on the medial axis, is
illustrated in Fig. 6(b). We take the angle b, at medial axis point m, between the surface normals at the
corresponding foot points m’ and calculate the value at the actual corner as a = 180°– b.
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(a) (b)

Fig. 6: The actual calculation of the thickness (a) and angle (b) values; for the thickness we take the
distance d between the foot points m’, and for the angle we take 180°– b.

As a final step, the thickness and angle values are assigned to the footpoints, and the values are
mapped to different color maps, to illustrate the difference between the two areas. Since the interval
in which the thickness values can lie is not bounded, the values are taken relative to the maximum
thickness within the object, when mapped to the thickness color map. The thickness values are
interpolated across the surface, because the thickness changes from point to point on the surface. The
angle values, having a limited range, are mapped to fixed color values, and an angle area gets a single
color, since the angle value does not change within the area. How these colors are then used to create
a complete visualization is discussed in Sections 4 and 5.

A previous approach for extracting and visualizing thickness information [6], visualizes the
thickness according to the medial axis transform by taking the value of the radius function at each
point of the medial axis, and using this value as an indication for thickness at the corresponding foot
points. This approach therefore always indicates a thickness of value zero in the corners of the model,
which is not useful at all. We, on the other hand, display the size of the angle at a corner and also have
a better measure for thickness (the distance between foot points, instead of the radius of the maximal
sphere).

4 COMPUTATION OF THE MEDIAL AXIS AND VISUALIZATION OF DIMENSIONS

This section will explain how the medial axis is computed, and how this representation is used for the
visualization of the thickness and angle dimensions.

As mentioned in Section 2, the computation of the medial axis is hard in general. Because of that,
and because the extraction of dimensions needs to work for any kind of geometric model, we decided
to use a mesh as input. This is not a severe requirement, because most environments have meshing
capabilities, either from a CAD model or from a point cloud. The algorithm expects a fairly uniform
and dense (triangular) mesh, not only to get a good approximation of the medial axis, but also to get a
good visualization of the dimensions. This means that in some situations remeshing may be
necessary.

Governors, as mentioned in Section 3, are faces, edges or vertices in which a foot point of the
medial axis lies. These governors are properly defined for a CAD model, since it is the entire face, edge
or vertex in which a foot point lies. For a mesh, however, the governors are not properly defined, since
faces and edges are subdivided into mesh elements. If there is a link from the mesh elements to an
original CAD model, the proper governors can still be constructed, but if only a mesh is given, a
different approach has to be used. Our approach depends on a so-called significant angle (usually
between 0 and 15°) between the normals of two adjacent mesh elements, which specifies whether
neighboring mesh elements are considered to be smoothly connected and thus part of the same
governor. This subdivides the boundary into sets of mesh elements that we consider governors of the
medial axis. During the construction of the governors, a link is created between each mesh element
and the corresponding governor(s). This is needed for the correct classification of the medial axis
points and their footpoints.
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For the computation of the medial axis, all vertices of the mesh are considered to be footpoints.
The algorithm traverses all footpoints, and finds the corresponding medial axis point for each
footpoint by searching another foot point of that medial axis point. It is explained here for the 2D
case; the algorithm for the 3D case is similar, but instead of circles, spheres have to be considered.
The criterion for identifying the corresponding medial axis point is illustrated in Fig. 7(a). For a foot
point f

a
, the corresponding medial axis point m is always along the normal to the object boundary at f

a
.

Any other footpoint f
b

of m has an equal distance to m, because of the nature of the medial axis. Using
this criterion, the triangle f

a
mf

b
can be constructed, in which the edges f

a
m and f

b
m have equal length

and the angles a and b are equal. The maximal circle of m has the length of f
a
m as its radius, and two

of its foot points are f
a

and f
b
.

It is worth mentioning that the algorithm in [4], mentioned in Section 2, uses a similar criterion
based on the properties of the medial axis, but the focus there is on a convergence guarantee for the
medial axis approximation from the Voronoi diagram, using a subset of Voronoi vertices called poles.
Our approach is directed towards the identification of maximal spheres.

In the algorithm, given a footpoint f
1
, a triangle is constructed for every other footpoint f, i.e. every

other vertex of the mesh, by taking the same angle a at f as at f
1
. If no triangle can be constructed,

because f
1
m and fm do not intersect, f is discarded. If a triangle can be constructed, the corresponding

circle could be a maximal circle. Fig. 7(b) illustrates that this can result in multiple circles. The circle
with the smallest radius value is taken, since all other circles contain at least one mesh point and are
therefore not a maximal circle. In this way, the algorithm finds a medial axis point for each footpoint,
and so we get a discrete approximation of the medial axis.

If a footpoint f
1

lies at a concave edge or vertex, there is a possibility of identifying multiple
footpoints f with different medial axis points m and hence with different radius values. For such
footpoints f

1
, therefore no corresponding footpoint f is searched, i.e. they are skipped within the

iteration over all footpoints. However, they can be a footpoint of another footpoint that is not at a
concave edge or vertex, and will be found when for the latter the corresponding footpoint is searched.
As will be discussed later, these concave footpoints are visualized in a different way.

(a) (b)

Fig. 7: The identification of a medial axis point, (a) the construction of the medial axis point m, given
the surface normal at f

a
, and the line f

a
f

b
, (b) an actual situation as it can occur within a mesh; the

triangle f
1
m

1
f

2
is chosen, and not the triangle f

1
m

2
f

3
, because the circle corresponding to f

1
m

1
f

2
has a

smaller radius.

To make this approach plausible, we consider a continuous approach, in which not a discrete model (a
mesh) but a continuous model is taken. Such an approach can identify a medial axis point for a
footpoint f

a
by taking a continuous sequence of circles tangent to the boundary at f

a
, which all have

their midpoint on the surface normal at f
a
, with an increasing radius value. The smallest circle c that

touches another part of the boundary, as illustrated in Fig. 8, is the circle of which the center is the
corresponding medial axis point m, and the point where the circle touches another part of the
boundary is another footpoint f

b
. Our approach identifies all possible circles for the discrete model

with their center along the surface normal at f
a

and touching another part of the boundary. The
smallest circle we find corresponds to the circle c of the continuous approach; compare Fig. 8 and Fig.
7(b).
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Fig. 8: A possible continuous approach in which the maximal circle c for footpoint f
a

is the smallest
circle tangent to the boundary at f

a
that touches another part of the boundary.

For each medial axis point, the algorithm finds the corresponding footpoints and thus the
corresponding governors; see begin of this section. All sheet points are classified as a thickness or an
angle sheet point, according to the connectedness of the governors as mentioned in Section 3.
Depending on the classification of a sheet point, either a thickness or an angle value is calculated,
which is then assigned to its footpoints. These values are mapped to their corresponding color maps;
for more details see Sections 3 and 5. If a footpoint lies at a concave edge or vertex, as discussed
earlier, the value for that point is based on the dimensional values at its neighboring mesh vertices.

The triangular mesh is used to visualize the dimensions, i.e. the color values at the mesh vertices
are interpolated across the triangles, resulting in a visualization of the dimensions across the whole
boundary. Some mesh elements may have vertices in two different angle areas or in both a thickness
and an angle area. The visualization between these and the neighboring mesh elements can give a
jagged result, but as long as the density of the mesh is high enough, this is not really distracting.

5 RESULTS

This section will illustrate the general principle, show two examples with more details, and finally
discuss some results of a parallel implementation.

(a) (b)

(c) (d)

Fig. 9: Model (a), visualization of only thickness according to [6] (b), and visualization of both thickness
and angle areas (c) according to different color maps (d).

The general principle of our approach is illustrated in Fig. 9. The model, only thickness visualization
according to [6], and our visualization, including both thicknesses and angles, are displayed. The
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thickness values are mapped to colors ranging from red to green, where red was chosen for the
thinner regions and green for the thicker regions. The angular values are mapped to colors ranging
from blue to pink, to clearly illustrate the difference with the thickness areas. This simple example
illustrates that the distinction between the two types of areas is clear.

A second example, see Fig. 10, illustrates that the differences between two parts can more easily
be seen with our visualization. The part in Fig. 10(a) has rounded regions in two locations, whereas the
part in Fig. 10(c) has straight edges. Our visualizations of the two parts, given in Fig. 10(b) and Fig.
10(d), are clearly different.

(a) (b)

(c) (d)

Fig. 10: Two parts: (a) has rounded regions in two locations, whereas (c) has straight edges. Their
visualizations show thickness areas (b) and angle areas (d), respectively.

In the final example, see Fig. 11, a part contains four similar instances of the same feature (extruded
cylinders). However, one of them is smaller than the others, which cannot be seen in a standard
display of the part, see Fig. 11(a). The visualization in Fig. 11(b) shows a somewhat different color for
one of the features, more clearly visible in the two close-ups. The features only differ 0.5 mm, hence
the difference in visualization is also small, but large enough to be noticed.

(a) (b)

Fig. 11: A part that has several instances of the same feature (a), the extruded small cylinders that
appear similar. However, one of them deviates by only 0.5 mm, and this is visible since the smaller
feature has a somewhat different color (b).
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Because the medial axis transform is computation intensive, especially if one wants a high degree of
accuracy, the serial implementation was turned into a parallel one, with the help of openMP [10]. As
can be seen in Tab. 1, the achieved speedup is very high, because the iteration over the footpoints can
easily be divided among various threads. Implementation of a spatial subdivision scheme could
further improve overall speed.

Model # Vertices # Triangles 1 Core 2 Core Speedup 4 Core Speedup

Fig. 9 38866 77728 141.5 s 70.6 s 2.0 36.1 s 3.9

Fig. 10 (a) 42247 84502 168.3 s 84.3 s 1.9 43.2 s 3.8

Fig. 11 52028 104080 261.3 s 131.6 s 1.9 66.2 s 3.9

Tab. 1: Results from the parallel implementation using openMP [10], illustrating that the scalability of
the solution is very high, since the achieved speedups are close to what can maximally be expected.
The results were tested on an Intel Core 2 Quad @ 2.67 GHz, 6GB.

6 CONCLUSIONS

This paper discussed a method that extracts and visualizes dimensions, specifically thicknesses and
angles. The method computes the medial axis and determines the dimensions based on the
information provided by this representation. The medial axis gives a consistent way of measuring the
dimensions in question, and makes a distinction which dimension gets preference over the other to
give a useful visualization. Since the method needs to work for any input and format, the calculation
and visualization of the dimensions is based on a mesh. By making a parallel implementation of the
method, the dimensions can be extracted and visualized fast, making sure that this does not become a
bottleneck of the design process.

The visualization gives intuitive feedback, making a clear distinction between thickness and angle
dimensions. It is capable of illustrating symmetry, whether or not surfaces are parallel, what is the
inclination of a face compared to the rest of the part, what is the relationship between different parts
of an object, e.g. does this part of the object have a thickness of around 40 % of the thickness
encountered elsewhere in the object, etc. So, it can be used to verify several properties of the geometry
of an object.

Future work involves the removal of the jagged results between the thickness and angle areas and
handling special cases, mentioned in Section 2. An example of a special case is a cube-like object in
which there are no sheet points capturing thickness, but only one seam that contains this information.
Since seams are not mapped to the boundary, the visualization only offers information on the angle
dimensions and not the thickness dimensions. In such situations, the visualization needs to be
adjusted to incorporate some thickness information. In realistic models, however, these special cases
rarely occur, and the visualization is already very useful.
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