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Thomas Kronfeld, David Brunner and Guido Brunnett

Chemnitz University of Technology, {tkro, brunner, brunnett}@cs.tu-chemnitz.de

ABSTRACT

During the past years several innovative and technological developments have been
made in oral surgery. Today, digitized dental casts are common for simulation and
planning of orthodontic interventions. In order to work with these models, knowing
the exact position of the teeth is of high importance. In this paper, we present a new
method for tooth segmentation with minimal user interaction. At the beginning, an
initial estimate for the separating curve between the teeth and the gum is computed
and optimized by use of an active contour. The second step calculates the dental arch
and the interstices between the teeth. In order to detect each tooth surface exactly, we
finally position a snake around the cusp of each tooth.
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1 INTRODUCTION

In orthodontics surgery, dental plaster casts of the patient’s denture are made to simulate and plan
interventions (inlays, bridges, malocclusions). Traditionally, clinicians analyze these plaster casts
manually. In the past two decades, computerized systems became an important factor in dental
surgery due to the improvement of three-dimensional scanning devices (for example [5, 6, 15]).

In this paper, three-dimensional dental models are represented as triangular meshes. As well as in
the traditionally case, the first step is the accurate separation of the teeth from the digitized dental
model. After the exact position of each tooth is determined, one is able to measure orthodontic
features and simulate orthodontic procedures such as tooth rearrangement.

Tooth segmentation, in general, is a difficult task, since teeth occur in different shapes and their
arrangements vary substantially from one individual to another. Furthermore, when dealing with
models with severe malocclusion, interstices may be missing. A lot of automatic methods have already
been presented (for a recent survey see [21]). None of these methods have been designed to
specifically deal with teeth and using them directly for tooth segmentation will produce bad results.
Algorithms which were specifically designed to deal with dental models provide better results. Most of
them, however, require time-consuming and error-prone user interaction. The method proposed by
Kondo et al. [12] is the only highly automated tooth segmentation method we know. At first, the user
selects four reference points on the surface of the mesh. After that, the algorithm computes two range
images: the plan-view and the panoramic range image. The plan-view range image is used to determine
the dental arch, which is used as a reference to calculate the panoramic range image. Both images are
processed separately and composed into one indicator function, which is used to detect the interstices
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between teeth. Unfortunately, the method produces poor results, when processing models with severe
malocclusions. The approach of Li et al. [13] uses a modified watershed algorithm for manual
segmentation. At first, the user selects some points on the surface of each tooth. Starting at the
selected markers, the method performs a region growing method until it reaches vertices with
negative mean curvature. As stated by them and many other researchers, the boundary between tooth
and gum is determined by vertices with negative mean curvature values. For example, Zhao et al. [28]
describe a method based on the calculation of mean curvature, directly. Initially, the user specifies a
certain threshold as an upper curvature bound. Vertices with smaller mean curvature are grouped into
connected regions. Then they apply morphological operations to avoid multiple branching and extract
the skeleton of each region to obtain thinner boundary lines. In order to achieve a complete
segmentation, the user has to remove noisy lines and to connect open boundary lines manually. A
similar method was suggested by Tian-ran et al. [23]. Sinthanayothin and Tharanont [22] propose two
different manual segmentation methods. The first one is based on the selection of landmarks that are
located at the transition between tooth and gum. These landmarks are then interpolated using a cubic
spline to complete the boundary. Tooth segmentation using cutting planes is the second described
method. Here, the user needs to position cutting planes between the teeth, so that each tooth is
enclosed by two planes.

Beside the methods mentioned above there are some commercial products [1, 3, 4] but the details
of their algorithms have not been published. The workflow is as follows: the dentist has to send the
dental plaster cast to the company. After a few days the dentist receives a data file which contains the
digitized and segmented dental cast. Now, one can rearrange each tooth or fit in inlays, but without
the possibility to change the segmentation.

In this paper, we follow a completely different approach. Our method for tooth segmentation is
based on active contour models (also known as snakes). The active contour model was originally
developed by Kass et al. [11] to detect salient features in two-dimensional images. The aim of their
research was to find connected boundaries based on low-level information such as the gradient
magnitude of an image. They postulated that any object boundary could be described mathematically
using a parameterized curve. The curve is initially placed outside the object and evolves under the
influence of internal und external energies until it aligns with features of interest within an image. The
internal energy derives directly from the curve and serves as a smoothness constraint, while the
external energy derives from the image and forces the curve to lock on salient image features. The
overall evolution process is obtained by energy minimization.

Milroy et al. [14] extends the original snake model to three-dimensional surface for segmentation
purposes in reverse engineering. In their approach, the snake evolves directly on the surface. The user
specifies a small closed contour within the region to be segmented, which then grows under the
influence of an internal pressure force until it reaches vertices with local curvature maxima. Each
vertex of a snake is moved to one of two adjacent positions on the surface of the mesh, perpendicular
to the snake curve. The energy model, however, requires a locally continuous surface in the
neighborhood of each vertex. For that purpose, the region surrounding each vertex is approximated by
a second order surface. A simplified model for triangle meshes was proposed by Jung et al. [9]. Here,
snake elements are located on adjacent vertices. During an iteration, each vertex of the snake moves to
one of its neighboring vertices on the mesh, in order to reduce its energy as much as possible. The
evolution is carried out according to the greedy principle, which was first introduced for active
contours by Williams and Shah [25].

The rest of this paper is organized as follows. In section 2 we review the mathematical background
of the proposed method. At first we calculate possible tooth boundaries (termed: features) and
improve them by suppressing noise (section 2.1). After that, the cutting plane between the teeth and
the gum is estimated (section 2.2) and converted into one or more snakes. The energy functional as
well as the evolution equation of these snakes are outlined in section 2.3. Our newly defined external
energy functional is presented in section 2.4. After the snake evolution converged, we calculate the
exact position of interstices between neighboring teeth by using the edge tangent flow (section 2.5). As
a last step, each tooth is separated individually. Therefore, we initialize a snake at the crown of a
tooth, which then grows until it reaches the transition between tooth and gum. A complete overview of
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our approach, as well as a discussion on implementation details is presented in section 3 (see also
figure 1). Results are demonstrated in section 4, and conclusions are drawn in section 5.
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Fig. 1: Snake-based segmentation process.

2  MATHEMATICAL BACKGROUND
The three-dimensional dental model is represented using a triangular mesh M = (V,7T), which consists

of a set of vertices V =(v,...,v, ) and a set of indexed triangles 7 = (t,...,t )where each vertex veV
v

T
represents a unique position in E? and each triangle te7 is defined by three vertices
t= {(Vi,vj,vk) | VoV EVIV =Y = v, }. The set of edges & is given by

E={(v,v,) v v, eVi0<ij<n,} where v, = v, belong to the same triangle ¢ € 7 . At each vertex
v eV anormal vector n(v) is defined with unit length Hn(v)H =1.A vertex we V is called neighbor of

avertex veV iff the edge (v,w) € £ exists. The set of neighbors of a given vertex v eV is defined by
N(v).

2.1 Feature Region

In order to detect regions of interest on the mesh by using snakes, one has to assign an attribute to
each vertex of the mesh. In general, surface features are defined using curvature information, since
curvature intrinsically describes the local shape of a surface.

Consider a continuous, oriented, and unbounded surface S and a point v which lies on S along
with its unit normal vector n(v). One can construct a plane P(v) that contains v and n(v). The

intersection of this plane with S results in a curve ¢ on the surface. This curve has an associated
normal curvature r (v) at the vertex v. The curvature value does not however specify the surface

curvature of S at v, since the constructed plane is not unique. If we rotate the plane P(v) around the
unit normal vector n(v), we receive a new contour along with its own curvature value. Among all these
curves, there is one with minimal curvature « (v) and one with maximal curvature ,(v). These two
curvatures are also known as the principal curvatures of § at point v.
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Fig. 2: Color-coded mean curvature values for each vertex v € V. Positive curvature values are shown in
red while negative curvature values are colored in blue.

In order to deal with piecewise smooth surfaces such as triangle meshes, we have to estimate discrete
curvature values. We calculate these discrete curvature values according to the method proposed by

Rusinkiewicz [20]. For each vertex v €V the principal curvature values are given by « (v) and &,(v).

7 (V) + £y (V)
2

Based on these values, we compute the mean curvature s, (v) = for each vertex ve V. The

values «,(v) are then mapped to the range[-1,1] (see [24] for implementation details). Figure 2 shows
the distribution of mean curvature on the mesh.

(@) (b) (©

Fig. 3: Results for the vertex set D (blue) according to the threshold ¢ = —0.1 (a) and ¢ = —0.5 (b). The
color-coded vertices belonging to the vertex set P (red) with n = 0.8 are shown in (c).

State of the art segmentation methods mostly define part boundaries according to the minima rule
[7]. This rule states that boundaries between parts could be found along lines of negative minima
curvature. Figure 2 shows an example of the mean curvature distribution and in figure 3(a) vertices
with «x,, <-0.1 are highlighted. These examples show that vertices with negative curvature are located
at the transition between tooth and gum, so we could apply the minima rule as well. Unfortunately,
there are many noisy regions due to the digitization and the natural shape of the gum. Therefore, we
have to reduce the number of considered vertices. At first, a user defined threshold ¢ is used as an
upper bound. Based on ¢ the feature vertex set

D={veV]|r,(v)<e} (0.1)

is generated.

Vertices belonging to D are grouped into one or more separate regions. Two vertices u,w € D
belong to the same region, if they are directly connected by an edge (u,w) € £ or if there exists a path

(w=vg,v,...,v, ,v, =w) betweenu and w whose vertices belong to the set v, € D (with (o, - ;).
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The choice of a threshold value e is complicated. Using the value ¢ < —0.5 results in too few
vertices in D to obtain closed regions at the tooth boundaries (Figure 3(b)). On the other hand, when
using a threshold of = —0.1 or above, many undesired regions remain (figure 3(a)). Our experiments
showed that ¢ = —0.3 is a good choice. After that, most noisy regions have been filtered, but there are
still small feature regions left. Thus regions with less than 0.01-| D | vertices are deleted. Finally we

close small holes between and within the remaining regions, by applying morphological operations
[19]. In the following sections, we assume that D specifies the enhanced vertex set.

Since these feature regions along with their curvature values are part of the external snake energy,
we define a new curvature function for each vertexve V:

Ky (V) ifveD

K(v) = (0.2)

0 otherwise

The final segmentation result is obtained by starting an active contour at the surface of each
individual tooth crown. Vertices belonging to the crown are characterized by strong positive mean
curvature. So we construct a new vertex set:

P={veV:r,(v)>n} (0.3)
where 7 is a user defined threshold. Experiments showed that a value of 7 = 0.8 is sufficient. An
example of this set is shown in Figure 3(c). Unfortunately, we cannot use these vertices directly to
segment the teeth, because there are many vertices within P that are located at the surface of the gum
and at the base of the dental model. In that way, we will obtain a severe over segmentation, which
cannot be reduced without expert knowledge. Therefore, we have to thin out the set P until only
vertices at tooth crowns remain.

() (b) ()
Fig. 4: Best fitting plane resulting from the principal component analysis of the vertex setD.

2.2 Principal Component Analysis

Principal component analysis is a common tool in statistical analysis. The central idea is to reduce the
dimensionality of a set of samples, while retaining as much as possible of the variation present in the
set. This is achieved by transforming the original set to a new set of variables, which are called
components. One could sort the components in a way that the first few of them retain most of the
variation present in all of the original variables. Components that are derived in this way are called
principal components. The earliest description of this technique was given by Pearson [17] and
Hotelling [8]. Pearson [17] developed a method for finding a line or plane that best fit a set of points in
p-dimensional space. The term best fit, however, is mathematically imprecise. Consider a set of points
in three-dimensional space and their perpendicular distance to a set of planes. The plane which
minimizes the sum of distances is called best fitting plane. Pearson [17] also showed that this plane
contains the centroid of the point-set.

In our case, we are looking for a first estimate for the boundary between teeth and gum. Vertices
belonging to the vertex set D are located in the vicinity of the searched boundary, as shown above.
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Therefore we use principal component analysis to calculate the plane that best fits to all vertices in D.
The calculation is based on eigenvalue decomposition of the covariance matrix, which is given by

CZLZ(vfﬁl)(@(vfﬁl)T (0.4)
‘D veD
where
m= ;; v (0.5)

is the barycentric coordinates of the vertex set D. The square matrix C is symmetric and real-valued.
Thus, the eigenvalue decomposition, calculated by the Jacobi eigenvalue algorithm [18] results in three
real-valued eigenvalues. The eigenvector corresponding to the largest (first) eigenvalue points in
direction of the maximal variance in the data-set. The plane we search for is spanned by the
eigenvectors, corresponding to the first and second eigenvalue and contains the barycenter m (figure
4).

2.3  Snake Model

The active contour model was first proposed by Kass et al. [11] for representing image contours. Their
basic snake model is an energy minimizing curve, which evolves under the influence of several forces.
The contour is represented as a parametric curve c(s) = (z(s),y(s)) where se€[0,1] and the energy

functional to be minimized is written as
1
Esnake = f Esnake (C(S))ds = f (Eint (C(S)) + Eima e(C(S)) + Econ(c(s)))ds' (0.6)
0 0 &

E._. represents the internal energy of the contour, E.

int image

1

refers to the image forces and E__ is the

con

external constraint force. The internal energy

. a(s)fe,(s)| +26(8) c,(s) )

consists of the first and second-order derivative of the parametric curve, where «a(s) and f(s) are user

[

defined weights. The first term will have large values at gaps in the curve, while the second term
increases when the curve bends rapidly. The final location of the snake corresponds to local minima of
the energy functional. The functional optimization is solved using calculus of variation, which involves
deriving a variational integral and solving the corresponding Euler-Lagrange partial differential
equation iteratively. Therefore image forces and constraint forces need to be differentiable to
guarantee convergence. Also the computed contour coordinates are real numbers, allowing the points
to fall between the discrete pixel coordinates of the underlying image.

In order to overcome these drawbacks, as well as to speed up computation, Williams and Shah [25]
proposed an evolution method based upon the greedy principle. First of all, they use a sampled

version of the contour c = (c07...7cn) where each sample ¢, (where 0<i<n) is related to a discrete

pixel coordinate. During an iteration, the energy function is computed at ¢, and each of its eight
neighbors. Therefore, the energy functional to be minimized is written as:

E:’ﬂ{lk‘ﬁ = i Esna,ke (C1) = i (Eim‘, (ci) + E1ma,ge (C1) + E{:on (C1 )) (08)
=0

i=0
and the internal energy is approximated using finite differences.

Milroy et al. [14] extend the snake evolution to three-dimensional wireframe models. Their
evolution method is based on the greedy principle as well. During each iteration each vertex of the
snake is moved to one of two nearby positions on the surface, perpendicular to the snake contour. The
distance of these points is specified by the user. Therefore, the region surrounding each vertex is
approximated by a second-order surface.
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Jung et al. [9] present a simpler evolution scheme to ensure that the snake does not leave the
surface. The snake elements are always located at vertices of the mesh. In each iteration, the snake
elements move to one of their neighboring vertices.

S S S, S, S

Fig. 5: For each snaxel s; the unit normal vector and unit tangent vector are approximated (a). At each
iteration step, two adjacent vertices are selected (b).

The active contour model used in this article consists of an ordered set of vertices S =(s,,...,s )

with S C V. Furthermore, successive snake vertices (s;,s,  ),i=0,..,n—1 are restricted to lie on

i+1
adjacent vertices s, € N(s,). We will call snake vertices “snake elements” or for short “snaxel”. In this

paper, we only consider simple and closed active contours (s,=s ~ whereas s =S, for

1= 7:4,5=0,...,n—1). On that note all subscript arithmetic is modulo n . Vertices which are enclosed

by the snake are called interior vertices. At each snaxel s, the unit tangent vector
S. —S.
t(s1) — ikl el (0.9)
Siv1— Si—lH
is approximated, as shown in figure 5(a). The snake will now be oriented such that the unit snaxel
normal vector b(s) at each snake element s € S points away from the interior vertices of the contour.

The unit snaxel normal is defined as the outer product between the unit tangent vector and the unit
surface normal vector:
b(s) =t(s)xn(s) VseS. (0.10)

In each iteration, a snaxel s, € S can only move to a vertex within its neighborhood N(s;). We further

restrict the possible candidates in the same way as proposed by Milroy et al [14]. Each snaxel is moved
to one of two adjacent vertices s, ,s,, € N(s,), perpendicular to the snake curve, or remains at its

current position s, =s, . Figure 5(b) shows an example for the choice of candidates. The energy of the
snake element s, € S is defined as:

e(s,) =e,  (s,)+e,(s) (0.11)

int

where e, is the internal energy and e_, is the external energy. Note that e,e, ,e € R? are column

t

vectors e(s.) = (eo(si)7el(s1)7e2(si))T. The value of the topmost element of these vectors corresponds to

the contour energy at the snake element s, ¢ S. During an iteration, each element is moved to the

vertex corresponding to the minimal value of e(s;). The energy functional to be minimized is written
as:

n

= min {e.(s.)} (0.12)

0<j<2 1 *
iz VSIS

*

snake (S)
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and the evolution is carried out according to greedy principle [25].

The internal energy generally consists of the first and second order derivative of the curve, which
are also called tension and bending energy, respectively. Here, we approximate the derivatives by finite

differences. The internal energy term for each element ¢  .(s) of the vector e (s,) is therefore

defined as follows:

eillt,j(si) =T Si—lH T8 =28+ Si—lH (0.13)
where o and g are user defined parameters. Large values of o shrink the snake, while large values of

B3 reduce the curvature of the snake.

S. .
%]

The external energy e . can take various forms; in general, it is derived from information of the

surface curvature. At an explored feature vertex the value of the external snake energy will be a local
minimum. Here, the vertex set D contains the features to be detected and the external energy is
derived from the curvature function x, defined in equation (2.2). Unfortunately, we cannot use this
curvature function directly, since their value is only nonzero at feature vertices. This means, that the
external energy would be constant on big parts of the mesh, and so the evolution of the snake
depends completely on the internal energy. As one can see in figure 3, the relative position between
the cutting contour obtained by the principle component analysis and the transition between teeth
and gum, changes completely from denture to denture. In figure 3(a) the contour lies completely above
the searched feature, while in figure 3(b) the contour lies completely below. For this purpose, the
external energy

eext (Sz) = efeat(si) + epress (Sz) (0'14)

is composed of two newly defined energy functionals, the feature attraction energye and the

feat

.- The feature attraction energy, which will be explained in section 2.4, expands

es:

pressure energy e
the scope of feature regions by using a pre-calculated vector field, the feature attraction flow.
The second energy term, the pressure energy € s ? is similar to the balloon force proposed by

Cohen [2]. His aim was to modify the external forces in such a way as to obtain more stable results for
image snakes. In order to archive this goal, he introduced an inflation force by which the snake

behaves like a balloon. This force is written as E, | = k-n(s) where n(s) is the unit outward normal of

the curve with arc-length s and & determines the magnitude of the force. This avoids that the curve is
trapped by spurious noisy feature points and makes the result much more insensitive to the initial
position.

In our case, the pressure force is used as a tool to accelerate the movement of the snake and to
reduce the influence of swirling effects in the feature attraction flow. It also affords the opportunity to
control the evolution directly, for example when the snake is used as a semiautomatic segmentation

tool and the initialization is done by the user. The energy term for each element €oress, ? in the vector

e is written as the inner product:

press

S. . .
= 8( b(s,),—— (0.15)

epress,j (Si )

where b(s;) is the outward unit normal of S at the snake element s; and s, . is its candidate vertex.

The weight § determines the strength of this force, whereas the sign of ¢§ specifies the direction in
which the force acts. Negative values let the snake grow, while a positive value shrinks the snake. In
general, the magnitude of § should be small, otherwise the snake may not converge.
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Fig. 6: Examples of the derived feature attraction flow.

2.4 Feature Attraction Energy

As mentioned above, the relative position between the cutting contour and the transition between
teeth and gum could not be determined in the first place. Therefore, especially for automatic
segmentation, we have to expand the capture range of features to attract the snake from an arbitrary
position. This problem was first addressed by Xu and Prince [26, 27]. They proposed the gradient
vector flow as a new external force for parametric image snakes. In order to compute such a field, one
has to define a scalar field as an overlay of the image. After that, the gradient of this scalar field is
calculated. The final vector field is obtained by diffusion of the gradient information over the entire
image. One can interpret this field as the direction to be followed to reach the nearest object
boundaries.

In our case, the computation is based on the region included in the set D and the above defined
curvature function x(v). The gradient of a scalar field is defined as a vector field whose components
are the partial derivatives of the underlying scalar field. Here we deal with a discrete and mostly

irregular grid, so we have to approximate the gradient vectors. Therefore, the gradient is determined
using finite differences:

1 u—v

V) =—— > (5(v)—h(w) —

‘N(V)‘ weN(v) ‘

Three general properties of the gradient vectors are essential for the following calculations. First of all,

the vector V(v) at each vertex veV points in the direction of the nearest feature vertex. Second,

these vectors generally have large magnitudes only in the immediate vicinity of a feature region. Third,

in regions without features HV(v)H is nearly zero.

(0.16)

ju =]

We define the feature attraction flow to be the vector field f(v), where for each v €V the vector of
this field points towards the nearest feature region. The feature attraction flow is initialized with the

derived curvature gradient f (v) = V(v). After that, an iterative diffusion process is performed,

which distributes the gradient information over the entire mesh:

£(v) = (1)) Nl() ST E L @[+A-VE), weV. (0.17)
V) ueN(v)

After ¢ iterations we obtain a smooth vector field f , which has non-zero magnitude at each vertex of
the mesh. Figure 6 shows an example of the feature attraction flow. In particular, at vertices v € V with
large magnitude HV(V)H the second term of equation (2.14) dominates the sum, which keeps the vector

f.(v) nearly equal to the initial gradient vector. The first term of equation (2.14) dominates at vertices

v eV where HV(V)H is nearly zero, yielding a slowly varying field. The parameter )\ is a regularization

parameter controlling the tradeoff between the first term and the second term in the sum. With small
values, one can reduce the influence of noise. After each iteration we perform an immediate step where
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the length of each vector is clamped to the range [0,1]. This prevents the magnitude of vectors near or
within feature regions from rising rapidly.
The feature attraction energy is then defined by

fs, f) Big T8 (0.18)
o

where f(v) is the feature attraction flow after ¢ iterations. The mmuend ensures that the snake moves

in direction of increasing feature attraction flow vectors. Due to the minimization of the subtrahend
the snake is moving in direction of the nearest feature region and converges there.

Chac. (s,)=26 7Hf(Si,J')H

2.5 Edge Tangent Flow

In digitized dental casts, often interstices between adjacent teeth vanish due to severe malocclusion or
low resolution scanners. In cases such as shown in figure 7(a-b), automatic segmentation may fail.
Therefore, we have to trace and reconnect the interstices, prior to the final segmentation. Kang et al.
[10] first solved this problem for two-dimensional images by using edge tangents. Their aim was the
development of an enhanced edge detector to produce high-quality line drawings. In general, the task
of creating line drawings is difficult, since salient edges often appear as piecewise unconnected lines
in natural photographs. Only in an overall view one can decide whether there is a salient edge or not.
In order to maximize the line coherence, they construct a smooth vector field with which one is able to
follow the shape of lines. For this purpose, they define the edge tangents, which are perpendicular to
the image gradient.

In this paper, we extend the definition of the edge tangent flow to three-dimensional triangle

meshes. We define the edge tangent vector, denoted t_..(v) for each vertex veV, as the outer
product between curvature gradient V(v) and surface normal n(v):
top (V) = V(v) xn(v) (0.19)

An example is shown in figure 7(c).

(@) (b)

Fig. 7: Unconnected feature regions due to low resolution scanners (a) and severe malocclusion (b). An
example of the edge tangent flow is shown in (c).

3 TOOTH SEGMENTATION

An overview of the proposed segmentation algorithm is shown in figure 1. The algorithm starts with
estimating the mean curvature for each vertex v € V. Now, the user defines the threshold ¢ to obtain
the vertex set D, as well as the threshold 5 to obtain the vertex set P, according to the method
described in section 2.1.

The vertices belonging to the set D are located at the transition between the teeth and the gum. In
order to obtain an initial estimate of this region, we perform the principal component analysis on the
vertices of D. As stated in section 2.2, the best fitting plane is defined by the vectors belonging to the
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two larger eigenvalues. By cutting the dental cast with that plane, we obtain we obtain one or more
closed and oriented contours (figure 3). Each of them is transformed into a snake and evolves
independently.

After each snake element is moved, in order to minimize the energy functional, it may happen that
adjacent snake elements are no longer located on adjacent vertices. In those cases we have to
reconnect them. During evolution, a snake may shrink until it encloses only a single triangle. These
snakes will be discarded. On the other hand, two snakes can expand and collide with each other, and
then they are merged. At the end, the remaining snake encloses the teeth completely and is called
initial snake.

Now, we use the edge tangent flow to detect and reconnect the interstices. For each snake element,
the neighboring vertices are examined. If the edge tangent flow vectors at these vertices are orthogonal
to the tangent vector of the current snaxel, then it is most likely that there is an interstice. First, the
corresponding snaxel at the other end of the interstice is estimated. After that the shortest path in
direction parallel to the edge tangent flow vectors and within the interior of the initial snake to the
corresponding snaxel at the other end of the interstice is searched. If the feature region along the
searched path is unconnected, then these gaps will be closed as long as they are smaller then five
percent of the Euclidean distance between these corresponding snaxel.

The remaining task is to detect the surface of each individual tooth exactly. Unfortunately, we
cannot ensure that all snake elements of the initial snake are located at the transition between teeth
and gum. As a consequence, some interstices have not been detected yet. But besides that, we have
reduced the considered surface of the mesh significantly. The remaining parts are the surface of the
teeth and maybe some small parts of the gum. Therefore, we can be sure that all regions included in
the vertex set P and at the interior of the initial snake, are cusps of teeth. Each of these regions will be
used to initialize an individual snake. Under the influence of the feature attraction flow and the
pressure force, each snake expands until it reaches the tooth boundary. In order to avoid expansion,
when tooth boundaries are missing, we introduce the hard constraint that the snake has to stop when
it reaches the initial snake or detected interstices.

4  EXPERIMENTAL RESULTS

The proposed method was tested on ten different dental casts and performs constantly well. The
resulting segmentation is shown in figure 10 and the overall runtime for these meshes is listed in table
1. The internal energy was weighted by setting « = 3 = 0.6 throughout the tests. The experimental
results showed that weighting the feature attraction energy with ~v = 0.5 is sufficient. Since the
pressure energy accelerates the movement of the snake, we set § =0.2 for the initial snake and
6 = —0.2 to weight the snakes started within the teeth.

Model Model 1 Model 2 Model 3 Model 4

(number of vertices) (142k) (208k) (155k) (209k)
Curvature estimation 1.34 s 19s 14 s 1.85s
PCA and snake initialization 1.15s 1.7 s 1.3s 1.7 s
Feature attraction flow 3.2 8 4.86 s 3.6 4.76 s
Contour calculation 0.22' s 0.3s 0.24 s 0.2s
Outer snake optimization 44 s 33s 3.5s 5.2'8
Single tooth segmentation 0.09 s 0.1s 0.14 s 0.09s
Total time 123 14 s 13 s 15 s

Tab. 1: Runtime statistic for all models illustrated in Figure 11.

Nevertheless in dental casts, where the boundary between tooth and gum is very smooth, the
segmentation fails. The same error occurred, when neighboring teeth overlap each other due to severe
malocclusion. In these cases, the user needs to segment the tooth manually.
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5 CONCLUSION

We have presented a highly automated segmentation method for separation of teeth from triangular
meshes. The algorithm is based on active contours, wherefore it is robust even in the presence of heavy
noise. Through our experiments, we found that our approach is fast and requires minimal user
interaction. Hence it enables orthodontics to plan dental treatments much faster.

The proposed snake model is not restricted to operate on this special type of three-dimensional
models. Therefore, as future work, we will investigate their behavior for the segmentation of several
other models, like digitized archeological models.

(d) (e) ®

Fig. 10: The dental model is cut by the best fitting plane (a). Vertices belonging to the cut triangles are
transformed into the initial snake, which is then optimized (b). The resulting segmentation for model 1
is shown in (c). The segmentation results for model 2-4 are shown in (d)-(f).
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