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ABSTRACT

Hierarchical modeling refers to the modeling of parts with solid geometry, material
composition, and possibly distributions of properties at multiple scales. Typical solid
and heterogeneous models represent geometry at one scale but do not contain
geometric information about features at scales that are orders of magnitude smaller.
In this paper, the related topics of heterogeneous and hybrid modeling, subdivision
methods, and level of detail approaches are surveyed. The capabilities of these
technologies are compared against the requirements for modeling cellular materials
and other structures with complex geometric and material constructions. A specific
hierarchical modeling method is proposed. Three 2D examples are used to illustrate
the application of the proposed modeling method.
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1. INTRODUCTION
Manufactured parts typically have a complex distribution of microstructure, mechanical properties,
and sometimes materials. Commercial CAD systems are not able to represent such distributions, but
some heterogeneous or multi-material research systems are able to represent at least some of this
information. In this work, we are interested in modeling methods that enable the capture of geometry
as well as material and microstructure distributions at multiple length scales. This requirement for
multiple length scales leads to the term “hierarchical modeling” and is meant to include geometry,
material, and microstructure distributions. That is, hierarchical modeling implies heterogeneous
modeling, at least in this work.

The specific engineering domain of interest is that of cellular materials and other parts fabricated
using additive manufacturing (AM) (i.e., “rapid prototyping”) processes. However, the domain of
application of hierarchical modeling is much broader. The concept of cellular materials is motivated
by the desire to put material only where it is needed for a specific application. Achieving high stiffness
or strength and minimal weight are typical objectives [13, 23]. Multifunctional requirements are also
common, such as structural strength and vibration absorption. We hypothesize that designed
mesostructures will enable structures and mechanisms to be designed that perform better than parts
with bulk or non-designed mesostructures, particularly for multifunctional applications. Testing this
hypothesis requires the ability to bridge multiple length scales (micro to macro, or even nano to
macro). Fig. 1 shows several images of cellular structures and a cross-section of a metal part
fabricated using a laser cladding process (LENS), which illustrates some aspects of typical
microstructures that result from laser AM processes.
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To achieve hierarchical modeling, it is first helpful to identify specific requirements on heterogeneous
and multi-scale methods. The requirements that we propose include the capability to:

 Represent and design with hundreds of thousands of shape elements, enabling large complex
design problems as well as designed material mesostructures.

 Represent complex material compositions and microstructures and ensure that they are
physically meaningful.

 Determine mechanical properties from material compositions and mesostructures across
length scales.

 Ensure that specified shapes, material structures, and properties are manufacturable.
 Ensure that as-manufactured designs achieve requirements.

Of these requirements, the first two are addressed directly in this paper. The other three highlight
important properties of the modeling method for supporting other design and manufacturing
objectives.

a) extruded shapes b) 3D lattice structure c) microstructure from LENS
process

Fig. 1: Example cellular structures and additive manufacturing microstructure.

A Design for Additive Manufacturing (DFAM) framework was introduced in some of our earlier work
[23] and is illustrates our desire to achieve design requirements by manipulating both the geometry of
a part and its material composition. This framework is based upon the process-structure-property
relationships from the materials science domain [19], where analysis of a material consists of
examining the microstructure of the material after processing it, and determining its mechanical
properties from the microstructure. In materials design, material developers seek to reverse the
process by specifying desired behavior, deriving target mechanical properties, designing desired
microstructures, and developing manufacturing process conditions to achieve those microstructures.

In the design of cellular materials, we introduce an additional hierarchy into this framework that
captures the geometric complexity of the microstructure or material composition. As a result, part
behaviors can be controlled by adjusting cellular structure geometry in addition to material
microstructure. The concept is illustrated in Fig. 2. Let a solid model with material composition and

other material-related attributes be denoted as  = (, ), where  is the solid geometric model and 

is the attribute space, with some attributes being applied only to regions of .  denotes the structure

of the design. The manufacturing process space, , consists of process plans with sequences of

operations and values of process variables. Property space  contains information about part

properties that are derivable from S using physical principles; e.g., mechanical, thermal, and electrical

properties. Finally, we will add behavior space, , which contains information about a part’s actual and

desired behavior given some loading and boundary conditions.

The overall DFAM method consists of a traversal of the framework in Fig. 2 from Behavior to Process,
then back again to Behavior. The traversal from Behavior to Process can be called design, where
functional requirements are mapped to properties and geometry that satisfy those requirements to
structures and through process planning to arrive at a potential manufacturing process. Going in the
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reverse direction, one can simulate the designed device and its manufacturing process to determine
how well it satisfies the original requirements.
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Fig. 2: DFAM framework with geometry and material layers.

In this paper, the area of heterogeneous modeling is surveyed briefly, then a more specific description
of multiresolution modeling method is offered in order to identify methods and models from the
geometric modeling literature that may contribute to hierarchical modeling. From these surveys, a
new hierarchical modeling method is proposed in Section 4. Three simple 2-dimensional examples are
presented in Section 5, one that illustrates multi-scale geometric modeling, one that demonstrates
multi-scale material modeling, and one that demonstrates randomized fiber orientations that vary
with variations in geometry. Conclusions are offered in the final section.

2. HETEROGENEOUS MODELING
Broadly speaking, the objective of heterogeneous modeling is to model a part’s geometry and the
distribution of materials and other properties throughout the geometry. Many heterogeneous
modeling methods have been developed by different research groups. Most of this work can be
classified broadly into two categories: spatial discretization methods, and implicit and other non-
discretization methods. Research on discretization methods started with the observation that material
compositions could be assigned to specific volumes within a part. Finite element modeling approaches
assigned material compositions to individual elements or nodes; material compositions within
elements were interpolated in a manner similar to stress interpolation using shape functions [14, 15.].
Rather than rely on finite element decompositions, other researchers applied voxel-based
representations that utilized spatial occupancy enumeration of part geometry. Again, material
composition information was applied to either individual voxels or interpolated over sets of voxels
using a part’s bounding surface [25, 29]. General cellular decompositions have also received
considerable attention. Dutta and coworkers [3, 15, 16] have developed a series of heterogeneous solid
modeling approaches over several years. Material compositions are assigned to primitive geometric
entities and a set of modeling operations was defined that operate on these entities.
In the area of non-discretized approaches, some researchers have separated the representation of
material compositions and properties from the underlying part geometry [27]. Others have utilized
implicit modeling approaches, which has advantages in that a common mathematical model is used for
both geometry and material composition [12, 24]. A method based on hypertextures was proposed by
Park et al. [20] and extended [21] that provides more intuitive user controls, according to the
developers.
Probably the most sophisticated heterogeneous object modeling approach, due to Kumar et al. [15], is
based on fiber bundles. A fiber bundle model includes not only a geometric model of the part, but also
a mapping from points located within the part to additional properties such as material composition.
Thus geometry is considered to be the “base attribute,” and each point in the object is considered to
correspond to a point in the base (Euclidean) space. The object geometry is represented as a
description of the overall geometry together with a finite set of disjoint decompositions which will be
used to map into the attribute space.
A typical model of geometry and material composition will be presented. A volume fraction-based n-
phase, graded material model will be used here. The material composition at a point is represented by
volume fractions of n

m
phases: (v

1
, v

2
, ..., v

nm
). Then, the space of material compositions is given by Eqn.

1:
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The condition ensures that material combinations at all points are feasible (volume fractions sum to 1).
For example, a combination of three materials could be given as (0.4, 0.5, 0.1), which indicates that the
geometric domain is composed of 40% material 1, 50% material 2, and 10% material 3.
For convenience, we will introduce a set of pure materials, denoted by the standard basis in n-space;
i.e., m

1
= (1, 0, 0), m

2
= (0, 1, 0), m

3
= (0, 0, 1) if three materials are being modeled (n = 3). We will

denote this standard basis of materials by Mn. Then, a particular material combination will be given as
{v
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}, where again the v

i
represent volume fractions. The space of material compositions

can be rewritten as
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Heterogeneous representations are often represented by the combination of geometry models, from a

space of geometric entities , and material models. As such, the space of heterogeneous models is

given by:

  =  × (3)

3. MULTI-RESOLUTION MODELING
Multi-resolution modeling methods are used typically for
model simplification or for level-of-detail control for
visualization or virtual reality applications. Multi-resolution
modeling originated from the desire for computational
efficiency in computer graphics from the mid-1970’s, when
James Clark [10] introduced hierarchically structured object
representations, with progressively more detailed
representations for viewing objects that are increasingly closer
to the viewer. An example used to motivate this work is the
replacement of a complex model with a coarse tessellation (e.g.,
replace a sphere with a dodecahedron) if the viewer is far from
the sphere, which is an example of level-of-detail control. The
first three steps of Catmull-Clark subdivision of a cube is
shown in Fig. 3. In the limit, the subdivision converges to a
sphere. This concept was extended to objects modeled with
parametric surfaces [6], which gave rise to the subdivision
surface and volume methods. Broadly speaking, literature in
this area can be categorized based on subdivision or discrete geometric modeling approaches.

3.1 Subdivision Approaches
Subdivision approaches to multiresolution modeling are appealing in that they enable the addition of
shape details or smoothing by subdividing an appropriate mesh. Some of the simplest subdivision
approaches work with a control polygon (curve) or polyhedron (surface) as the mesh is subdivided.
Different approaches worked with triangular meshes or quadrilateral meshes [6]. Other approaches
use simplicial or other complexes for their mesh. From a design perspective, an interesting application
of subdivision methods is to add shape detail at a particular subdivision step by manipulating the
mesh or control vertices. If smaller shape details are desired, one or more subdivision steps can be
performed, then the user can manipulate the mesh at the resulting level.
As stated, the mesh can represent a control polygon or polyhedron. Tensor-based Bezier, B-spline, or
NURBS parametric curve/surface formulations are often used [2]. That is, each face of a subdivision
(see Fig. 3) is modeled by a parametric surface; vertices of the mesh are corner points of the surface’s
control polyhedron. Others have taken a non-tensor-based approach, utilizing simplicial meshes and
multivariate splines [7], arguing that non-tensor-based methods are needed for non-structured
domains and they can achieve comparable smoothness with relatively low polynomial degree.

Fig. 3: First three steps of Catmull–
Clark subdivision of a cube [28].
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Subdivision approaches have been extended to deal with volumes, enabling multiresolution modeling
of 3D solids, not just their bounding curves and surfaces.
A line of research has explored the integration of non-manifold and manifold regions [11, 30]. Chang
and Qin [8] presented a unified approach to non-manifold subdivision modeling, using a simplicial
complex for their domain and box splines for interpolating surfaces. Subdivision rules are modified by
spatial averaging to achieve smoothness conditions. They developed special subdivision rules for
handling regions between manifold and non-manifold topologies.
The usage of subdivision approaches for modeling cellular structure is of questionable value since the
main objective is to generate smooth surfaces and/or shape detail. However, the decomposition of
simplicial complexes can model finer and finer partitions of part geometry, which may be useful in
modeling composite materials and possibly lattice structures. The interpolation of shapes using
splines may be extended to modeling distributions of material compositions, particles or fibers for
composite materials, and grains in metals.

3.2 Discrete Geometric Models
Typically, discrete geometry refers to tessellated surfaces, enumeration methods for decomposing
solids (e.g., octrees), and cellular decompositions (e.g., simplicial complexes). Part models consist of
discrete vertices, edges, faces, tetrahedra, etc. A class of methods known as level-of-detail (LOD)
techniques have been developed for visualization and virtual reality applications [5, 31]. Multiple part
representations are used, at different levels of detail, to minimize rendering times when parts are far
away from the viewer, while enabling accurate rendering when the viewer is close. The subdivision
methods are used often for generating these representations, an example of which is shown in Fig. 3.
Recently, other discrete representations have been developed with the objective of providing efficient
methods of constructing solid models, visualizing large models, or generating models for other
applications such as analysis or manufacturing. In a variation of the octree representation, a discrete
representation can be generated by classifying, against a part model, a set of sample points distributed
on the nodes of a regular, axis-aligned grid [5]. Nodes lying inside the part model are colored black
(for instance), while nodes outside the model are colored white. The part boundary can be represented
as a collection of sticks, which are grid edges that connect black and white nodes.
Chen and Wang [9] introduced the layered depth-normal images (LDNI) which can be used with
graphics hardware to very quickly compute Boolean operations between solid models. The LDNI
representation consists of three images of the part, one image along each coordinate axis. A ray from
each pixel is projected into the part space to intersect with the part model at point p

ij
, for the i,j pixel.

Associated with each pixel of each image is the depth of the surface from the viewing plane and the
surface normal at p

ij
. Others have presented similar work, based on sampled rays, including ray-rep

[17] and Layered Depth Images (LDI) [26], without surface normal information. Some applications
included solid model construction, collision detection, and visualization.
One issue associated with the use of sampled discrete models is the need to convert from boundary
representations to the discrete representation, and then back again for visualization (and other
modeling) purposes. Isosurface extraction algorithms are needed to reconstruct part surfaces from a
discrete representation [5]. Given a set of sampled points and/or depths, many ambiguities arise when
trying to reconstruct surfaces, such as locations of surface boundaries, surface continuities, sharp
corners, and the like. Marching cubes algorithms and their variants [18] are often used to compute
surfaces, and various heuristics are often applied to resolve ambiguities [1].
It is not clear if the types of discrete modeling approaches described here will benefit hierarchical
modeling of cellular structures. These approaches may be helpful to increase efficiency for various
computations, but probably will not serve as the primary representation for composite materials or
lattice structures.

3.3 Hybrid Approaches
A variety of other approaches have been investigated. One approach integrated precise solid modeling
into a virtual reality (VR) environment [31]. The representation consisted of six levels of information:
assemblies, parts, features, feature elements, geometric and topological relationships, and polygons.
These six levels were organized into three layers, including a high layer constraint-based model for
precise object definition, a mid-layer constructive solid geometry/boundary representation hybrid
solid model for supporting the hierarchically geometry abstractions and object creation, and a low
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layer polygon model for real-time visualization and interaction in the VR environment. The constraint
system was used to support object creation and also to support VR interactions.
Another approach sought to integrate NURBS-based design, analysis, and optimization using a
hierarchical partition of unity construction [22]. This approach shares some similarities with the
subdivision approaches. It also integrates consideration of material distributions within part models,
so is a heterogeneous representation. In their method, NURBS are used to discretize the geometry,
material, and behavioral fields in their representation. Behavioral fields are associated with the
geometric primitives and their values are determined by a global analysis problem. The authors
showed that this NURBS construction leads to recursive partition of unit constructions on the knot
spaces due to the partition of unity properties of NURBS basis functions. Examples demonstrated
applications to simultaneous topology and material distribution optimization, shape and size
optimization, and optimal design to mitigate the effects of cracks.

4. HIERARCHICAL MODEL
A hierarchical modeling approach is proposed that enables the specification of geometric and material
composition models at multiple size scales. The model is based on the concepts of subdivision and
heterogeneous modeling methods introduced earlier. The approach is also based on concepts of
textured surfaces and solids.

4.1 Hierarchical Modeling Concepts
The proposed hierarchical modeling approach is to support geometric and material models at multiple
size scales. A part model can be given as a 3-D geometric model and a material composition at the
macro scale. In addition, the designer can specify a more precise geometry and material composition
as smaller size scales. For example, a part may have a shape appropriate for a product housing and is
to consist of nylon with 10% by volume of a nano-clay for stiffening. At the macro scale, the nano-clay
filler (say, with mean diameter 500 nm) is too small to represent exactly in the geometric model.
However, the nano-clay geometry becomes important when considering the part microstructure. In
this case, the micro-scale geometry becomes important and the material composition cannot be
assumed to be uniformly distributed.

In heterogeneous modeling, a part model contains a geometric model and a material model. Typically,

the part modeling space, , is given by the product of a space of 3-D geometric models, , and a

material composition space,  (recall Eqn. 3). In the proposed hierarchical modeling approach, part

models will be composed of a macro scale part model, 
M
, one or more smaller scale models, denoted

 for micro-scale or 
n

for nano-scale, and a set of rules (Rules
M

, Rules
mn

) that relate the different size

scales, as given in Eqn. 1:


  

M
Rules

M



Rules

n


n
(4)

4.2 Hierarchical Geometric Models
We will borrow methods from the subdivision literature (e.g., [2, 6, 8]) in order to develop rules for
relating size scales. Curves, surface, and solids can be subdivided using different methods. In general,
any subdivision method can be used to divide part geometry into smaller regions. When geometric
subdivisions become appropriately small, the geometry for the smaller size scale is inserted into each
subdivision. The material composition models are handled similarly. Fig. 4 shows an example with a
hollow diamond microstructure (unit size) that is mapped into a subdivided region in a larger 2D
shape. In the microstructure, the solid region is all of a given material, while the white regions are
voids. The macro-scale geometric domain is composed of the same material as the microstructure. In

this case, g
M
 

M
is the macro-scale geometry, {gs

, gv
} is the microstructure geometry (gs

, gv
  ),

where gs
represents solid and gv

represents void, the two materials are m
1

= (1, 0), m
2

= (0, 1)

(representing solid and void, respectively), m
M
 

M
is m

1
, and m   is {m

1
, m

2
}. As a result, s

M
=

(g
M
, m

M
), s

M
 

M
, s = {( gs

, m
1
), (gv

, m
2
)}, s  , s

n
= , and rules

M
= {subdivision by mapping, relate

size scales via linear interpolation}.



Computer-Aided Design & Applications, 6(3), 2009, 419-430

425

In this paper, we will use a simple mapped mesh subdivision approach, partitioning surface patches
into smaller patches (quadrilateral subdivision) and partitioning solid volumes into smaller hexahedral
volumes. Geometry from the micro-scale model is then mapped into each subdivided patch or volume
with the appropriate material composition.
We can go a step further and generate intermediate models between given size scales. The approach
taken in this paper is to map geometry from the smaller scale into regions generated at each
subdivision step. Material compositions are interpolated from those given at the larger and smaller
scales. B-spline models are used to interpolate material compositions across the subdivision steps.
This enables the use of linear or quadratic interpolation across many subdivisions. Resulting
intermediate models will share some of the shape and material composition characteristics of the
larger and smaller scale models and may be suitable for visualization or analysis at intermediate size
scales.
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Fig. 4: Mapping a unit geometric primitive into subdivided region.

4.3 Hierarchical Material Models
In a manner similar to that of hierarchical geometric models, hierarchical material models will be
constructed with a material distribution specified at the macro-scale and a different material model
specified at a smaller scale. For cases where different materials are represented as separate phases at
micro or nano-scales, we can continue the example from Section 4.1. The nylon material with 10
percent nano-filler would be represented as m

M
= {0.9 m

1
, 0.1 m

2
}, where m

1
= (1, 0) representing nylon

and m
2

= (0. 1) representing nano-filler at the macro-scale. That is, at the macro-scale, the material is
viewed as a continuum with a combination of materials 1 and 2. At the micro-scale, the different
material phases are represented separately. The matrix material, m

1
occupies the geometry of the part,

or the geometry of a subdivision, while the nano-filler has a rectangular geometry that is embedded in
the matrix.
As an approximation, the hierarchical material model can represent material compositions in the part
by interpolating between the macro-scale and micro-scale, or nano-scale, material models. One
simplest approach is to progressively increase the content of each material phase in different
subdivisions as the part model is progressively subdivided. The choice of which material phase to
increase in each subdivision should be made on a proportional basis. For the example of 90 percent
nylon and 10 percent nano-filler, 9 out of 10 subdivision should favor nylon, while the 10th
subdivision has an increased percentage of nano-filler. Such intermediate models will have material
distributions that approximate the desired distribution in the macro-scale and micro or nano-scale
models.
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5. EXAMPLES
Three examples will be used to illustrate the proposed hierarchical modeling method, one that uses
simple geometry and material compositions, one that uses more complex micro-scale geometry, and
one that includes a randomized fiber orientation to mimic that caused by injection molding.

5.1 Rectangular Plate with Particulate Filler
The first example has a simple rectangular shape 10x8 cm in size, with a particulate filler that is
uniformly distributed throughout the part at a volume fraction of 0.1 (10% by volume). For simplicity,
we will assume that the particles are roughly rectangular in shape about 2.5 mm in size. At each
subdivision step, the geometry will be decomposed such that rectangles are divided into 4 equally
sized rectangles. As such, 5 subdivision steps are needed to generate the “micro-scale” from the
macro-scale. Linear interpolation of material compositions will be used. For visualization purposes,
red will be used to indicate the polymer material that comprises the part, and blue will be used for the
particles. The initial material composition (90% “red” and 10% “blue”) corresponds to an initial color
that is a reddish purple.

Using the notation from earlier, the macro-scale geometry, g
M
 

M
, is a rectangle, the micro-scale

geometric models {g1
, g2

} (g1
, g2

  ) are also rectangles, where g1
represents the matrix material

m
1

and g2
represents the nano-filler m

2
, the two materials are m

1
= (1, 0), m

2
= (0, 1), m

M


M
is (0.9m

1
,

0.1 m
2
) and m  is {m

1
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2
}. As a result, s
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M
, m

M
), s

M
 

M
, s = {( g1

, m
1
), (g2

, m
2
)}, s  , s

n
=

, and rules
M

= {subdivision by mapping, relate size scales via linear interpolation}.
Fig. 5 shows the results of the second, third, fourth, and fifth subdivision steps. Note that the red and
blue colors become more pure until step 5 when the colors are pure red and pure blue. Every tenth cell
in the model has its concentration of material 2 (blue) increased, while the other nine cells increase in
material 1. At the fifth step, every tenth cell will be 100 percent material 2, which is consistent with
the 10 percent nano-filler (material 2) specification. The material compositions in the reddish and
bluish cells are given in Table 1 for the macro-scale part and for each subdivision step. Note that in
subdivision step 1, only the geometry is divided. The material composition remains the same, since
only 4 cells were created, far less than the 10 cells necessary to start introducing the particles into the
material composition.

5.2 Curved Plate with Cellular Structure
The second example illustrates the capability of dividing curved geometry, as well as the specification
of different geometries at different size scales. Again, the plate is about 10x8 cm in size, but with
curved boundaries. Also, the plate is planar and is modeled as a bicubic Bezier surface patch. The
micro-scale geometry is the hollow diamond shown in Fig. 4. As with the previous example, the micro-
scale geometry is enlarged for purposes of illustration, so the diamond-shaped cells are 2.5 mm on a
side, which results in the need for 5 subdivision steps. A mapped mesh approach is taken for
subdivision. At each subdivision step, each quadrilateral cell is divided into four smaller cells as in the
previous example. The material composition at the macro-scale is all one material, represented by a
blue color. At the micro-scale, the hollow diamonds are all of the same material. The void regions are
represented as a white color (no material).

Subdivision Step Matrix Cells Nano-Filler Cells
Proportion of

Material 1
Proportion of

Material 2
Proportion of

Material 1
Proportion of

Material 2
0 0.8 0.2 - -
1 0.8 0.2 - -
2 0.85 0.15 0.15 0.85
3 0.9 0.1 0.1 0.9
4 0.95 0.05 0.05 0.95
5 1 0 0 1

Tab. 1: Material compositions for each subdivision step.
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c) 5th subdivision step.

Fig 5: Hierarchical material example.

At intermediate size scales, the material composition will be interpolated linearly between the material
compositions at the macro-scale and the micro-scale. As a result, only the void regions (micro-scale)
vary as the size scale is reduced.
The third, fourth, and fifth subdivision steps are shown in Fig. 6a,b,c, respectively. Note that the “void”
region becomes lighter as the size scale decreases, becoming white in the fifth step.

5.3 Randomized Fiber Orientation
The third example illustrates how microstructure can be varied as part geometry varies. In this case,
the orientation and density of fiber filler will vary to mimic variations observed in injection molded
parts. In particular, fiber distributions become denser and aligned with the flow as polymer fills the
mold cavity. For this example, the microstructure geometry is a quadrilateral region with a 6 mm long
fiber that has a random orientation and position within the quadrilateral. As the polymer flows into
narrowed regions, the fibers become oriented in the flow direction. As shown in Fig. 7, the polymer
flow is from left to right; one can observe that fibers are randomly oriented in the wide region on the
left, but become progressively aligned horizontally as the narrower right side is reached. The fiber
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density is nominally about 10 percent, but becomes denser as one moves to the right. Fig. 7 illustrates
the 5th subdivision step.
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Fig. 6: Hierarchical geometry example.
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Fig. 7: Randomized fiber orientation example; 5th subdivision.
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6. CLOSURE
Hierarchical modeling in this paper refers to the modeling of parts with solid geometry, material
composition, and possibly distributions of properties, all at multiple length scales. A brief survey was
performed on topics related to hierarchical modeling, specifically heterogeneous and hybrid modeling,
subdivision methods, and level of detail approaches. The capabilities of these technologies were
compared against the requirements for modeling cellular materials and other structures with complex
geometric and material constructions. A specific hierarchical modeling method was proposed. Three
2D examples illustrated the application of the proposed modeling method. From this preliminary
work, the following conjectures can be made:

 new types of models are needed to represent objects with geometry, material, and property
distributions at multiple length scales, since existing approaches to heterogeneous and hybrid
modeling are insufficient;

 the proposed approach that combines subdivision with material and/or property interpolation
over the subdivided regions is effective in capturing the desired distributions at multiple
length scales;

 two complementary approaches seem promising: the proposed subdivision approach
presented here and the implicit modeling approach, particularly those that are based on
hypertextures;

 since the examples are simple and only 2D, considerably more work is needed to more fully
develop the proposed hierarchical modeling methods and explore its application to more
complex part designs.
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