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ABSTRACT

This study focuses on the development of an interpolation parameter tuning method
for parametric curve paths in motion control systems. It is usually difficult to design
the interpolation parameter of an interpolation algorithm using systematic approaches
because some factors, such as mechanical factors and manufacturing factors, can
significantly affect the motions of the applied motion plant in real applications.
Therefore, in this study, the learning automata tuning method, which operates through
interactions with unknown environments, was used to tune the interpolation
parameter. Some simulation and motion tests were performed on a die bonder
machine to test the proposed approach, and the experimental results show that the
learning automata tuning method allows the applied motion control system to achieve
a good trade-off between motion accuracy and motion time.
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1. INTRODUCTION
Parametric curve functions are usually applied to motion control systems for planning motion paths
for the following reasons:
 A common mathematical model can be used to represent both standard analytic shapes and

free-form curves.
 The shapes of curves can be easily modified by manipulating shape-control parameters, such

as control points, weights, and knots.
Therefore, an interpolator with an interpolation algorithm is usually required to interpolate the
parametric curve functions in the design of motion control systems in industrial applications. Further,
the design of the interpolation algorithm must consider the motion dynamics and mechanical factors
of the applied motion plant in order to improve motion performances. In recent years, many
interpolation algorithms have been developed for multi-axis motion control systems. Algorithms that
consider the ACC/DEC properties [9],[14],[26], jerk limitation [14–15], and dynamics [14–15],[27],[32] of
machine tools have been developed to improve motion accuracy. Moreover, look-ahead functions
[9],[14–15],[26],[28] and feedrate adjustment methods [3–5],[23–24],[30–32] have also been developed
to reduce the contouring errors of the motion paths along sharp corners. Tikhon et al. [22] proposed
an interpolation algorithm that can achieve a constant material removal rate during cutting, and Ko et
al. [10] proposed an interpolation algorithm to control the cutting load, to protect cutting tools and
improve machinability. Choi et al. [6] proposed an interpolation algorithm that can control the surface
roughness during surface machining. Yeh and Sun [29] proposed an interpolation algorithm that
considers the motion control system in the presence of actuator saturation to improve motion
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accuracy. Although the existing researches have demonstrated important results, some factors still
limit the execution performances of the existing interpolation algorithms in real applications,
including:
 Model-based interpolation algorithms require a reference model for the applied motion plant

in order to generate motion commands according to the dynamics of the motion plant.
However, it is usually difficult to obtain an exact model of the applied motion plant by using
system identification processes.

 Some mechanical factors, such as the nonlinear friction and non-uniform backlash of moving
tables, usually exist in the applied motion plant and significantly affect motion performances.
Thus, the execution performance of an interpolation algorithm is limited if mechanical factors
with nonlinear and non-uniform characteristics are not considered.

 Some factors in manufacturing processes, such as the payload conditions of the applied
motion plant, affect the actual motions of the motion plant. Interpolation algorithms with
fixed interpolation parameters are thus not suitable for manufacturing processes with
properties that can be changed on-line.

Therefore, in this study, a model-less interpolation algorithm with an on-line changed interpolation
parameter was developed for interpolating parametric curve functions, in order to generate motion
commands, such that the applied motion plant can execute good motions under the perturbations
caused by mechanical factors and factors in the manufacturing processes. Uniform interpolation [1] is
the simplest algorithm for interpolating parametric curves. Eqn. (1.1) shows the iterative equation for
computing the parameter sequence in uniform interpolation.

 kk uu 1 (1.1)

where ku is the parameter at the kth step and 1ku is the parameter at the (k+1)th step;  denotes the

parameter step size. Usually, an improper value of  deteriorates the motion results. For instance, a

large value of  causes high motion speeds and large motion errors because of the large servo-lags

and unmatched dynamics of the applied motion axes; in contrast, a small value of  can cause low

motion speeds and small motion errors. Therefore, to maintain motion accuracy and shorten the
motion time, the interpolation parameter  must be set properly before each motion of the applied

motion plant to increase the equipment throughput. However, it is usually difficult to design a suitable

interpolation parameter  , for the reasons previously mentioned. In this study, an on-line tuning

method was thus considered for tuning the interpolation parameter  .
In recent decades, because of the rapid developments in computation technologies, model-less tuning
methods have been widely and diversely introduced in motion control systems in order to tune the
motion parameters regardless of the operation setup, operation environment, and design of the motion
control structures [11],[12],[13],[21]. Existing researches have demonstrated important results.
However, a tuning method with high complexity is usually difficult to implement and obtaining good
solutions with a tedious tuning process is usually time-consuming. Thus, a high-performance personal
computer (PC) is required in applications that use advanced tuning approaches. In order to reduce the
time needed to tune the motion parameters and reduce the complexity for easier implementations, a
tuning process that was automated through the use of the learning automata methodology developed
by Narendra and Thathachar [19] was used in this study to tune the interpolation parameter in the
uniform interpolation algorithm [1]. The learning automata method operates through interactions with
unknown environments by selecting the actions in a stochastic trial and error process and provides
additional convergence through probability density functions. Although other tuning methods that
integrate the learning automata methodology have been developed to provide better tuning results,
including the genetic algorithm approach [7], neural network approach [17], and fuzzy inference
system [8], their complexity also limits their industrial applications.
Fig. 1 shows a schematic diagram of the interpolation algorithm combined with the learning automata
on-line tuning method. In this study, the interpolation parameter  is tuned on-line based on the

motion time and the actual motion results of the applied motion plant. Therefore, the interpolation
algorithm with the on-line tuning method can obtain a suitable interpolation parameter  such that

the applied motion plant can gain a good trade-off between motion time and motion accuracy.
Moreover, since the tuning method refers to the actual motions of the motion plant, the motion
perturbations induced by mechanical factors of the motion plant and factors in the manufacturing
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processes are considered in the interpolation algorithm. The model-less tuning method, which has no
need for an exact reference model, makes the use of the interpolation algorithm more feasible in real
applications.

The rest of this paper is organized as follows. Section 2 reviews the learning automata method for
tuning the interpolation parameter  . This section also discusses some stochastic properties that are

useful for applying the learning automata method. Section 3 presents the developed tuning method
based on the learning automata method. This section also details the definitions of objective function
and motion errors when the learning automata method is applied to tune the interpolation parameter
 . In section 4, the proposed approach is evaluated through simulations and experiments using a

biaxial die bonder machine. Section 5 concludes this study.

Fig. 1: The proposed interpolation algorithm.

2. REVIEW OF LEARNING AUTOMATA TUNING METHOD
A simple tuning method without the knowledge of motion plant models is usually required in practical
tuning applications. In this study, the learning automata method proposed by Narendra and
Thathachar [19] was applied to tune interpolation parameter  of the uniform interpolation [1]

because the method is easy to implement and is capable of improving the execution performances of
motion systems with unknown dynamics and perturbations. Moreover, the learning automata method
can be applied to tune the interpolation parameter using only the input and output data of the motion
plant.
Stochastic automata operating under unknown and random environments have previously been
proposed as learning models [2],[16]. These automata update their action probabilities in accordance
with the inputs received from the environment and improve their own performance during operation.
Learning is defined as any relatively permanent change in behavior resulting from past experience, and
a learning system is characterized by its ability to improve its behavior with time, in some sense
tending toward an ultimate goal. In mathematical psychology, the models of learning systems have
been developed to explain patterns among living organisms. These models in turn have been adapted
to synthesize engineering systems, which can be considered to show learning behavior. Tsypkin [25]
discussed the fact that diverse problems in pattern recognition, control, identification, filtering, and so
on can be treated in a unified manner as problems in learning using probabilistic iterative methods.
Mathematically, the goal of a learning automata system is the optimization of an objective function,
which is usually used to evaluate the learning performance. An approach that has been used to solve
the optimization problem is to reduce the problem to the determination of an optimal set of
parameters and then apply stochastic hill-climbing techniques [25]. An alternative approach under
investigation is to regard this problem as one of finding an optimal action from a set of allowable
actions by using stochastic automata [18,19].
In this study, the tuning process was automated through the use of a learning automata methodology
[19], and was used to tune the interpolation parameter in order to minimize the performance objective.
The performance objective was usually a simple cost function involving the error over time. The
interpolation parameter was initially set by experience. Then, the learning automata method was
employed for the interpolation parameter to search the parameter space in order to minimize the
specified objective function. The learning automata tuning method operates through an interaction
with unknown environments by selecting actions in a stochastic trial and error process. Moreover, in
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comparison with other tuning methods, the learning automata method has the advantage of providing
additional convergence information through the use of probability density functions.
Assume that the interpolation parameter  is the variable to be tuned and that )(E is the objective

function to minimize. The learning automata tuning method is summarized as follows:

(1) Given the initial value of the interpolation parameter, 0 , and the tuning coefficients  , c , and

d .

(2) Repeat the following steps: (the ih-iteration)

(a) Compute the value )( ii EE  .

(b) Let dEc i  .

(c) Then, use normal distribution to approximate ),(~  ii N . Here, ),( N is the normal

distribution with mean  and variance  .

(d) Compute )( ii EE   .

(e) Compute





)(
)(1

ii
iiii EE


 .

(3) After the value of the objective function )(E is less than a threshold value or does not improve

any further, the learning process stops. The final value of i is the optimal parameter for

minimizing the objective function )(E .

There are two advantages to using a normal distribution to obtain the approximated optimal value in
the learning automata method:

 The variance is proportional to the value of the objective function. The variance influences the
search range during the learning process, and a small variance will increase the probability of
selecting the next parameter near the mean value. However, a large variance will increase the
probability of selecting a larger range for the next parameter. Since the variance is proportional
to the value of the objective function, when the value of the objective function is small, the
searching step size becomes small, and the value of the objective function will be close to the
local minimum. Therefore, the value of the objective function changes the search range when the
learning automata method is used.

 The learning automata method can supposedly avoid the local minimum. Since the variance is
proportional to the value of the objective function, the local minimum can be avoided using the
applied learning automata method. When the value of the objective function is larger than the
minimal value of the objective function, the next parameter can be selected such that it is far
from the mean value, and therefore the learning automata will prevent the tuning process from
holding in the local range.

In addition, the tuning method using the learning automata method does not need to identify the
system models before learning. Only the input and output data of the tuned control plant are required
to evaluate the objective function. Moreover, these input and output data, such as the desired motions
and the actual motions of the applied motion plant, are readily available for motion control systems.

3. INTERPOLATION PARAMETER TUNING BASED ON LEARNING AUTOMATA METHOD
The learning automata tuning method is now applied to tune the interpolation parameter  . Fig. 1

shows the block diagram for tuning the interpolation parameter. The purpose of the tuning method is
to tune the interpolation parameter in order to minimize the objective function )(E . In this study,

since the goal for tuning the interpolation parameter is to make the applied motion plant achieve
motions with small motion errors and short motion time, the objective function is defined as

mott

m

k

cnt
kcnt

m

k

trk
ktrk twewewE  

 11

)( (3.1)

where  is a Euclidean norm operator;  denotes the interpolation parameter to be tuned; trk
ke and

cnt
ke are the tracking error and contouring error at the thk sampling instance, respectively; mott is the

motion time of the applied motion plant; trkw , cntw , and tw are the weights of the tracking error,
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contouring error, and motion time, respectively; and m is the number of sampled data. In this study,

the sampling instance of the applied motion control system is synchronized to the interpolation step
in the applied interpolation algorithm. Fig. 2 shows the schematic relations between the motion errors,
the tracking error and contouring error, and the objective function, )(E . T denotes the sampling time.

In this study, as shown in Eqn. (3.1), two motion errors, tracking error and contouring error, are used
to characterize the motion performances of the applied motion plant. Fig. 3 shows the tracking and

contouring errors caused by different motion processes. The tracking error, trk
ke , denotes the distance

between the reference position R and the actual position P; however, the contouring error, cnt
ke ,

denotes the shortest distance from P to the command path. x
ke and y

ke are the following errors of the

motions on the X-axis and Y-axis, respectively. Conventionally, all the motion axes are controlled
independently, with the following errors minimized in order to minimize the tracking errors. However,
unmatched dynamics among all the motion axes usually cause large contouring errors [20], and the
mechanical factors of the applied motion plant and factors in the manufacturing processes could
affect both tracking and contouring errors. Therefore, in this study, the learning automata tuning
method, which refers to the object function as in Eqn. (3.1), is applied to tune the interpolation
parameter  such that the applied motion plant can execute good motions with suitable tracking and

contouring errors.

Fig. 2: Objective function and motion errors of the applied motion plant.

Fig. 3: Tracking error and contouring error.

As shown in Fig. 3, the tracking error trk
ke at the thk sampling instance is obtained by

22 )()( y
k

x
k

trk
k eee  (3.2)

where x
ke and y

ke are the following errors of the motions on the X-axis and Y-axis at the thk sampling

instance, respectively. However, the computation of the contouring error cnt
ke at the thk sampling

instance is not direct; thus, an estimation method is required. As shown in Fig. 4, the contouring error
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vector, cnt
ke


, is defined as a vector from the actual position P to the nearest point on the command

path. The tracking error vector, trk
ke


, is defined as a vector from the actual position P to the reference

position R. kt


and kn


are the tangent vector and the normalized normal vector of the command path

at reference position P, respectively. The estimated contouring error vector, cnt
ke

ˆ , is the vector from the

actual position P to the nearest point on the line passing through the reference position P with the

tangent kt


. Therefore, by simple geometric relationships, the magnitude of the estimated contouring

error vector, cnt
kê , is obtained by

kk
trk
k

cnt
k

cnt
k nneee


 ,ˆˆ (3.3)

where  , is an inner product operator. Therefore, by using Eqn. (3.2) and Eqn. (3.3), the objective

function )(E as in Eqn. (3.1) is modified as

mott

m

k

cnt
kcnt

m

k

trk
ktrk twewewE  

 11

ˆ)( . (3.4)

Since m is the number of sampled data, the motion time mott is obtained as

Tmtmot  . (3.5)

The summation of the tracking errors, 


m

k

trk
ke

1

, represents the closeness between the reference position

and the actual position; the summation of the contouring error, 


m

k

cnt
ke

1

ˆ , represents the closeness

between the command path and the actual motion path; and the motion time mott represents the time

spent during motion. Therefore, the weights, trkw , cntw , and tw , can be used to adjust the importance

of each characteristic during tuning processes.

Fig. 4: Estimation method for contouring error.

There are some tuning coefficients,  , c , and d , in the applications of the learning automata tuning

method. The tuning coefficients  and c are usually assigned such that the objective function has the

same value scale as the tuned parameter. To avoid the error induced by division by zero (when the
value of the objective function is zero), the d coefficients are set to be nonzero. However, in practical

applications, these tuning coefficients are set based on the experience of the designers and the
characteristics of the tuned motion plants.

4. SIMULATION AND EXPERIMENT
Fig. 5 shows the experimental setup of a die bonder machine with two 3-phase Panasonic AC servo
motor packs, which was used to test the proposed approach. As shown in Fig. 5, a wafer that is already
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cut is placed on the wafer-table such that the suction gripper attached to a moving arm can lift off a
die and place it on the prepared lead frame. The motion of the moving arm must be rapid enough for
increasing throughput. The applied motion control system mainly consisted of an industrial personal
computer (PC) and a DSP-based motion control card. The industrial PC, which had a Pentium IV 2.8
GHz CPU, performed various functions, such as the interface between human and machine operations,
the interpreter for motion codes, and the central processor for handling pick-and-place procedures.
The DSP-based motion control card, which had a high-performance TI TMS320C32 digital signal
processor (DSP), was used to implement the proposed approach in this study, to generate motion
commands, and to record signals, such as the motion commands for controllers, position outputs, and
the driving forces for the applied AC servo motor packs. The sampling time for motion control and the
time step for interpolation were limited to 1 ms. Tab. 1 lists the servo parameters of the motion
control system (shown in Fig. 5).

cK and
eK are the electrical gain and mechanical gain of the applied

servo system, respectively, and  is the time constant.
pK and

dK are the proportional gain and

derivative gain of the applied PD+ motion controller [29], respectively.

Fig. 5: Experimental setup—a die bonder machine.

Axis
Parameter

X Y

 0.31 0.135

cK 2506.17 3156.23

eK 1591.5494 1591.5494

pK 0.0136 0.00577

dK 0.03 0.028

Tab. 1: Servo parameters of the applied motion control system.

In order to test the feasibility of the tuning method using the learning automata method, in this
simulation, the learning automata tuning method was applied to tune the interpolation parameter  of

a biaxial motion control system with the servo parameters shown in Tab. 1. Fig. 1 shows the block
diagram of the simulation system used in this study. The learning automata tuning method was
applied to tune the interpolation parameter  such that the motion control system performed motions

with suitable motion errors and motion time. The objective function was defined as shown in Eqn.

(3.1). The weights, trkw , cntw , and tw , were set as 0.1trkw , 0.1cntw , 0.50tw . The initial value of

the interpolation parameter  was set as 0001.0 . The command path for testing the tuning method

in this simulation was a circular contour with a 50 mm radius. Fig. 6 and Fig. 7 show the simulation
results. Fig. 6(a) shows the tracking and contouring errors of the applied motion control system while
the interpolation parameter 0001.0 . Obviously, although the motion control system had good

tracking and contouring results, a long motion time degraded the motion performance. The maximum
value of the tracking error was 0.077 mm, and the maximum value of the contouring error was 0.061
mm. The motion time was 10 seconds. By applying the learning automata tuning method, 0095.0
was obtained as the tuned value of the interpolation parameter. Fig. 6(b) shows the tracking and
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contouring errors of the applied motion control system when the tuned value was set as the
interpolation parameter of the applied interpolation algorithm. The motion performance was obviously
changed by applying the tuning result. Since the weight of the motion time was far larger than the
tracking and contouring error weights, the goal for the applied tuning process was to find an
interpolation parameter that allows the applied motion control system to achieve rapid motions. The
maximum value of the tracking error became 5.042 mm, and the maximum value of the contouring
error became 1.621 mm. The motion time became 0.105 seconds.
Fig. 7 shows the variations in the tuning parameter and the value of the objective function during the
tuning process. The value of the objective function is decreasing, and reaches the final value after 74
iterations. The interpolation parameter  was also varied in order to minimize the value of the

objective function. Clearly, increasing the interpolation parameter can significantly shorten the motion
time of the applied motion control system. However, this increase in the interpolation parameter also
increases the motion errors, as shown in Fig. 6. According to the simulation results, the learning
automata tuning method, with its fast learning and simple structure, can be applied to obtain a tuning
result with a good trade-off between the motion errors and motion time of the applied motion control
system.
In the experiment, the learning automata tuning method was applied to a die bonder machine system
in order to tune the interpolation parameter of the applied motion control system, as shown in Fig. 5.
The command path applied in this experiment was described by an NURBS function, as shown in Fig. 8.

(a) Tracking and contouring errors ( 0001.0 ).

(b) Tracking and contouring errors ( 0095.0 ).

Fig. 6: Simulation results.

Fig. 7: Variations in the tuning parameter and objective function value (simulation).
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Fig. 8: The applied command path in the experiment.

Fig. 9 shows the tuning process for the applied learning automata tuning method and the experimental
results of the applied motion control system using the tuned interpolation parameter. Fig. 9(a) and Fig.
9(b) show the tuning process. The objective function reached a final value after 40 iterations and
0.0033 was obtained as the corresponding interpolation parameter. Fig. 9(c) and Fig. 9(d) show the
tracking and contouring errors when applying the tuned interpolation parameter. Although the
maximum tracking error was 5.16 mm and the maximum contouring error was 2.034 mm, the motion
time was significantly reduced, from 1.0 second to 0.3 second.

Fig. 9: The tuning process and the motion results.

5. CONCLUSION
In this paper, we investigated the use of the learning automata tuning method for tuning the
interpolation parameter of an interpolation algorithm in order to interpolate the motion command
paths described by parametric curve functions for motion control systems. Interpolation is important
for motion control systems because it directly affects the motion commands for controlling the
motions of the applied motion plant, and an improper value for the interpolation parameter in an
interpolation algorithm usually deteriorates the motion results. Therefore, it is necessary to design an
interpolation parameter that allows the applied motion control system to execute good motion
performances, including small motion errors and short motion time. Although some existing
researches have demonstrated important results, some factors, such as mechanical factors and
manufacturing factors, still limit the executions of those algorithms in real applications. Therefore, this
study considered a tuning method for tuning the interpolation parameter that allows the applied
motion control system to execute good motions in the presence of the perturbations caused by
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mechanical factors and factors in the manufacturing processes. The learning automata tuning method
was used in this study for the following reasons:

 The tuning process operates through interactions with unknown environments using a
stochastic trial and error process.

 The tuning method provides additional convergence information through probability density
functions.

 The tuning process is easy to implement and the computational cost is low.
Some motion tests were performed on a die bonder machine to test the proposed approach. The
experimental results showed that it is feasible to use the learning automata tuning method for tuning
the interpolation parameter of an interpolation algorithm and that this allowed the motion control
system of the applied die bonder machine to achieve a good trade-off between motion accuracy and
motion time.
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