
Computer-Aided Design & Applications, 6(3), 2009, 317-327

317

Computer-Aided Design and Applications
© 2009 CAD Solutions, LLC

http://www.cadanda.com

High-level Operations to Streamline Associative Computer-Aided Design

Nathan W. Scott1 and C. Greg Jensen2

1Brigham Young University, intonate@gmail.com
2Brigham Young University, cjensen@byu.edu

ABSTRACT

Parametric, feature-based modeling with inter-part associativity allows complex
assembly designs to be defined and re-defined while maintaining the vital part-to-part
interface relationships. The top-down modeling method which uses assembly level
control structures to drive child level geometry has proved valuable in maintaining
these interfaces. This paper shows that programmatic operations can streamline this
type of assembly and component-level design because a single programmatic
operation can create an unlimited number of low-level features, modify geometry in
multiple components, create new components, establish inter-part expressions, and
define inter-part geometry links. Results from user testing show that a set of high-
level programmatic operations can offer savings in time and effort of over 90% and
can be general enough to support user-specified interface layouts and component
cross sections while leaving the majority of the primary design decisions open to the
engineer.

Keywords: associativity, design automation, assembly design.
DOI: 10.3722/cadaps.2009.317-327

1. INTRODUCTION
Well developed parametric CAD models can be reused to produce many similar designs, and can
simplify the process of incorporating design changes [9]. In addition, associativity capabilities within
modern CAD applications allow these parametric models to maintain relationships between features
and components [12] which extends the benefits to models of entire assemblies. Creating robust
parametric models is very time consuming, however, and “this level of skill can take years of training
and experience to acquire” [2,4]. Parametric models of assemblies are especially dificult and tedius to
model because of the many inter-part relationships that must remain associative. To increase
modeling efficiency, modern CAD applications offer some high-level features for certain product types
as well as User Defined Features (UDFs) which allow users to specify custom combinations of low-level
features. These approaches to modeling assemblies are still restricted because they do not have any
inter-part associativity or intelligence capabilities and can only combine a limited number of low-level
features. They require users to create the inter-part expressions and geometry links by hand and do
not allow the user to operate on multiple components at once or to create new components as part of
the operation.

1.1 Objective
It is the objective of this research to show how the current modeling practices described above can be
streamlined further through the use of product type-specific programmatic operations that would
combine the benefits of UDFs and inter-part associativity and would function at a level much higher
than inserting single features into individual components. Another objective is to demonstrate that

Computer-Aided Design & Applications, 6(3), 2009, 317-327

318

these operations leave the majority of the primary design decisions open to the engineer. This paper
defines a programmatic operation as one that can create an unlimited number of low-level features,
modify geometry in multiple components, create new components, establish inter-part expressions,
and create inter-part geometry links. Since products of a similar type have similar features,
programmatic operations can be written that can create most, if not all, of the CAD geometry
necessary to define a product of a certain type.
This research will focus on the incorporation of design operations related to a specific class of
products into an application that will interoperate with Siemens NX 5. The goal of this study is to
develop a set of proof-of-concept applications that will streamline the design of assemblies and parts
whose basic geometry has a uniform cross section (2 ½ dimensional). The specific test case that will
be used to demonstrate and validate this research is the interstage sub-assembly on solid motor
rockets. This particular assembly is a good candidate for this research because it is used repeatedly
on a wide range of rockets and because its geometry is relatively simple.

1.2 Prior Approaches
A wide range of research has been performed in the field of computer aided design, especially in
developing methods to streamline the product development process. Parametric, feature based
modeling and relating parameters with equations are fundamental methods of reducing operations
[4,7]. User-Defined Features (UDFs), which allow the user to define a set of standard, low level features
that will be grouped together, have also been used with much success in such applications as aircraft
skin lightening pockets and plastic snap features [1,4-6,9,10]. An especially effective method for
maintaining associativity between parts in assemblies is the top-down modeling method which uses
control structures in assembly level parts to maintain interfaces between its children level components
[3,7,8].
The literature lacks a well developed method for automating the use of control structures to define
custom assembly configurations, which will be the contribution of this paper. This paper also builds
upon and extends the literature’s methods of using high-level sets of features to minimize the effort
required to define the model. However, the programmatic operations of this method are able to
operate on a much higher level than inserting individual features into single components. Each
operation can create large sets of features in multiple parts as well as the inter-part expressions and
geometry links needed to maintain associativity.

2. METHODS
The methods discussed in this section represent a set of automated steps that can be used to design
products in a certain geometric class. Although these methods are specifically chosen for their
applicability to a specific class of products, they will be presented with as much generality as possible
to enable their extension into other product classes. These methods were developed using the NX
Open API in C++ and this paper uses language specific to that programming and modeling
environment; but, the content of the methods should be general enough to apply to any similarly
capable environment.

2.1 Overall Method for Design Automation
The steps used in automating the design of assemblies and components employ the control structure-
based top down method. The steps can be grouped into three key operations.

Operation 1: Define the control structure and part ownership and create the geometric links
between the parents and children for the primary design features.
Operation 2: Define the cross sections of children level parts, make them into solids, and add
detail features such as chamfers, blend radii, and fastener holes.
Operation 3: Add secondary design features. (This operation has been implemented for certain
secondary features, but is outside the scope of this paper. See [10].)

For the remainder of this paper, A will represent an assembly-type part (a parent to at least one other

part) and C will represent a component type part (one having no children). The superscript of A or C

will represent the hierarchical level of the part and the subscript will represent its position relative to

its sibling parts, e.g. A2
1 is the first child of its parent and is a second level assembly, and C3

2 is the

Computer-Aided Design & Applications, 6(3), 2009, 317-327

319

second child of its parent and is a third level component. No subscript will be used when referring to

the collection of all parts on a certain hierarchical level. This is illustrated in Fig. 1(a).

In addition, let  
Sk

represent an operation on sketch geometry. The notation from set theory for

boundaries (bS) will be modified by a subscript 2 or 3 to distinguish between two-dimensional

boundaries b2 (sketch geometry) and three-dimensional boundaries b3 (faces and edges of the solid).

Fig. 1(b) illustrates these terms as well as other key terms that will be introduced in this section. b2C
2

represents the two dimensional boundary of a component. b3C
2 represents the three dimensional

boundary of a component. Iij is a unit of the control structure which represents the interface between
components i and j. The clearance between components is denoted by  and the chain link symbol

denotes the sketch constraints between Iij and b2C
2. A1 is the top level assembly that contains the

control structure.

Fig. 1: (a) Assembly part notation (b) key terms.

2.2 Operation 1: Control Structure, Part Ownership, Geometric Links
The first operation helps the designer define the overall layout of the entire assembly and

automatically creates the associative links from the top level control structure owned by A1 to its

children (A2 and C2). The control structure can be represented mathematically as the set of all points

at which its children’s boundaries (b2C
2) are located within a given clearance of each other (ε). Let Iij

denote the intersection between components C2
i and C2

j.




2
2

2
2 jiij CbCbI  (1)

Then A1 is the sum of all intersections between its n children.




 


1

1 1

1
n

i

n

ij

ijIA (2)

See Fig. 1(b) for illustrations of Iij, b2C
2, ε, and A1.

When modeling assemblies, a designer will often start with a hand drawing of the overall layout and
will therefore know by inspection what the control structure needs to look like. The automated

A1

A2

1

C2

2

C2

3

C3

1

C3

2

Computer-Aided Design & Applications, 6(3), 2009, 317-327

320

method serves as a tool to quickly go from an arbitrary hand drawn assembly configuration to fully
defined models with associativity. An example of an assembly layout can be seen in Fig. 2 (a) with the
corresponding assembly control structure in Fig. 2 (b). While this layout of a rocket interstage
assembly will be used to describe and evaluate the proposed methods, it should be noted that these
methods are applicable to other design situations involving 2 ½ dimensional geometry.

Fig. 2: (a) Sample assembly configuration, (b) assembly interfaces/control structure.

2.2.1 Application Architecture
The control structure is defined through a framework of C++ class objects (Fig. 3 (a)) which are
instantiated based on user inputs from a graphical user interface (GUI) as illustrated in Fig. 3 (b). The
Interface Object class contains all the data needed to define the geometry of one unit in the interface

control structure (I
ij
). It contains the member function  ij

Sk

I to create the Sketch control geometry,

and the member function  ij

f

Sk

I to create the fastener control geometry based on the member

variables. It also contains the member function



I
ij
(C

i

2)
Wl
(I

ij
(A1)C

i

2) to make an associative copy

of a unit (I
ij
) of the assembly control structure in a child component C2

i
. This operation will be referred

to as Wave Linking. The member function  )(22
2 iiji

Sk

CICb  constrains the sketch geometry of the

child part (b2C
2
i) to its wave linked geometry (Iij(C

2
i)). The Interface Derived Part class contains a

collection of interface objects as well as its position on each interface. It also has a function that calls
each of its interface objects’ functions.

2.2.2 Application Procedure
The application is launched from within the CAD environment. First, a GUI collects from the user
information such as what interfaces are in the assembly, what their dimensions and orientations are,
what parts are in the assembly, and what interfaces are associated with each part (See Fig. 3(b)). After
the data is collected from the GUI, the application automatically performs the following steps
associated with operation 1.

1. Create part files for A1, A2 , and C2.
2. Create control sketch in A1

a. Create and open sketch feature
b. For each interface object: call MakeControlGeometry(Data)
c. Close sketch feature

3. For each interface object: call MakeFastenerControlGeometry(Data)
4. For each Interface Derived Part Object

d. For each Interface Object in collection: call LinkChildToParent
e. Create and open sketch feature
f. Call SketchMyInterfaces(MyInterfaceObjects, MyInterfacePositions)
g. Close sketch feature

Computer-Aided Design & Applications, 6(3), 2009, 317-327

321

Fig. 3: (a) Class architecture and (b) the interface manager GUI.

At this point each part will have the geometric links associated with the assembly’s control structure
and will have component-specific sketch geometry that is constrained to the control structure. A
sample part sketch would look like Fig. 4, where the blue lines represent the wave linked control

structures)(2
212 CI and)(2

223 CI , the orange lines represent the sketch geometry (a subset of 2
22Cb), and

the red points indicate constraints between the sketch geometry and the linked control structures
which are shown as red chain links in Fig. 1(b). The component bodies are shown in gray for
reference.

Fig. 4: Completion of operation 1 showing the sketch of one part.

Interface Object Class (I
ij
)

- Member variables
- Member functions

o MakeSketchControlGeometry(Member variables)  ij

Sk

I

o MakeFastenerControlGeometry(Member variables)  ij

f

Sk

I
o LinkChildToParent(Child))(2

iij

Wl

CI 
o MakeChildGeometry(Child Position)  )()(21

iijij

Sk

CIAI 

Interface Derived Part Class
- Member variables

o MyInterfaceObjects
o MyInterfacePositions

- Member functions
o SketchMyInterfaces(MyInterfaceObjects,

MyInterfacePositions)

C++Architecture

Computer-Aided Design & Applications, 6(3), 2009, 317-327

322

2.2.3 Scope
This framework is general enough that any interface type can be created by defining a class that
inherits from the Interface Object Class. Possible interface types that may be created using this
framework include a manacle joint, a weldment, or riveted joints. For this paper, two interface types
have been implemented that represent cylindrical and conical bolted flange joints.

2.3 Operation 2: Cross Sections, Solids, Detail Features
The primary steps associated with Operation 2 are

1. Complete the part cross section sketches
2. Create solids from sketches
3. Apply blends and chamfers to edges
4. Create fastener hole features and patterns

2.3.1 Step 1: Part Cross Sections
The first step of Operation 2, completing the part cross section sketches, is performed interactively by
the designer. This is where the most variability exists in the design and since interactive sketching is
fairly easy and fast, it is more advantageous to not hard code the creation of individual part sketches.
The use of macros, or a library of applications to generate common sketches would accelerate this
step, but will be left for future work. It should also be noted that if this step were automated
Operation 2 could effectively be combined into Operation 1. This step completes the definition of the

two-dimensional boundaries of the components (2
2Cb) which is illustrated in Fig. 5.

Fig. 5: Completion of operation 2 step 1.

2.3.2 Step 2: Solids
It is programmatically trivial to create the solidifying feature from the cross section sketches. As long
as the sketch is named according to a pre-determined convention it can be retrieved and either
extruded or revolved. Certain interface types may also contain parameters needed to perform this
step such as an extrusion distance or revolve angle and would therefore create the necessary variables
as part of Operation 1. In that case, the expressions would be named according to a convention and
the application for Operation 2 would reference the established expression name while creating the
feature.

2.3.3 Step 3: Blends and Chamfers
The method for automating the creation of blends and chamfers is also based on the interface types
associated with the part. Blends and chamfers are commonly used to facilitate the assembly of mating
parts and are applied to easily predicted edges, especially when the interface type is known. The

Computer-Aided Design & Applications, 6(3), 2009, 317-327

323

method used in this step of Operation 2 queries the edges of each part and determines which edges

intersect the control structure)(2
iij CI . Then based on the rules for each interface type, blends and

chamfers are applied. The rules for whether a chamfer or a blend would be inserted are based on the
specific vertex of the interface and could reference either the expressions created by the interface
object functions or the values retrieved from a GUI. Here is an outline of the procedure.

For all parts 12 ACi  (0 ≤ i ≤ n)

For all edges)(2
ib Ce  (0 ≤ b ≤ l)

For all key vertices)(2
, ikija CIv  (0 ≤ a ≤ m)

Calculate minimum distance dmin between va and eb

If dmin < tolerance
Create Chamfer or Blend
Stop looping vertices

Fig. 6 illustrates the models after Step 3 has been completed. The yellow points denote the key
vertices to which chamfers or blends have been applied.

Fig. 6: Operation 2 step 3 complete.

2.3.4 Step 4: Fastener Detail Features
The method for adding fastener hole features is very similar to the blends and chamfers method,
except instead of cycling through the vertices associated with the interface control geometry, it cycles
through the fastener control geometry for each interface object. Again, the hole features and pattern
features reference the expressions which were created by the Interface Object class member functions.
The algorithm goes as follows (See Fig. 7 for the final results):

For all parts 12 ACi  (0 ≤ i ≤ n)

For all center lines)(2
, ikija CIcL  (0 ≤ a ≤ m)

Insert Hole Feature
Name Hole Feature according to convention

For all features)(2
ib Cf  (0 ≤ b ≤ l)

If feature type and name match convention for an interface hole
Create hole pattern

Computer-Aided Design & Applications, 6(3), 2009, 317-327

324

Fig. 7: (a) Completed assembly (b) exploded section view of completed assembly.

3. RESULTS
To determine whether the objectives of this research were met, and to what extent they were or were
not successful, three elements of the objectives will be evaluated:

1. the range of designs supported by the framework
2. the time savings observed
3. the proportion of the design left open to the engineer

3.1 Range of Supported Designs
As a theoretical framework, the methods developed in this paper will work for any interstage assembly
design. In practice, there are certain limitations. The current implementation of these methods is
capable of supporting any interstage design, subject to these limitations:

Interface Manager Limitations
 The interfaces must be either cylindrical or conical bolted flanges and each type can be placed

in one of four orientations
 The fastener pattern must be either a single row or a double offset row pattern
 The distances from the fastener centerlines to the flange edges and between the fastener rows

are predetermined but may be changed later interactively.
 The axial position of any joint must be at least nine diameters from the origin.
 The minimum radius for any interface is three inches.
 An assembly component must contain either one or two interfaces.

Component Cross Sections Limitations
 All cross sections must contain closed loops and must not self-intersect.
 The thickness of any bolt flange must be less than five inches.
 All cross sections must extend at least the entire length of the control structure’s flange.

Detail Features Limitations
 The chamfer and fillet dimensions cannot be pre-specified. They may only be changed after

running the application.

Considering that this implementation of the framework provides eight combinations of interface types
and orientations and allows each component to be associated with either one or two interfaces, there
are 72 distinct combinations of interfaces possible for each component in the assembly. With more
development, this framework would also work for other types of products that use extruded cross
sections and different interface types.

Computer-Aided Design & Applications, 6(3), 2009, 317-327

325

3.2 Time Savings
To determine the value of the proposed methods, engineers were asked to perform a set of modeling
tasks using both the traditional approach and the approach implemented in this paper. Each task
correlated with one of the method’s main Operations. For each engineer, the number of key-strokes
and mouse clicks, and the completion time was recorded for each method. The results from each task
were compiled to estimate the time and effort required to model an entire interstage assembly.

3.2.1 Task 1: Interface Manager
In task 1, the engineer must define the control structure for one cylindrical interface and one conical
interface including the hole location sketches. He/she must then add a new component to the
assembly, create the linked geometry features, and create a fully constrained sketch of the part cross
section. Tab. 1 lists the results of the three engineers for both methods and the comparison between
the two methods.

3.2.2 Task 2: Detail Features
In task 2, the engineers must make a revolve feature from the cross section, add chamfer and blend
features, and create the hole extrudes and patterns. See Tab. 2 for Results from the three test subjects.

3.2.3 Entire Assembly
The results from the three engineers can be used to extrapolate an estimate for the effort required to
create the parametric models for an entire interstage assembly. An example layout of a fictitious
interstage assembly is depicted in Fig. 2. It includes four interfaces, and five components. Tab. 3 lists
the estimated average results for this configuration based on these assumptions:

1. Creating the four interfaces will take twice as much effort as measured in Task 1.
2. Inserting the detail features on all five components will require five times the effort measured

in Task 2.

Test
Subject

Traditional Method Proposed Method Percent Difference

Key-
strokes

Mouse
Clicks

Time
(min.)

Key-
strokes

Mouse
Clicks

Time
(min.)

Key-
strokes

Mouse
Clicks

Time

1 864 717 45.27 84 99 5.48 90.60% 86.19% 87.89%

2 1236 947 61.78 89 95 4.67 92.80% 89.97% 92.45%

3 1226 795 65.00 54 148 6.87 95.60% 81.38% 89.43%

Average 1108.7 819.7 57.4 75.7 114.0 5.67 93.00% 85.85% 89.92%

Tab. 1: Task 1 completion statistics.

Test
Subject

Traditional Method Proposed Method Percent Difference

Key-
strokes

Mouse
Clicks

Time
(min.)

Key-
strokes

Mouse
Clicks

Time
(min.)

Key-
strokes

Mouse
Clicks

Time

1 220 201 14.28 0 2 0.12 100% 99.00% 99.18%

2 72 178 10.48 0 3 0.10 100% 98.31% 99.05%

3 31 199 9.68 0 2 0.10 100% 98.99% 98.97%

Average 107.6 192.7 11.48 0 2.3 0.11 100% 98.77% 99.07%

Tab. 2: Task 2 completion statistics.

3.3 Openness of Design
The primary aspect of the application that allows for flexibility in the design is the InterfaceManager.
It allows the engineer to define any number of component interfaces, and provides a substantial
number of interface types to choose from as mentioned in section 3.1. It also lets them create an
assembly with any number of components. Another key to providing openness is the fact that the
designer creates the component cross section sketches. This permits virtually unlimited variations in

Computer-Aided Design & Applications, 6(3), 2009, 317-327

326

the design of the part bodies and is especially valuable for the actual interstage component since many
different types of cross sections are used.

Key-
strokes

Mouse
Clicks

Time
(min.)

Traditional
Method

2755.4 2602.9 172.2

Proposed
Method

156.58 239.5 11.83

Percent
Difference

94.3% 90.8% 93.1%

Tab. 3: Estimated results for entire assembly.

Score

3

3

3

2

1

3

2

1

2

Joining method for each part-to-part interface

Interface type

Interface position

fastener size

fastener pattern

dimensions of the joint

Decision

Assembly Layout

number of components

topology of each part’s cross section

Dimensions of each part’s cross section

Chamfers and fillets

Tab. 4: Openness scores for primary design decisions.

Overall the fact that the models are entirely parametric means that any of the dimensions and
expressions can be changed to suit the specific needs of the designer. Therefore, even the portions of
the geometric design that are hard coded into the application, such as the flange length proportions or
the chamfer and fillet sizes, can be modified after running the application. To quantify the level of
openness provided by the application, each of the primary decisions which must be made by the
designer has been assigned a score from 1 to 3 with the following significances (See Tab. 4):

1. The designer can choose from a finite set of options
2. The designer can modify the parameters of the decision
3. The designer can change anything about the decision within normal design limits

3.4 Discussion of Results
The primary difficulty in creating parametric design tools is balancing the tradeoffs between speed and
design freedom. The results presented in section 3 have shown that the methods developed in this
paper are able to decrease the required time and effort by more than 90% while still leaving a majority
of the primary decisions open to the designer.
Although these methods have been evaluated with the design of rocket interstage assemblies, they
have potential application in any assembly dominated by similarly oriented 2½ dimensional
components. A primary advantage of these high-level programmatic operations over other design
automation tools, such as UDFs, is that these methods are able to operate on multiple components.
Therefore, they can create the inter-part associativities and expressions that are necessary in
parametric assembly modeling. In addition, they are able to generate much larger sets of geometry
since UDFs cannot use their own entities as inputs to their other features e.g. A UDF would not be able
to contain an offset surface feature and a feature that trims said offset surface, since the user would
not be able to identify the input surface to the trim feature.
Another important advantage of the methods presented here is that they drastically reduce user error
and can be executed by novice engineers or even technicians. During testing, many of the manual
operations had to be repeated or corrected because the wrong input geometry was selected, or because
input values were wrong. Programmatic methods do not have these problems. There were still some
user errors while testing the programmatic methods, but they were usually due to unclear instructions
and were much less frequent. In addition, the associative links between components assure that
design changes are properly propagated throughout the assembly automatically. This further reduces
design time and modeling errors.
One of the drawbacks of these programmatic methods is the time required for development and
maintenance. It takes significantly more effort and expertise to write the code than it does to generate
models interactively. For this reason, the proposed methods must be used in circumstances where the
upfront fixed costs and intermittent maintenance costs can be justified by long-term savings and/or
increased market competitiveness.

Computer-Aided Design & Applications, 6(3), 2009, 317-327

327

4. CONCLUSIONS
The objectives of this research were to show that high-level, product type-specific operations can
accelerate the design of a wide range of rocket interstage components and assemblies and that these
operations will decrease the design time without impeding innovation.
In section 2, a method was developed to define the assembly layout using a framework of C++ classes
and user interfaces called the InterfaceManager. While this theoretical framework was capable of
supporting any assembly layout, the framework that was actually implemented was limited to eight
types of interfaces. Section 3 demonstrated that the InterfaceManager still supported a very large
number of interface combinations even with these limitations and was able to create the interfaces
around 90% faster than by using the traditional method. From these results we can conclude that
product type-specific operations can greatly reduce modeling time of assembly layouts and can be
flexible enough to support wide spectrums of designs.
Section 2 also discussed methods for creating the detailed features on each part in the assembly
including the revolve features, chamfers, fillets, and hole patterns. These methods resulted in more
than a 98% reduction of modeling time and effort. Since the inputs for these detail features were
defined by the InterfaceManager, no effort was required of the user to detail the parts. These results
prove that CAD design can be streamlined extensively using high-level operations.

5. REFERENCES
[1] Bidarra, R.; Idri, A.; Noort, A.; Bronsvoort, W. F.: Declarative user-defined feature classes,

Proceedings of the 1998 ASME Design Engineering Technical Conferences, CD-ROM, September,
1998 13–16. Atlanta, GA, USA, New York: ASME.

[2] Delap, D.; Hogge, J.; Jensen, G.: CAD-centric creation and optimization of a gas turbine flowpath
module with multiple parameterizations, Computer-Aided Design & Applications. 3(1-4), 2006,
175-184.

[3] Emch, F.: Impact of System-Level Engineering Approaches on the Airframe Development Cycle
Via Integration of KBE with CAD Modeling and PDM, RTO AVI Symposium. April, 2002.

[4] Hoffman, C. M; Joan-Arinyo, R.: On User-defined Features, Computer Aided Design, 30(5) 1998,
321-352.

[5] Jankowski, G.: Solid Thinking: Using Functional Features to Build Plastic Parts, Cadalyst Nov. 15,
2005. Retrieved on 12/10/07 from: http://manufacturing.cadalyst.com/manufacturing/article/
arcticleDetail.jsp?id=197017.

[6] Lamarche, B.; Rivest, L.: Dynamic Product Modeling with Inter-Features Associations: Comparing
Customization and Automation, Computer-Aided Design & Applications, 4(6), 2007,877-886.

[7] Ledermann, C.: Associative parametric CAE methods in the aircraft pre-deisgn, Aerospace
Science and Technology, 9(7), 2005, 641-651.

[8] Mosca, F.; Di Martino, C.; Aleixos, N.: Complex CAD project management by the means of
designing criteria control tools, Deployment of a vehicle gearbox archetype with the aid of WAVE
by UNIGRAPHICS, XII ADM International Conference, September 2001.

[9] Shah, J. J.; Ali, A.; Rogers, M.T.: Investigation of declarative feature modeling, Proceedings of the
ASME 1994 Computers in Engineering Conference, ASME, NewYork, 1, 1994, 1-11.

[10] Scott, N. W.: High-Level Product Type-Specific Programmatic Operations for Streamlining
Associative Computer-Aided Design, M. S. Thesis, Brigham Young University, 2008

[11] Tang, M.; Wen, Y.; Mi, X.; Dong, J.: Parametric modeling with user-defined features, Computer
Supported Cooperative Work in Design, The Sixth International Conference on, 12-14 July, 2001,
207 – 211.

[12] Venkataraman, S.; Shaw, J. J.; Summers, J.: An investigation of integrating design by features and
feature recognition, International Conference FEATS, 2001.

