
Computer-Aided Design & Applications, 6(3), 2009, 291-306

291

Computer-Aided Design and Applications
© 2009 CAD Solutions, LLC

http://www.cadanda.com

Modeling Families of Objects: Review and Research Directions

H. A. van der Meiden1 and W. F. Bronsvoort2

1Delft University of Technology, H.A.vanderMeiden@tudelft.nl
2Delft University of Technology, W.F.Bronsvoort@tudelft.nl

ABSTRACT

We review different approaches used for modeling families of objects, and we propose
directions for future research. First, we discuss parametric, history-based models,
which are mostly used in practice, but are often not adequate for modeling families of
objects. We identify the main problem, namely that the semantics of families of
objects, in particular topological properties, cannot be adequately specified and
maintained with these models. Next, we discuss declarative models for families of
objects. In such models, constraints are used to specify the semantics of a family of
objects, including topological properties, and members of the family are determined
by solving the constraints. We find that the declarative approach is promising, but also
that current implementations are too limited for practical use. Also, we look at what
kind of modeling tools are needed to facilitate creating and using families of objects,
in particular, tools for computing parameter ranges and critical values corresponding
to topological changes. Finally, we conclude that for future CAD systems, and other
geometric modeling applications, the declarative approach needs to be further
developed, and we propose a declarative framework for geometric modeling.

Keywords: families of objects, semantics, declarative models, modeling tools.
DOI: 10.3722/cadaps.2009.291-306

1. INTRODUCTION
Geometric models are used in many different applications, e.g. CAD, scene modeling, and medical and
scientific applications. What is needed in many of these applications is not a static geometric model,
but a generic representation that can capture possible variations of a shape, i.e. represent similar
shapes in a generic way. Such sets of similar shapes are called families of objects. Typically, families of
objects are characterized by parametric models, which represent all possible shape variations by a set
of parameters. By varying the parameters, variants of the model are obtained, each representing a
different but similar object (see Fig. 1). The (infinite) set of all possible objects that can thus be
obtained, is the family of objects represented by the parametric model. The objects in this set are the
members of the family.
However, there is not yet a good way to parameterize geometric shapes in such a way that desirable
properties and characteristics of the family of objects can be a priori specified and maintained. This
means that after editing a model, or instantiating a family member, it should be manually checked for
undesirable artifacts, which is error-prone and expensive for large models. Thus, a better definition of
families of objects is needed, such that models can be automatically validated.
In general, we can say that a family of objects is a set of similar objects. But similar in what respect?
Depending on the exact definition, the objects in Fig. 1 may or may not belong to one and the same
family. On the one hand, it can be argued that these objects are members of the same family because

Computer-Aided Design & Applications, 6(3), 2009, 291-306

292

they can be constructed in the same way, i.e. by the same sequence of geometric operations. Such
constructive, or history-based, definitions are mostly used in practice [9], but, as we shall see, are often
not satisfactory. On the other hand, it can also be argued that objects (c) and (d) do not belong to the
same family as object (a) and (b) because their topology is different, i.e. the last two objects cannot be
mapped onto the first two objects by a continuous transformation [22]. Such formal definitions, based
on mathematical topology, are not widely accepted, because they are too restrictive for many
applications.

Fig. 1: Instances of a CAD model with two parameters: l and bend.

More importantly, the previous two definitions do not take into account that for different families of
objects, different properties may be important, and it is thus desirable that when modeling families of
objects, the user is able to precisely specify which objects are family members, and which are not, i.e.
the semantics of a family. For example, the semantics of a family of objects may be that members must
be able to function as a connecting rod between two round shafts, and thus each member must contain
two separate, round holes. This would imply that objects (a), (b) and (d) from Fig. 1 might belong to the
family, but object (c) does not. Such semantic, or declarative, definitions are promising, but currently
not used in practice because they require a radical departure from the history-based model and
workflow used in current modeling systems.
In Section 2, we review parametric, history-based models for families of objects used in practice, and
extensions proposed in scientific literature. Next, in Section 3, we discuss declarative models for
families of objects. In Section 4, we look at the kind of facilities needed for modeling families of
objects. In particular, we look at current modeling facilities, and tools for computing parameter ranges
and tracking topological changes. Finally, in Section 5, we suggest directions for future research, and,
in particular, propose a general framework for declarative geometric modeling that can be used for a
wide variety of applications.

2. PARAMETRIC MODELS
Families of objects are typically represented by parametric models. First, we discuss history-based
models, which are created by current feature-based CAD systems, in Section 2.1. Next, in Section 2.2,
we discuss more general dual-representation models, suggested by academics. Even more generally, the
previous models can be considered as procedural or rule-based models. These models are discussed in
Section 2.3, and we argue that these are not suitable for specifying semantics of families of objects.

2.1. History-based Models
Current commercial CAD systems (e.g. Pro/Engineer, CATIA, SolidWorks, NX, SolidEdge, Inventor) are
parametric feature modeling systems. Such systems create models that essentially describe a history of
modeling operations. These operations add features by operating on a boundary representation (b-rep).
To remove a feature, the corresponding operation is removed from the history, and the history is re-
evaluated to determine a new b-rep. We refer to these systems as history-based modeling systems, and
to models produced by these systems as history-based models.
The procedure for modeling a family of objects with these systems, is as follows. Initially a single
family member is modeled, which is referred to as the prototype object. Each modeling operation is
instantiated with parameter values specified by the user. Other members of the family are instantiated

(a) (b) (c) (d)

Computer-Aided Design & Applications, 6(3), 2009, 291-306

293

by re-evaluating the modeling history, stored in the prototype, with a new set of parameter values.
Each modeling operation is now executed with the new parameter values, to create a new b-rep, which
represents the requested member of the family.
History-based models, even though they are the de-facto standard for commercial modeling systems,
are not really suitable for representing families of objects. In [3], several major problems with the
history-based approach are identified, of which the most relevant, in the context of families of objects,
are the persistent naming problem, the feature ordering problem, and the inability to maintain feature
semantics.
The persistent naming problem, essentially, is the problem of identifying corresponding entities in
different members of a family. This identification is necessary because operations in the modeling
history of a CAD model can contain references to entities that were created by previous operations in
the modeling history, in particular, references to b-rep entities. Such a reference can be used, for
example, for positioning a feature. However, when evaluating the history for different parameter
values, a new b-rep is built, and references must now point to the corresponding entities in this new b-
rep. Therefore, a so-called persistent naming scheme is needed that can identify corresponding b-rep
entities created for different parameter values.
Developing a persistent naming scheme is very difficult. One of the issues that a persistent naming
scheme must deal with, is that entities may disappear or may be merged or split when parameter
values are changed. It has been shown that current CAD systems use a flawed approach that can result
in errors. Several schemes have been brought forward to alleviate the persistent naming problem, so
that history re-evaluation can at least be consistently executed; for an overview see [12]. However, it
should be noted that the persistent naming problem has not been solved completely, and that current
naming schemes only work for most common situations.
The second problem with history-based models, the feature ordering problem, is caused by the fact
that features add or remove material from the model in a fixed order. The order of modeling
operations that seemed appropriate for a particular family member, namely the prototype object, may
not yield the expected result when re-evaluating the history to create other family members. Consider,
for example, Fig. 2. The prototype object consists of a base block, a protrusion feature and a blind hole
feature, as shown in Fig. 2(a). When instantiating a variant object where the depth of the blind hole is
increased beyond the height of the base block, two results are possible, depending on the order in
which the features were created in the prototype. If the protrusion was created before the blind hole,
the model shown in Fig. 2(b) emerges. If, however, those features were created in the reverse order, the
model shown in Fig. 2(c) emerges.

Fig. 2: The feature ordering problem.

The implication of the feature ordering problem for modeling families of objects, is that the order of
operations must be taken into consideration, even though the effect may not be visible in the
prototype. Although the order of features in the modeling history can usually be edited, this
complicates design and editing of family models, in particular models with many interacting features.
The third problem with history-based models is maintaining feature semantics. Users of a CAD system
expect features to have certain semantics, i.e. certain properties that are meaningful for the function or
manufacturing of the product being modeled. In particular, topological properties are relevant for
feature semantics. Due to interaction with other features, however, the topological properties of a
feature may change. For example, Fig. 3(a) shows a prototype object consisting of a base block, a blind
hole feature and a step feature. The semantics of a blind hole requires that the hole has a bottom, i.e.
that the hole does not cut entirely through the object. When the step feature is changed as in Fig. 3(b),

(a) prototype (b) blind hole added last (c) protrusion added last

Computer-Aided Design & Applications, 6(3), 2009, 291-306

294

the blind hole feature does cut through the object, thus the semantics of the feature has changed, from
the semantics of a blind hole to the semantics of a through hole.
By using a limited set of feature types and strict adherence to proven modeling practice, undesirable
situations as described above can sometimes be avoided. However, this practice in fact obscures the
problems with history-based models, which will still occur, in unpredictable ways. To maintain feature
semantics, topological properties must be verified, and if necessary, action must be taken to restore
feature semantics, i.e. the user should be informed. Current CAD systems, however, can only check the
topological properties of a feature during instantiation of the feature into the model. If, due to
interaction with other features, the topological properties of a feature change at later stages in the
evaluation of the modeling history, this cannot be detected. The reason is that the result of feature
operations is stored in a b-rep, and the topology of the features cannot be stored in this
representation. As a result, topological properties of the features cannot be adequately verified.

Fig 3: The problem of maintaining feature semantics.

2.2. Dual-representation Models
To understand the problems with modeling families of objects in a more general, theoretical context,
the concept of dual-representation models has been introduced [22]. Such models consist of a
parametric representation, e.g. a CSG representation, and a geometric representation, e.g. a cell-
complex representation. History-based models are dual-representation models too, where the
parametric representation is the modeling history, and the geometric representation is the b-rep. For a
given set of parameter values, the parametric representation can be evaluated, resulting in the
geometric representation of a family member.
This view has led to considering two types of families: the parameter-space family and the
representation-space family. The parameter-space family is the set of all objects that can be obtained
by varying the parameters. The representation-space family corresponds to the set of all objects that
can be obtained by certain operations on the geometric representation.
A specific representation-space family is described by the concept of boundary representation
deformation [19]. Basically, a family of objects is here defined by a prototype b-rep, and contains all
objects that can be created by a continuous deformation of the prototype. The authors acknowledge
that this definition of a family is too restrictive for practical modeling of families of objects, because
the boundary representation deformation cannot account for splitting and merging of topological
entities.
A more general framework for families of objects has been proposed in [20]. Here, the concept of part
families is described using category theory, a branch of mathematics that deals with broad classes of
mathematical objects, such as the category of sets and the category of topological spaces. A part
family is defined as a sub-category of the category of cell-complexes, such that there is a mapping
between the cell-complexes in the part family, with certain continuity preserving properties. This
allows some topological variations, e.g. splitting and merging of topological entities.
To be able to determine whether an object is a member of such a representation-space family,
geometric representations, generated for different parameter values, must be compared. In [21], a
method is proposed to compare different geometric models, created from the same parametric model,
by uniquely identifying entities. However, this basically requires that the persistent naming problem is
solved, which is not generally possible, in particular when a model contains curved surfaces. In [18], a
so-called constructive topological representation is presented that allows a mapping between different

(a) prototype (b) after modifying step feature

Computer-Aided Design & Applications, 6(3), 2009, 291-306

295

models to be established, without uniquely identifying all topological entities. From such a mapping, it
can be determined whether the models are in the same representation-space family.
The models for families of objects discussed above are mostly concerned with preserving continuity in
the geometric representation, and therefore, families are defined in terms of continuous
transformations or mappings. However, this definition of a family of objects is rather limited; in
practice, it may be desirable for a family of objects to have members with more variation in topology.
For example, it may be desirable to specify a family of objects with two hole features, such that in
some members the two holes intersect, whereas in other members, the two holes do not intersect. In
another family, intersection of the holes may not be desirable. Thus, it should be possible to specify in
detail, when modeling a family, what is and what is not desirable in its members, i.e. the semantics of
the family.

2.3. Procedural and Rule-Based Models
The models for families of objects considered above are all procedural models. Procedural models (or
constructive or imperative models) specify how to construct objects using a procedure, i.e. a sequence
of parametric operations. The history-based model is essentially a procedural model, where parametric
operations are performed on a b-rep.
But, how suitable is the procedural model for specifying the semantics of families of objects? To
specify the semantics of a family of objects, we should be able to specify invariant properties, i.e.
properties that must hold for all objects in the family. In particular, because we are mostly concerned
with the shape of objects, we should be able to specify invariant geometric and topological properties,
e.g. the diameter of a hole and that it must be a blind hole.
Creating a procedural model for a family of objects, such that a set of particular geometric and
topological properties holds for all possible resulting objects, can be very difficult, because the
geometry and topology of an object may depend on the parameter values of all the operations, and the
order in which these are executed. The problem is aggravated because some important topological
properties cannot be specified and verified in boundary representations (see Section 2.1).
In general, creating a procedure such that some invariant property holds is a non-trivial problem; the
more complex a procedure becomes, the more difficult it will be to guarantee specific invariant
properties. Basically, this is the art of programming, which is not something we want to burden users
of a CAD system with. Thus, procedural models are not particularly suitable for creating families of
objects.
Families of objects may also be created using rule-based models, which are commonly used in
knowledge-based engineering systems and automated design synthesis systems. In such systems,
requirements are specified by a set of rules. The rules can be executed by the system in any order, to
construct a set of objects, representing possible design solutions. The set of all possible objects that
can be created from a set of rules can be considered a family of objects. Most rule-based models are
based on shape grammars [23]. A shape grammar defines rules that perform elementary replacements
in geometric representations.
A rule-based model can be considered to define a set of procedural models; i.e. rules are equivalent to
parametric operations, only the order in which rules are executed is not fixed. Therefore, rule-based
models have the same limitation as procedural models, namely that it is hard to guarantee invariant
properties after executing a sequence of parametric operations. More generally, in [1] it is argued that
all models based on parametric modeling operations are unsuitable for specifying both geometric and
topological properties. Thus, rule-based models, like procedural models, are not suitable for
specifying the semantics of families of objects.

3. DECLARATIVE MODELS
Declarative models, in contrast with procedural and rule-based models, explicitly state invariant
properties of objects, but not how to construct those objects. A declarative model consists of variables,
i.e. elements that exist in all objects in the family, but whose properties can vary, and constraints,
which state invariant properties by imposing relations between variables. The model does not specify
how to satisfy those constraints, but rather, a constraint solver is used to determine values for the
variables such that all constraints are satisfied, i.e. the solutions or realizations of the model. In
general, there can be many solutions to a system of constraints, and thus a declarative model can
naturally describe a family of objects.

Computer-Aided Design & Applications, 6(3), 2009, 291-306

296

Constraints have been used in several declarative scene modeling systems; for an overview see [5] and
[7]. Typically, the model in such a system consist of several objects that are placed in 3D space to
satisfy positional constraints, specifying, for example, that object A must be to the left of object B. The
modeling system determines various configurations of the objects in the scene, and presents these to
the user. However, for modeling families of objects with invariant geometric and topological
properties, these constraints cannot be used. Instead, geometric and topological constraints are
needed.
Geometric constraints are used in current CAD systems to specify geometric relationships in sketches
[8]. Such constraints are imposed on 2D geometric primitives such as lines and circles, to constrain
their dimensions (lengths, radii), their relative position and orientation (distances, angles), and other
relations (adjacency, tangency).
Topological constraints state invariant topological properties that must be satisfied by all members of
a family. Useful topological constraints state requirements on the connectivity of specific point sets in
a model that are meaningful to the user, i.e. features or faces of features. For example, a topological
constraint may state that the bottom face of a blind hole feature must be on the boundary of the
model, so that the hole is actually blind. In this way, topological constraints determine the possible
topological variations of a model, independently of the geometric constraints. Thus, whereas geometric
constraints are used to parameterize the shape of the model, topological constraints are used to limit
the range of topological variations of the shape.
Such topological constraints cannot, in general, be specified in current CAD systems, because these
systems create history-based models and use a b-rep for representing the geometry. The topology of
the b-rep is determined by evaluating the modeling history, independently of any topological
constraints. And although some topological aspects may be implicitly checked by such systems, in
general, topological constraints cannot be verified, because the b-rep does not contain all topological
information needed for this.
Therefore, we have developed declarative models for CAD, not based on modeling history and the b-
rep, which are discussed next.

3.1. The Semantic Feature Model
The Semantic Feature Model (SFM) is a declarative model that allows feature semantics to be specified
and maintained using constraints [3].
A SFM consists of a set of features, constraints specified in the features (feature constraints), and any
additional constraints between features (model constraints). Each feature is instantiated from a feature
class, which defines a parameterized shape with topological properties, in particular, a nature
attribute, boundary constraints and interaction constraints.
The value of the nature attribute is either “additive” or “subtractive”, indicating whether the feature
adds material to the model or removes material from the model.
A boundary constraint is imposed on a feature face, and specifies that the face must be (partially or
completely) on the boundary of the model, or may not be (partially or completely) on the boundary of
the model. A boundary constraint can be used to specify, for example, that the bottom face of a blind
hole feature must be on the boundary of the model, so that the hole is always blind.
Interaction constraints are imposed on the feature as a whole. Interactions with other features may
create specific topological patterns, which can be disallowed by these constraints. An interaction
constraint can be used to specify, for example, that a feature may not be split into disjoint parts by
other features in the model. Table 1 lists interactions commonly found in feature models that can be
constrained in the SFM.

Interaction
type

Description

Splitting Causes the boundary of a feature to be split into two or more disconnected subsets

Disconnection
Causes the volume of an additive feature (or part of it) to become disconnected from
the model

Obstruction Causes (partial) obstruction of the volume of a subtractive feature

Computer-Aided Design & Applications, 6(3), 2009, 291-306

297

Closure Causes a subtractive feature volume to become (part of) a closed void inside the
model

Absorption Causes a feature to cease completely its contribution to the model boundary

Tab. 1: A list of interactions in feature models. Adapted from [3].

The geometric representation of the SFM is the cellular model (CM), a cell-complex representation that
can be used to store semantic feature information [2]. The cellular model consists of topological
entities, i.e. vertices, edges, faces and cells, and all topological relations between these entities. Note
that in literature on cell-complex representations, usually, all topological entities are called cells,
whereas here we use the word cell only for those entities representing volumes. All cells are quasi-
disjoint, meaning that cells may touch (share a face, edge or vertex), but they cannot intersect. Each cell
represents either a volume filled with material, i.e. it is part of the modeled object, or it represents an
empty volume, i.e. it is not part of the object.
The CM is constructed by combining all the feature shapes in the model, and can be updated efficiently
when the feature model is changed [4]. If features intersect, their entities are split into non-intersecting
new entities, which are then added to the CM. The CM thus contains the geometry of all the features,
including the geometry that is not on the boundary of the model. In contrast, the b-rep of a history-
based model loses feature geometry with each set operation. For each cell, the CM stores a list of
features that overlap with the cell, referred to as the owner list of the cell. For each cell, it is
determined whether it contains material, by analyzing the dependencies between features in the owner
list and determining a feature precedence order, i.e. which feature determines the nature of the cell.
After it has been determined for each cell in the CM whether it contains material, the validity of all
features is checked by verifying that all boundary and interaction constraints are satisfied. If any
constraint is not satisfied, the model is invalid, and the user is guided through a recovery process, until
validity has been restored.
The main shortcoming of the SFM as a basis for defining families of objects, is that feature dependency
analysis cannot always unambiguously decide which cells should contain material, in particular when
there are features in the owner list of a cell that are independent and have conflicting natures. For
example, in Fig. 2., the protrusion and the blind hole features are both dependent on the base block,
because they refer to it for positioning, but there are no dependencies between these two features.
Therefore, either Fig. 2(b) or Fig. 2(c) can emerge, depending on the order of feature creation, just like
in history-based systems. In general, feature dependency analysis does not respect the semantics of
features as specified by topological constraints. Topological constraints are only checked after a model
has been created, instead of being used to create a valid model. As a result, a family of objects defined
by a SFM is not complete, i.e. sometimes no object is found that satisfies the topological constraints,
even though such an object exists.

3.2. The Declarative Families of Objects Model
In [13] we presented a new model for families of objects, the Declarative Family of Objects Model
(DFOM), based on, and extending the concepts of the SFM. In the DFOM, unlike in the SFM, the
geometry and topology of a model do not have to be fully specified. Thus, a DFOM generally represents
a family of objects. Also, to determine members, topological constraints are solved, instead of using
feature dependency analysis and constraint checking, as is the case in the SFM. This allows to properly
specify families of objects.
A DFOM consists of geometric variables, called carriers, and topological variables, called constructs.
Carriers define surfaces that partition space, e.g. a planar carrier defines a planar surface and two
sides of the surface. Constructs basically represent point sets, i.e. volumes, surfaces, curves and
individual points, constructed by intersections of subspaces defined by carriers. Carriers and
constructs are related via so-called subspace constraints. Geometric properties of a family can be
specified by geometric constraints on carriers, topological properties by topological constraints on
constructs.
Carriers are used in various representations for families of objects, e.g. in [21] and [18]. Although
carriers can be defined in any dimension, here we consider a carrier to be a function that partitions 3D
Euclidean space into three subspaces, labeled IN, OUT and ON. The subspaces that correspond to IN

Computer-Aided Design & Applications, 6(3), 2009, 291-306

298

and OUT are each connected, 3D point sets. The subspace labeled ON is a surface, separating the IN
and OUT subspaces.
A construct is a variable that represents a point set, corresponding to a subspace of 3. The actual
point set represented by a construct, i.e. its value in a specific realization, is determined by the
subspace constraints and the topological constraints imposed on it. Subspace constraints specify that a
construct is a subset of the IN, ON or OUT subspace of a carrier. A construct that is not constrained
ON any carrier represents a volume, which can be bounded by constraining the construct IN and/or
OUT with respect to several carriers. For example, a construct constrained IN a planar carrier and IN a
spherical carrier generally represents a half-sphere volume. A construct that is constrained ON a single
carrier generally represents a surface. For example, a construct constrained ON a planar carrier, and IN
a spherical carrier, generally represents a disk. A construct that is constrained ON two carriers
generally represents one or more curves, and finally, a construct that is constrained ON three carriers
generally represents a finite set of points. Some examples of systems of constructs and carriers are
shown in Fig. 4 and Table 2.

Fig. 4: Constructs build from a spherical carrier and one or two planar carriers.

Fig. 4 construct sphere plane 1 plane 2
(a) half-

sphere
IN IN

(b) disk IN ON

(c) circle ON ON

(d) two
points

ON ON ON

Tab. 2: Constructs and carriers in Fig. 4.

Implicitly, a DFOM defines a set of realizations, i.e. all object models that satisfy the constraints in the
DFOM, thus representing all possible family members. The geometric representation of realizations is
the cellular model (CM), the same representation that is used in the SFM.
Realizations may be derived from a DFOM by a three-step process (see Fig. 5). The process starts with
solving the geometric constraints on the carriers in the DFOM [17]. After the geometric constraint
system has been solved, the geometry of all carriers has been determined. The geometry of all
constructs is then determined, by evaluating the subspace constraints, i.e. by intersecting carrier
geometry. From this, a CM is constructed that contains a cell for every volume construct or intersection
of volume constructs. To determine which cells of the CM contain material, we solve the system of
topological constraints [15]. Basically, the material value of each cell is a Boolean variable, and
topological constraints similar to those used in the SFM, e.g. boundary and interaction constraints, and
the concept of feature nature, are implemented as Boolean constraints. A Boolean constraint solver,
based on SAT technology, is used to determine possible solutions.
A DFOM can have zero, one, a finite or a (countable or uncountable) infinite number of realizations.
These realizations correspond to the members of the family. However, family membership can better
be defined in terms of DFOMs, as follows.
A DFOM M represents a member of the family represented by a DFOM F, if and only if

 M has the same set of variables as F,
 M has a superset of the constraints of F, and

(a) (b) (c) (d)

Computer-Aided Design & Applications, 6(3), 2009, 291-306

299

 M has exactly one realization.

Fig. 5: The three-step process for deriving realizations from a DFOM.

Similarly, we can define a subfamily of a given family as a DFOM with a superset of the original DFOM’s
constraints. Thus, family membership is a well-defined relationship, which can be tested by comparing
DFOMs. This is much easier than comparing geometric representations of realizations, which is
difficult due to the persistent naming problem.
In Fig. 6, two realizations of a DFOM created in SPIFF, a prototype modeling system developed at Delft
University of Technology, is shown. The user can manually choose one of the realizations, or add
constraints to reduce the number of realizations. If a constraint is added to the blind hole that
specifies that the hole may not be obstructed, then only realization (a) will be found, because in model
(b) the volume of the blind hole is partially obstructed.

(a) (b)

Fig. 6: Two realizations of a single DFOM in SPIFF.

4. FACILITIES TO SUPPORT MODELING FAMILIES OF OBJECTS
Current modeling systems do not provide adequate tools for modeling and using families of objects. A
family, consisting of a potentially infinite number of objects, is an abstract concept that is difficult to
visualize and interact with in a natural way. We investigate these problems in Section 4.1. To relieve
these problems, new modeling tools are needed. A useful tool when instantiating members of a family,
is one that computes the range of allowable values for a parameter. It can also be useful to know the
parameter values for which topological changes occur in the model, i.e. the critical parameter values.
Tools for computing parameter ranges and critical values are discussed in Section 4.2.

4.1 Interactive Modeling of Families of Objects
For modeling families of objects, interactive modeling tools are needed to define the family, and
interactive exploration tools are needed to inspect the set of family members.
In current CAD systems, a family of objects is created by first modeling a prototype object. The
prototype object can be interactively edited by selecting entities in the b-rep, by adding and removing
features in the modeling history and by changing parameter values, e.g. dimensions. Other family
members are instantiated, e.g. in an assembly model, by re-evaluating the modeling history with new
parameter values.

Computer-Aided Design & Applications, 6(3), 2009, 291-306

300

One problem with this approach is that, because the prototype must always be a completely
determined object, the designer is forced to make choices, such as in which order to add features to
the modeling history, and which values to set for parameters. However, as requirements are often
refined or changed during the design process, it may be necessary to undo previous choices, e.g. by
changing dimension values or by removing features, to satisfy the new requirements. As we have seen
in Section 2.1, changes to the modeling history are not intuitive and can result in errors. Also,
alternative design solutions may be missed because of choices made early in the modeling process.
For declarative models, the design process can be thought of as a gradual narrowing down of a broad
family of objects to a smaller family of objects, by adding or changing requirements, specified in the
model using constraints. No arbitrary design choices have to be made to create a single object, until
the last moment, e.g. just before analysis or manufacturing. Thus, no potential solutions are discarded
during the modeling process. However, in declarative models, geometry and topology may not be fully
determined, and there is no obvious and meaningful way that these aspects can be visualized and
interacted with. Thus, in practice, first a member model must be instantiated (by specifying additional
constraints or parameter values), which can then be visualized and interacted with. Fortunately, in
declarative systems, features and constraints can be removed without the limitations imposed by a
fixed modeling history, and thus changes in requirements can be incorporated at any time, by
mapping operations on an arbitrary member model to operations on the family model.
Thus, in both history-based and declarative systems, a family model is edited by interacting with a
single family member (i.e. the prototype or an arbitrary one, respectively). The effects of the edit on
other family members, however, may be not immediately obvious to the user. A system for modeling
families of objects should therefore provide tools that allow the user to inspect the set of objects in a
family. Tools from declarative scene modeling systems ([5,7]) for exploring families of objects are
useful for this, e.g. the possibility to visualize several members at the same time. However, to explore a
family in this way, members of the family have to be instantiated. This can be problematic, because it
is not a priori known which parameter values will result in valid family members. This is, in particular,
difficult to determine for complex models, and models that have been created by a third party. Also,
because the set of family members is often infinite, not all members can be inspected, and it will be
difficult to get an overview of the modeled family. In particular, members with undesirable topological
properties may exist that are hard to find by manually instantiating members.
For instantiating members of a family, it is therefore useful to know the range of allowable parameter
values, i.e. the parameter range. Also, it is useful to know the parameter values for which topological
changes occur, i.e. the critical values, because this allows the user to explore the topological variations
of a family. Methods to compute parameter ranges and critical values are discussed next.

4.2 Parameter Ranges and Critical Values
In [23], the parameter range problem is considered for a 2D polygon with only horizontal and vertical
line segments and distance constraints between them. A method is presented there to determine the
range for a single distance parameter such that the topology of the polygon does not change. The
considered constraint system is very simple, but the authors do make some useful observations
concerning the problem in general. In particular, they observe that a system of geometric constraints in
general has a large number of solutions, exponential with respect to the number of constraints in the
problem, and that a different parameter range may be found for each solution. Also, they suggest that
only one parameter at a time should be considered, because the combined parameter range for n
parameters is a subset of n-dimensional space that will be very difficult to determine and to present to
the user.
The parameter range problem is considered for systems of geometric constraints in [24]. This
approach can be used to find an interval for a parameter of a system of constraints such that a
solution is feasible. However, it cannot deal with parameter ranges that consist of several disjoint
intervals, and, because it is based on sampling, it cannot determine the exact bounds.
In [14], we presented a method to determine the exact range of any single parameter of a system of
geometric constraints. The method computes the range for a single parameter, referred to as the
variant parameter. The range to be computed is a set of intervals such that for any value in these
intervals, a solution of the system exists.
The considered constraint problems are systems of distance and angle constraints on points in 2D or
3D that are well-constrained. It is assumed that a geometric constraint solver is available that can find
a decomposition of the system into subproblems, and the solutions for each subproblem and the
system as a whole.

Computer-Aided Design & Applications, 6(3), 2009, 291-306

301

Basically, the method first determines all “geometrically” critical values of the variant parameter. A
critical value of a parameter is here defined as any value c for which there is an arbitrarily small
value , with 0 , such that for c and c the system has a different number of solutions. The idea
behind this approach is that the solvability of the system (i.e. whether the system can be solved, using
a particular constraint solver) can only change at critical values, and not between two subsequent
critical values.
Critical parameter values are related to degenerate subproblems. A subproblem is degenerate, for some
parameter value, if for some arbitrarily close value it has a different number of solutions. For each
subproblem that is dependent on the variant parameter, several degenerate cases may exist, i.e. there
can be several ways in which the subproblem degenerates. The degenerate cases of the simplest
possible subproblem, a triangle ABC with two three distances, AB, AC and BC, are illustrated in Fig. 7.
The triangle ABC exists only if the triangle inequality is satisfied, i.e. if .AC BC AB AC BC If the
distance AB is the variant parameter, and 4AC and 3BC , then there are two critical
values: 1AB and 7.AB For these values, ABC degenerates to a configuration of three points on a line,
as shown in Fig. 7(b) and Fig. 7(c).

Fig. 7: Degenerate cases for a triangular subproblem ABC, with variant parameter AB.

In general, finding critical values is achieved by first removing the constraint corresponding to the
variant parameter from the constraint system. Then, for each dependent subproblem, constraints are
added such that the subproblem degenerates, resulting in a new system of constraints for each case.
Each such system is solved, and the critical values are determined by measuring the value of the
variant parameter in the solutions of each system.
To determine the parameter range from the critical values, the method determines the solvability of
the system for each interval between two subsequent critical values, by picking a value in each interval
and solving the system with that parameter value. The parameter range is the set of intervals for which
solutions can be found for the system.
In [16], we presented a method to track topological changes in a parametric model, such that the
“topologically” critical parameter values and parameter ranges can be determined.
A critical value of the variant parameter is here defined as any value c for which there is an arbitrarily
small value , with 0 , such that for c and c the realizations of the model have different
topologies. Critical values thus correspond to changes in the topology of the realizations of a model,
when a parameter is varied continuously.
Fig. 8 shows the realizations of a model for different critical parameter values. Critical values often
correspond to features that are tangent, as indicated by the arrows in the figure.

Critical values are related to degenerate entities, i.e. entities that should not occur in the geometric
representation of a model. Examples of degenerate entities are edges of zero length, faces with zero
area, and cells with zero volume. Such entities should be represented by lower-dimensional entities
instead. Entities that represent disjoint point sets, or point sets that can be decomposed into point sets
of different dimension, should be split into several entities, and are therefore degenerate too.
Although degenerate entities should never occur in a geometric representation, we can impose
constraints on the carriers that determine an entity such that it degenerates if the constraints are
satisfied. For each entity in the geometric representation, one or more degenerate cases can be
formulated in terms of geometric constraints. For example, a vertex, determined by the intersection of
two lines, degenerates when the intersection of the two lines no longer exists. This corresponds to a
constraint specifying that the lines should be parallel.

(b) 7AB (c) 1AB (a) 1 7AB

Computer-Aided Design & Applications, 6(3), 2009, 291-306

302

Fig. 8: Critical values for an example model. Arrows show where features are tangent.

The basic approach for computing critical values is as follows. First we remove the constraint
corresponding to the variant parameter, i.e. it is considered to be a variable without a fixed value.
Effectively, a constraint will be removed from the geometric constraint system. We then determine
which entities were dependent on the variant parameter and may therefore degenerate. For each
degenerate case of each entity, we add specific constraints to the system to enforce the degeneration.
By solving the modified system, we obtain values of the variant parameter for which an entity
degenerates, and thus the topology of the model must change, i.e. critical parameter values. By
repeating this process for every entity that is dependent on the variant parameter, we can obtain all
critical values.
The critical values of a variant parameter can be used to determine the parameter range. To do this,
we first determine the geometric parameter range, including the “geometrically” critical values, using
the methods from [14]. Then we determine the critical parameter values corresponding to topological
changes, as discussed above. When all critical values have thus been determined, then for each interval
between two subsequent critical values, we pick a parameter value in that interval and we regenerate
the CM for that value. For this CM, we test whether the topological constraints in the model are
satisfied. If so, then the whole interval is part of the parameter range. Each interval between two
subsequent critical values can thus be marked as part of the parameter range, or not part of the
parameter range. For the critical values, we can also determine whether the topological constraints in
the model are satisfied. Thus, we have exactly determined for which values and intervals the geometric
and the topological constraints are satisfied.

5. DIRECTIONS FOR FUTURE RESEARCH
We consider the declarative approach to modeling families of objects preferable over history-based
parametric models. The declarative approach makes it possible to specify and maintain semantics for
families of objects in a proper and intuitive way. Also, methods for computing parameter ranges and
critical values exist only for declarative models. However, current declarative models are still too
limited in the shape domain and types of constraints needed for practical modeling. In this section, we
first discuss the limitations of, and possible extensions to declarative models, in particular the DFOM.
Secondly, we propose a general declarative framework that can be used for a variety of geometric
modeling applications, e.g. product synthesis, scene modeling and architectural design.

5.1 Current Limitations and Possible Extensions
Current declarative models are often limited in variety of shape that can be modeled, and in the types
of constraints that can be imposed to parameterize a shape. For example, the DFOM currently only
supports planar, spherical and cylindrical carriers. The implementation can be easily extended to
support other regular geometric primitives, e.g. cones and tori. However, supporting freeform
geometry, e.g. NURBS surfaces, is more problematic. In particular, no good methods are known for
solving geometric constraints on NURBS and other parametric surfaces.
More advanced visualization and exploration tools are needed to create and use families of objects in
an intuitive way. The prototype implementation of the DFOM allows users to cycle through a finite
number of realizations. An improvement would be the possibility to visualize several members at the
same time. However, for models with an infinite set of realizations, more advanced techniques are
needed. For example, critical values corresponding to topological changes may be used to display a set
of key objects that give a good overview of the variability in the family. Also, it may be possible to use
parameter ranges and critical values to visualize the degrees of freedom of parts of a model.

(a) (b) (c)

Computer-Aided Design & Applications, 6(3), 2009, 291-306

303

Current methods for parameter range computation consider only one variant parameter. The
parameter range corresponding to valid models when two parameters, or perhaps three parameters,
are varied simultaneously, may also be useful for a designer, since such a range can still be presented
to a user graphically. Considering even more parameters simultaneously may be useful for model
optimization problems, since parameter ranges can be used to reduce the search space of such
problems.
New types of semantics are also needed for CAD, for example, to specify patterns with a variable
number of features and constraints. As an example, suppose that we wish to model a family of ball
bearings. The balls are arranged in a circular pattern around the axle, inside the bearing (see Fig. 9).
Given the diameter for the axle and the diameter for the bearing, we can determine the size of the balls
and the maximum number of balls that fit in the bearing. Or, given the size of the axle and the number
of balls, we can determine the maximum size of the balls and the diameter of the bearing. In current
parametric systems, such relations can be manually programmed for some models, but the relations
cannot be maintained when changing the parametric definition or when directly editing the model. A
declarative way of specifying such relations, e.g. specifying a pattern of “a number of balls in a circular
arrangement”, makes it possible to maintain these relations when the model is changed, i.e. when
adding or removing constraints and/or objects. With such new semantic concepts, more complex
models can be specified more easily than is possible in current CAD systems.

Fig. 9: Parameterization of a ball bearing.

5.2. A Declarative Framework for Geometric Modeling
So far, in this paper, we have mostly considered CAD applications. However, in basically all geometric
modeling applications there is a need to specify and maintain semantics. We therefore envision a
generic declarative framework for geometric modeling that allows semantics to be specified for a
variety of applications. The framework consists of a constraint-based formalism for specifying
semantics, and generic, extendable methods to analyze and solve systems of constraints. Application-
specific ontologies can be defined to map semantic models in a particular application domain to the
constraint-based formalism. Application-specific solving strategies can be defined to improve the
efficiency of constraint solving for a particular application domain. Modeling systems and tools built
on top of the framework allow the user to interact with a model of which the semantics is
automatically maintained (see Fig. 10).
The constraint-based formalism must define a compact but expressive vocabulary of variable types and
constraint types for specifying semantics, including, but not limited to:

 logical, algebraic, geometric and topological variables and constraints
 patterns with an unknown number of variables and constraints
 ordering and symmetry definitions.

With this vocabulary, application-specific semantics, i.e. concepts such as features, functional
requirements and design intent, can be defined in ontologies. For example, the concept of a through-
hole feature may be mapped to constraints that specify that the top and bottom faces of the feature
must not be present in the geometric model. High-level concepts such as “a set of features in a circular
arrangement” can be defined using patterns of variables and constraints. Also, concepts that involve
ordering or symmetry can be defined using this formalism. For example, a set of features may be

Computer-Aided Design & Applications, 6(3), 2009, 291-306

304

ordered such that the area of the features is increasing, and one or more symmetry planes of a feature
may be defined.

Fig. 10: Information flow in the declarative framework for geometric modeling.

For solving the systems of constraints in this formalism, we need a solving approach that combines
different domain-specific solvers, e.g. based on [6]. The solving method should include solvers for very
general problem domains, e.g. symbolic algebraic, discrete and numerical solvers, as well as more
efficient solvers for specialized problem domains, in particular the geometric and topological domains.
The envisioned constraint solving approach will be extendable with application-specific solving
strategies that determine which solvers should be used, so that problems that occur frequently in a
particular application can be solved efficiently.
Tools built on top of the framework provide 3D visualization and specification mechanisms, i.e.
graphical user interaction. The tools can make use of the framework to specify semantic models and to
determine geometric models that satisfy the semantics. The validity of models can be automatically
maintained when interactively changing elements of the model, by letting the constraint solvers adjust
other elements in the model to re-satisfy any unsatisfied constraints. By solving constraints, it is also
possible to synthesize geometric models and optimize existing models from requirement
specifications [24]. Systems of constraints can be analyzed using the constraint solvers to determine
properties of the family of objects, e.g. parameter ranges and critical parameter values.
Finally, various tools built on top of the framework can exchange semantics, because semantics can be
mapped to the shared constraint-based formalism. This makes it possible to work with a model in one
tool while maintaining the semantics specified for that model in another tool. For instance, dimensions
and functional requirements of a part can be specified in a CAD system, while an assembly planning
tool may generate mating and fitting conditions for the part in a larger product, and ordering
conditions that reflect the assembly sequence.
Altogether, we believe that such a declarative approach to geometric modeling can solve many, long
standing issues in CAD and other applications, and should be researched and developed further.

6. ACKNOWLEGEMENTS
Hilderick A. van der Meiden’s research has been supported by The Netherlands Organization for Scientific
Research (NWO).

Computer-Aided Design & Applications, 6(3), 2009, 291-306

305

7. REFERENCES
[1] Bettig, B.; Bapat, V.; Bharadwaj, B.: Limitations of parametric operators for supporting systematic

design. In: CDROM Proceedings DETC-2005, ASME International Design Engineering Technical
Conferences, September 24-28, Long Beach, California, USA. ASME, New York, NY, USA, 2005.

[2] Bidarra, R.; de Kraker, K. J.; Bronsvoort, W. F.: Representation and management of feature
information in a cellular model, Computer-Aided Design, 30(4), 1998, 301–313.

[3] Bidarra, R.; Bronsvoort, W. F.: Semantic feature modeling, Computer-Aided Design, 32(3), 2000,
201–225.

[4] Bidarra, R.; Madeira, J.; Neels, W.; Bronsvoort, W. F.: Efficiency of boundary evaluation for a
cellular model, Computer-Aided Design, 37(12), 2005, 1266–1284.

[5] Bonnefoi, P.-F.; Plemenos, D.; Ruchard, W.: Declarative modeling in computer graphics: current
results and future issues. In: Bubak, M. (ed.): Proceedings ICCS 2004, International Conference on
Computational Science, June 6–9, Krakow, Poland, Volume 3039 of Lecture Notes in Computer
Science, pages 80–89, Springer, Berlin, Germany, 2004.

[6] Borning, A.; Freeman-Benson, B.: Ultraviolet: A constraint satisfaction algorithm for interactive
graphics, Constraints 3(1), 1998, 9–32.

[7] Gaildrat, V.: Declarative modeling of virtual environments, overview, issues and applications. In:
Plemenos D. and Miaoulis, G. (eds.): Proceedings 3IA’2007, International Conference on Computer
Graphics and Artificial Intelligence, May 30–31, Athens, Greece, Volume 10, Pergamon Press,
Elmsford, NY, USA, 2007.

[8] Hoffmann, C. M.: Constraint-based computer-aided design, Journal of Computing and
Information Science, 5(3), 2005, 128-187.

[9] Hoffmann, C. M.; Joan-Arinyo, R.: Parametric modeling. In: Farin, G.; Hoschek, J. (eds.): Handbook
of Computer-Aided Design, pages 519–541, Elsevier Science, The Netherlands, 2009.

[10] Hoffmann, C. M.; Kim, K.: Towards valid parametric CAD models, Computer-Aided Design, 33(1),
2001, 81–90.

[11] Joan-Arinyo, R.; Mata, N.: Applying constructive geometric constraint solvers to geometric
problems with interval parameters, Non-linear Analysis – Theory, Methods & Applications, 47(1),
2001, 213–224.

[12] Marcheix, D.; Pierra, G.: A survey of the persistent naming problem. In: Lee, K.; Patrikalakis, N.
(eds.): Proceedings Solid Modeling ’02 - Seventh Symposium on Solid Modeling and Applications,
17–21 June, Saarbrücken, Germany, pages 13–22, ACM Press, New York, NY, USA, 2002.

[13] Meiden, H. A. van der: Semantics of Families of Objects, PhD Thesis, Delft University of
Technology, 2008, http://graphics.tudelft.nl/~rick.

[14] Meiden, H. A. van der; Bronsvoort, W. F.: A constructive approach to calculate parameter ranges
for systems of geometric constraints, Computer-Aided Design, 38(4), 2006, 275–283.

[13] Meiden, H. A van der; Bronsvoort, W. F.: Solving topological constraints for declarative families of
objects, Computer-Aided Design, 39(8), 2007, 652–662.

[16] Meiden, H. A. van der; Bronsvoort, W. F.: Tracking topological changes in feature models. In: Lévy,
B; Manocha, D. (eds.): Proceedings ACM Symposium on Solid and Physical Modelling, June 4–6,
Beijing, China, pages 341–346, ACM Press, New York, NY, USA, 2007.

[17] Meiden, H. A. van der; Bronsvoort, W. F.: Solving systems of geometric constraints using non-
rigid clusters. In: Chen, F.; Jüttler, B. (eds.): Advances in Geometric Modelling and Processing,
Proceedings GMP Conference, April 23–25, Hangzhou, China, Volume 4975 of Lecture Notes in
Computer Science, pages 423–436, Springer, Berlin, Germany, 2008 [an extended version has
been accepted for publication in Computer-Aided Design, DOI: 10.1016/j.cad.2009.03.003].

[18] Raghothama, S.: Constructive topological representations, In: Kobbelt, L.; Wang, W. (eds.):
Proceedings ACM Symposium on Solid and Physical Modeling, June 6–8, Cardiff, Wales, UK, pages
39–51, ACM Press, New York, NY, USA, 2006.

[19] Raghothama, S.; Shapiro, V.: Boundary representation deformation in parametric solid modeling,
ACM Transactions on Graphics, 17(4), 1998, 259–286.

[18] Raghothama, S.; Shapiro, V.: Topological framework for part families, Journal of Computing and
Information Science in Engineering, 2(4), 2002, 246–255.

[21] Rappoport, A.: The Generic Geometric Complex (GGC): a modeling scheme for families of
decomposed pointsets. In: Hoffmann, C. M.; Bronsvoort, W. F. (eds.): Proceedings Solid Modeling

Computer-Aided Design & Applications, 6(3), 2009, 291-306

306

’97, Fourth ACM Symposium on Solid Modeling and Applications, May 14–16, Atlanta, Georgia,
USA, pages 19–30, ACM Press, New York, NY, USA, 1997.

[22] Shapiro, V.; Vossler, D. L.: What is a parametric family of solids? In: Hoffmann, C. M.; Rossignac,
J. R. (eds.): Proceedings of the Third ACM/IEEE Symposium on Solid Modeling and Applications,
May 17–19, Salt Lake City, Utah, USA, pages 43–54, ACM Press, New York, NY, USA, 1995.

[23] Stiny, G.; Gips, J.: Shape grammars and the generative specification of painting and sculpture. In:
Petrocelli, O. R. (ed.): The Best Computer Papers of 1971, pages 125–135, Auerbach, Philadelphia,
1972.

[24] Summers, J. D.; Bettig, B.; Shah, J.: The Design Exemplar: a new data structure for embodiment
design automation, Journal of Mechanical Design, 126(5), 2004, 775-787.

