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ABSTRACT

This paper presents a computational geometric solution to the kinematic registration
problem using computational line geometry. Kinematic registration involves
computation of the screw parameters of a motion from specified positions of
geometric features of the moving body. The problem is formulated using a special
complex of lines associated with kinematics namely the bisecting linear line complex.
In this fashion the problem is reduced to an approximation problem in the line space
and a slightly modified version of the line approximation method developed by
Pottmann, Peternell, and Ravani (1999) is used to find the solution.
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1. INTRODUCTION
Given two positions of a rigid body in space, there exists a line in space, which the body
simultaneously rotates around and translates along. This line which is called the “screw axis” together
with the translation distance and rotation angle about it, are called the screw parameters of the
motion. Kinematic registration involves the computation of the screw parameters from the
homologous geometric features of the body at two positions. Homologous points (lines, …) are points
(lines, …) occupied in the fixed space by the repeated positions of the same point (line, …) of the
moving body (see [5] p. 35).

Various methods have been developed to solve for the screw parameters. For the case when the
homologous points are known, Beggs [4] obtained a solution by solving a set of algebraic equations.
Laub and Shiflett [13] used linear algebra and matrix perturbation theory. Angeles [1-2] solved the
problem based on the invariant concept of a second-order tensor. His solution overcomes the lack of
symmetry in point feature ordering and singularities found in [13]. A detailed comparison between
these and other methods can be found in [9]. Earlier studies had only used homologous point features
of the body. Combinations of line, plane, and point features of the body were first considered by
Ravani and Ge [17] to solve the kinematic registration problem. They also formulated an over-
determined system and reduced the problem to the solution of a linear system of equations [10].
Eberharter and Ravani [7] developed a geometric solution to the problem by utilizing Reuleaux’s 2D
method [18]. They found a special plane in space and constructed the 2D solution on the plane.
Recently, Baroon and Ravani [3] constructed a geometrical 3D generalization of Reuleaux’s method
based on line geometry. They have also found the optimal screw parameters for the over-determined
case. A modern and interesting application of such problems in CAD and visualization can be found in
Rossignac and Kim [19]. In this paper we present a solution of the kinematic registration problem
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using computational line geometry. The results show another application of the evolving field of
computational line geometry. For a detailed exposition to computational line geometry the readers are
referred to Pottmann and Wallner [16].

2. THE LINEAR LINE COMPLEX

The Euclidean space, 3E , contains 
4 lines. A linear line complex is the set of 

3 lines ( , )L l l in

their Plücker coordinates (see Appendix A.1) that satisfies the linear relationship [16]

Fig. 1: Helical motion of a point and its null plane.

c  l c l  0 (2.1)

The sextuple vector ( , )C c c is called the axis of the complex. The above equation has the same form

as the reciprocal product between two lines or between a line and a screw. Therefore, every line that
belongs to the linear line complex is reciprocal to the C axis. There are two distinct types of linear line
complexes: (a) if c c  0 , i.e., C constitutes the Plücker coordinates of a line, then the linear line
complex is called singular; (b) if c c  0 , then the linear line complex is called regular.

2.1 The Linear Line Complex in Kinematics
In this section, we will show some of the relationships between the linear line complex and kinematics.
An extensive discussion on this subject can be found in [7-8],[14],[16].
Let the axis ( , )C  c c be the screw coordinates of the continuous helical motion of a point p as shown

in Fig. 1. The helical motion of a point z is given by [5]
Az p r  (2.2)

where A is an orthogonal matrix and r is a 3D vector. The velocity of point p is then expressed as

v  z  Ap  r  AAT z  AATr  r  cz c (2.3)

The path normals are the lines that pass through the point z and perpendicular to the velocity vector v

as shown in Fig. 1. Let the Plücker coordinates of the path normals be ( , )L l l . Path normals form a

pencil of lines, and each path normal satisfies the equation


0  v l  (cz) l c l  c  l c l (2.4)

The above equation proves that the path normals to the trajectory of points under a helical motion
form a linear line complex with an axis that is identical to the screw axis of the helical motion.
The pencil lies in a plane called the path normal plane or null plane [15]. The center of the null plane
where all of the path normals intersect is called the null point (see Fig. 1). If the null point is

represented in its homogeneous coordinates as
0

( , )Z z z , then the homogeneous plane coordinates of

the null plane in terms of the linear line complex axis is given by


U  (u

0
,u)  (z c ,z

0
c  zc) (2.5)

Conversely, the null point’s homogeneous coordinates can be expressed in terms of the null plane’s
homogeneous plane coordinates as
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
Z  (z

0
,z)  (u c,u

0
c uc ) (2.6)

2.2 The Bisecting Linear Line Complex
The bisecting linear line complex is a special form of a linear line complex which can be used to
describe the computational geometry of two position theory in kinematics. Some of its properties have
been described in [6],[11].

Fig. 2: The bisecting plane between two positions of a point.

Consider two positions of a rigid body before and after a displacement. The screw parameters are the
screw axis ( , )C c c , the rotation angle  and translation distance d. The combination of the rotation

and the translational movements is the screw or helical motion of the body.

Let p be the point denoting the first position and 
p be its corresponding or homologous point after

displacement as shown in Fig. 2. The line

g

i
 p

i
- p

i
connects the two points, and the point


m

i
 ( p

i
 p

i
)/ 2 is their midpoint. All lines that are perpendicular to the connecting line

i
g and pass

though the midpoint
i

m form a pencil of lines embedded in the bisecting plane U.

Defining the pitch of a linear line complex as



P 
h / 2

tan / 2
(2.7)

Eberharter [6] proved that the union of the bisecting line pencils over all midpoint homologous pairs

belongs to a linear line complex. Therefore, every line ( , )L l l in a bisecting pencil satisfies the linear

reciprocal equation


(L,C)  l c  l c (2.8)

Therefore, for two positions of a rigid body in space, there exists a bisecting linear line complex that is
formed by the union of the bisecting pencil of lines that is perpendicular to the connecting line and is
incident with the midpoint. This bisecting linear line complex has the same screw axis of the helical
motion of the body from the first position to the second position. Its pitch is defined by equation (2.7).
When the positions of the two points are infinitesimally close, the connecting line between the two
points will become the direction of the velocity vector of the motion. Thus, the bisecting plane is the
null plane of the motion. In the infinitesimal case, the pitch of the linear line complex will reduce to



P  lim 
0

h / 2

tan / 2


h


(2.9)

3. LINEAR LINE COMPLEX FITTING
Pottmann, Peternell, and Ravani (1999) [15] developed an algorithm to fit a linear line complex from a
given set of k lines (see Appendix A.2). In this section, we will develop an algorithm to fit an exact
linear line complex from a set of three null planes. A null plane can contain the path normals, which
form a pencil of lines, of the trajectory of a point undergoing a helical motion, or it can contain the



Computer-Aided Design & Applications, 6(1), 2009, 1-13

4

midpoint bisecting pencil of lines between two positions of a rigid body. Every line in such pencils of
lines belongs to the linear line complex. We will also develop an algorithm for the over-determined case
of fitting from n null planes.

3.1 Exact Fitting from Three Null Planes

Fig. 3: Null planes.

A minimum of three null planes is required to fully specify a linear line complex. For a linear line
complex with the axis ( , )C c c , the homogeneous plane coordinates of the three null planes are

expressed in terms of the linear line complex axis and the null points (1, )
i i

Z z as in [15]:



U
1
 (z

1
c ,c  z

1
c)

U
2
 (z

2
c ,c  z

2
c)

U
3
 (z

3
c ,c  z

3
c)

(3.1)

The same null planes, shown in Fig. 3, can also be represented in terms of the null points and the

normal vectors
i

n to the planes as



P
2
 (z

1
n

1
,n

1
)

P
2
 (z

2
n

2
,n

2
)

P
3
 (z

3
n

3
,n

3
)

(3.2)

The normal vector could be the velocity vector of the null point under a helical motion or the
connecting line between two homologous points in finite kinematics. Matching equations (3.1) and (3.2)
yields two systems of three equations. These systems are solved for the linear line complex axis. The
first system is expressed as



z
1
c  z

1
n

1

z
2
c  z

2
n

2

z
3
c  z

3
n

3

(3.3)

In a matrix form, the above system will be



 z
1


z
2


z
3
























c























 

z
1
n

1

z
2
n

2

z
3
n

3





















(3.4)

The solution of c will be





c























 

 z
1


z
2


z
3






















1
z
1
n

1

z
2
n

2

z
3
n

3





















(3.5)
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The moment c of the linear line complex is used to find the direction of the axis. The second system of

equations that is formed from equations (3.2) and (3.3) is written as



z
1
c  n

1
c

z
2
c  n

2
c

z
3
c  n

3
c

(3.6)

We multiply each of the above equations by
1 2
, ,n n and

3
n , respectively, and write the results in a

matrix form as follows



 n
1
z

1


 n
2
z

2


 n
3
z

3
























c

























(n
1
c ) n

1

(n
2
c ) n

2

(n
3
c ) n

3





















(3.7)

The above system is solved for the direction part c of the linear line complex as





c

























 n
1
z

1


 n
2
z

2


 n
3
z

3






















1
(n

1
c ) n

1

(n
2
c ) n

2

(n
3
c ) n

3





















(3.8)

where c is found from equation (3.5). Note that the linear line complex axis ( , )C c c is in a non-

normalized form. It can be normalized as



C 
c

c
,

c

c












(3.9)

Moreover, the normal vectors
i

n should not be normalized prior to forming the matrices.

3.2 Fitting a Linear Line Complex from n Null Planes
In the preceding section, we formulated a solution to find a linear line complex from a set of three
planes. In this section, we will develop an algorithm for fitting a linear line complex from more than
three planes. In practice, more than three points are generally known, and some of them have error
measurements and some uncertainties. This is why it is important to fit all of the given data to the best
linear line complex.
The homogeneous coordinates of null planes in terms of the homogeneous coordinates of the null

points that are not at infinity, (1, )
i i

Z z , and a linear line complex axis, ( , )C c c , are written as [15]


U

i
 (z

i
c ,c  z

i
c) i  1,2,...,n (3.10)

The same null planes are written in terms of the null points and normal vectors to the planes as


P

i
 (z

i
n

i
,n

i
) i  1, 2,...,n (3.11)

Equating equations (3.10) and (3.11) with some algebraic modifications yields


z
i
c  z

i
n

i
 0 i  1, 2,...,n (3.12)


(z

i
n

i
) c n

i
(n

i
c )  0 i  1,2,...,n (3.13)

We will utilize the least squares method to solve equation (3.12) for c . We will then use the result to
solve for c in equation (3.13). The sum of square errors of equation (3.12) is written as



E
c
 (z

i
c  z

i
n

i
)2

i1

n

 (3.14)

The above equation is equivalent to

Z Z W Z W W2T T T T
c

E c c c   (3.15)

where Z is an n3 matrix formed from the null points as its rows. The matrix Z is written as
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

Z 

z
1


z
2




z
n




























(3.16)

and the matrix W is an n1 column vector formed as



W 

z
1
n

1

z
2
n

2



z
n
n

n



























(3.17)

Minimizing equation (3.15) and solving for c yields

Z Z Z W1( )T Tc  (3.18)

The result of c is used to solve for the direction vector c of the linear line complex. Using the least

squares approach, the sum of square errors in equation (3.13) is



E
c
 (z

i
n

i
) c n

i
(n

i
c )




2

i1

n

 (3.19)

The above equation can be expressed as


E

c
 cT ET Ec  2FT EcT  FT F (3.20)

where E is an n3 matrix written as



E 

z
1
n

1


z
2
n

2




z
n
n

n




























(3.21)

and the matrix F is an n1 column vector formed as



F 

n
1
(n

1
c )

n
2
(n

2
c )



n
n
(n

n
c )



























(3.22)

We minimize equation (3.20) and solve for the direction c of the linear line complex axis

E E E F1( )T Tc  (3.23)

Note that neither the normal vectors of the null planes nor the linear line complex axis are normalized.
The normalized form of the linear line complex will be



C 
c

c
,

c

c












(3.24)

The pitch of the linear line complex is found from



P 
c c

c
2

(3.25)

This algorithm will fit a linear line complex when the normal vectors represent the velocity vectors of
the null points or when they represent the connecting lines between homologous points. In the latter
case, the result will correspond to the axis of a bisecting linear line complex.

4. KINEMATIC REGISTRATION



Computer-Aided Design & Applications, 6(1), 2009, 1-13

7

Fig. 4: Homologous points and their bisecting planes.

The linear line complex fitting algorithm from a set of null planes derived in the preceding section will
be used to find the screw axis of a helical motion of a rigid body between two different positions.
Three pairs of homologous points are sufficient to determine the linear line complex associated with
the two distinct positions. This linear line complex has the same axis as the screw motion of the body
moving from the first position to the second position. We will also solve the over-determined
registration problem where more than three pairs of points are known. This is an important problem
because real data points have some measurement errors and uncertainties. The over-determined fitting
will allow us to find the best linear line complex of the two positions and the best screw axis.

4.1 Kinematic Registration Based on Three Homologous Points

Let
1 2
,p p , and

3
p be three points on the rigid body before displacement;


p
1
, p

2
, and


p
3

are their

corresponding (homologous) points after displacement as shown in Fig. 4. Points
1 2
,m m , and

3
m are

the midpoints between the pairs. A line
i

g is the connecting line between each point and its

homologous one as explained is section 2.2. Every midpoint of a pair with its connecting line forms a
null plane of the bisecting linear line complex. All lines that are embedded in the null planes and
coincide with the midpoints belong to the bisecting linear line complex. If a bisecting linear line
complex axis is written as ( , )C c c , then c is found from equation (3.5) as





c























 

m
1


m
2


m
3






















1
m

1
g

1

m
2
g

2

m
3
g

3





















(4.1)

The direction vector c of the bisecting linear line complex can now be found from equation (3.8) as





c

























 g
1
m

1


 g
2
m

2


 g
3
m

3






















1
(g

1
 c )  g

1

(g
2
 c )  g

2

(g
3
 c )  g

3





















(4.2)

The pitch of the bisecting linear line complex axis is written as


P

bllc


c c

c2
(4.3)

The line part of the screw axis of the helical motion between the two positions is the line of the
bisecting linear line complex axis. The Plücker coordinates of that line can be found as


S  (s,s )  (c,c P

bllc
c) (4.4)

The pitch of the bisecting linear line complex can also be represented in the form [6]
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

P
bllc


d

2tan


2

(4.5)

where d is the translation distance along the axis and  is the angle of rotation around the axis. The

translation distance can be easily found from the projection of any of the connecting lines onto the
screw axis direction, i.e.,



d  ( p
i
 p

i
) 

s

s
(4.6)

Then, the rotation angle can be found from



  2 tan1 d

P
bllc












(4.7)

The pitch of the screw axis will be

d
P


 (4.8)

4.2 Kinematic Registration Based on n Homologous Points
The over-determined version of the registration problem can be solved using the linear line complex
fitting approach described in section 3.2.2. For a given set of n homologous point pairs before and
after displacement, we compute n midpoints


m

i


(p
i
 p

i
)

2
(4.9)

and n connecting lines

g

i
 p

i
 p

i
. Then the vector c of the bisecting linear line complex is found from

equation (3.18) as

Z Z Z W1( )T Tc  (4.10)

where Z is an n3 matrix



Z 

m
1


m
2




m
n




























(4.11)

and W is an n1 matrix



W 

m
1
g

1

m
2
g

2



m
n
g

n



























(4.12)

The direction part c of the bisecting linear line complex can now be computed from equation (3.23)

E E E F1( )T Tc  (4.13)

where E is an n3 matrix



E 

m
1
g

1


m
2
g

2




m
n
g

n




























(4.14)

and F is the matrix
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

F 

(g
1
c ) g

1

(g
2
c ) g

2



(g
n
c ) g

n



























(4.15)

The axis ( , )C c c represents the bisecting linear line complex axis of the over-determined problem.

Similar to the exact approach, the screw parameters of the helical motion of the body between the two
positions are found from equations (4.3-4.8).

4.3 The Instantaneous Case
The exact and over-determined fitting algorithms developed earlier can be used to solve for the
instantaneous screw axis of the instantaneous motion of the body. In the instantaneous case, instead
of substituting the midpoints and connecting lines in equations (4.1), (4.2), and (4.10-4.15), we
substitute the given point coordinates and their velocity vectors. The results will be the axis of the
linear line complex. The linear line complex axis and pitch are the same as the instantaneous screw
axis of the motion and its pitch.

4.4 Examples
We solve numerical examples of exact and over-determined registration problems. The screw axis
parameters of the helical motion will be extracted from the linear line complex axis.

Example 1
This example is to illustrate how to find the screw axis between two positions given three pairs of
homologous points using the linear line complex. The example is taken from Beggs [4]. The three
points of the rigid body before displacement that have the coordinates

1
(1,1,7)p 

2
(4,7,1)p 

3
(7,10,10)p 

Their corresponding coordinates after displacement are


p
1
 (7,1,7)


p
2
 (3, 9, 6)


p
3
 (10,10, 3)

The midpoints and connecting lines are calculated for each pair of points, and then c is computed
from equation (4.1) as

( 2, 2, 2)c    

Then, the direction c is calculated from equation (4.2):



c  
2

3
,

2

3
,

2

3













The axis ( , )C c c is the bisecting linear line complex axis. It has the same axis as the helical motion

but a different pitch. The pitch of the bisecting linear line complex axis is


P

bllc


c c

c c
 3

Now, the axis of the helical screw is computed from equation (4.4):



S  (s,s )  (c,c  p
bllc

c)

 (
2

3
,

2

3
,

2

3
;0, 0, 0)

The Plücker coordinates of the normalized screw axis will then be



S  (
s

s
,

s

s
)

 (
1

3
,

1

3
,

1

3
;0, 0,0)

and agree with Beggs’ results. The trabeation distance is calculated from equation (4.5) as
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

d  ( p
i
 p

i
) 

s

s
 3.4641016

and the rotation angle of the body around the screw axis is found from equation (4.6):



  2 tan1 h

p
bllc












 60

Example 2
This over-determined example is taken from Eberharter and Ravani [7]. Assume that points of the rigid
body before displacement have the following coordinates


p

1
 (5, 0, 0) p

2
 (5,5,0) p

3
 (0,5, 0) p

4
 (3,5, 0) p

5
 (3,3,1)

and their homologous coordinates are



p
1
  (6.238070, 3.413720,3.976300)

p
2
  (4.449295,7.842681,5.454336)

p
3
  (0.056535,5.790350, 6.151056)

p
4
  (2.760034, 4.558951, 6.569088)

p
5
  (0.142761,2.310845, 3.259138)

We compute the connecting line
i

g and midpoint
i

m of every pair. We then form the matrices Z and W

from equations (4.11) and (4.12). The vector c is computed from equation (4.10) as
( 1.531516, 1.646094, 4.664481)c    

We use c to compute the matrices E and F from equations (4.14) and (4.15). The direction c is
calculated from equation (4.13) as

( 0.274459, 0.205845, 0.411689)c    

Similar to the previous example, we compute the pitch of the bisecting linear line complex and the
screw axis’ Plücker coordinates. The normalized Plücker coordinates of the screw axis are found to be

( 0.512147, 0.384111, 0.768222;1.920546,0.512147, 1.536435)S     

The screw axis is the same axis found in [7]. The translation distance and the rotation angle are
computed using equations (4.5) and (4.6), respectively, and they are found to be 5h  and 30   .

Example 3
The instantaneous screw axis of a rigid body can be found using the same fitting algorithms derived
earlier in section 3.1. This example, from Angeles [2], has the following point coordinates:

1 2 1
(1,1,7) (4,7,1) (7,10,10)p p p  

The velocity of each point is:


v

1
 (7,5,1) v

2
 (5, 4, 4) v

1
 (1,2, 4)

The vector c will be found from equation (4.1) as





c























 

p
1


p
2


p
3






















1
p

1
v

1

p
2
v

2

p
3
v

3























1

1

1





















and the direction vector c is computed from equation (4.2) as





c























 

v
1
p

1


v
2
p

2


v
3
p

3






















1
(v

1
c ) v

1

(v
2
c ) v

2

(v
3
c ) v

3























1

1

1




















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The pitch of the linear line complex is the same as the pitch of the instantaneous screw motion and it
is equal to


p 

c c

c c
 1

The Plücker coordinates of the screw axis can be found to be


S  (s,s )  (c,c  pc)  (1,1,1;0, 0, 0)

The translation velocity of the body will be the projection of any velocity vector on the normalized
direction of the screw



v  v
1


s

s
  3

The angular velocity is calculated from the pitch as



w 
v

p
  3

These results agree with Angeles’ computations.

5. CONCLUSIONS
We have developed an algorithm to fit a linear line complex from the data of null planes. We used this
algorithm to solve the kinematic registration problem from three homologous pairs of points and the
over-determined version of the problem. We also used the same algorithm to find the instantaneous
screw parameters of a helical motion of a rigid body. The results represent another application of
computational line geometry and are of theoretical interest in evolving the classical field of line
geometry into a modern computational framework.
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Appendix
A.1 Plücker Coordinates
One way to represent a line in 3D Euclidean space E3 is to use the Plücker coordinates. A line in
normalized Plücker coordinates is written as

( , )L l l (A.1)

where
1 2 3

( , , )l l l l is the direction part of the line under the normalized condition

1l  (A.2)

If the point p is any point on the line, then the moment part with respect to the origin
4 5 6

( , , )l l l l is

expressed as

l p l  (A.3)

Since l and l are orthogonal, a line in Plücker coordinates satisfies what is called the Plücker identity

l  l  0 (A.4)

A.2 Fitting a Linear Line Complex from Lines
Any five lines define a complex [14]. For the case of more than five lines, Pottmann, Peternell, and
Ravani [15] developed an algorithm to fit the lines into a linear line complex. The following is a
summary of the procedure. For more details, the reader can refer to [15-16].
The objective of the algorithm is to find the closest linear line complex from a set of k lines in their

Plücker coordinates. According to Klein [12], the moment of a line
i

L with respect to C is written as



m(L
i
,C) 

c l
i
c  l

i

c
(A.5)

If the moment of the line with respect to the linear line complex axis vanishes, then the line belongs to
a linear line complex. The linear line complex that best represents the given set of lines is found from
the minimization of



m(L
i
,C)2

i1

k

 (A.6)

The above equation is equivalent to minimizing the positive semi-quadric from



F(C )  (c l
i
c  l

i
)

i1

k

 CTMC (A.7)

where M is a 66 matrix of the form
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

M 
l
i
 l

i

T l
i
l

i

T

l
i
 l

i

T l
i
l

i

T











i1

k

 (A.8)

under the normalization condition

D
2

1 Tc C C  (A.9)

and D is a 66 diagonal matrix D =  1,1,1,0,0,0diag . The problem is now reduced to solving the system

MTC C under the constraint: D 1TC C  . Using the Lagrangian multiplier  , the Lagrangian function to

be minimized is written as


E(C) CT MC (CT DC 1) (A.10)

Minimizing the above function yields


(MD)C  0 (A.11)

Pottmann, Peternell, and Ravani [15] showed that  is the solution of the cubic equation


det(MD)  0 (A.12)

The solution of the system is an eigenvector C that corresponds to the eigenvalue  . For any root  ,

we have


F(C ) CT MC  CT DC   (A.13)

This means that all of the values of  ' s are nonnegative. Therefore, the best solution is the one

associated with the smallest  . If   0 , then the given set of lines forms an exact linear line complex.

The standard deviation of the lines from C is given by


 



k 5
(A.14)

It is a measure of how close the resulting linear line complex approximates the given lines. The pitch of
the linear line complex is computed from


p 

c c

c2
(A.15)


