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ABSTRACT

A knowledge-guided approach is presented to compute the distance between a point and NURBS
curves and surfaces. Given a set of query points, a global algorithm is introduced that finds the
required distances. The method has the following major components: (1) a discrete version of a
physical wave model is implemented to find nearest regions, (2) a fast parametrization-based
decomposition is used to localize the search for start points, (3) a spatial data structure is employed
for fast nearest neighbor searching, and (4) knowledge is injected into the process to increase the
robustness of the error-prone numerical process.
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1. INTRODUCTION
Computing the minimum distance between a point and objects used in various fields of computer assisted design has
been a long standing, and by and large, unsolved problem. The majority of the issues stem from the uncertainty of the
numerical process that relies on good start points (that are not easy to find) and expensive iterations (that may not
converge). The emergence of point-based modeling, e.g. in bio-engineering or garment design, renewed interest in
researching more reliable methods for distance computation. Traditionally, distances were used for collision detection,
path planning, interference checking, assembly management or quality assurance, just to name a few. Applications in
biology, medicine or fashion brought new challenges as the point cloud, obtained from various forms of scanners, may
contain a fairly large amount of data. As the only point of reference/origin to the (human) model is the point cloud
itself (it was not modeled by a CAD system), checking, say, the best fit of a pair of sunglasses, requires lots of point
distance calculations between the CAD design and the human head point cloud model. The challenges come from the
large amount of data to be processed and the sophistication of the design, i.e. a fancy sunglasses model with intricate
details.

This paper presents a method to solve the following problem. Given a set of points , 0,...iP i k , and a NURBS curve

( )C u or surface ( , )S u v , compute the distances [ , ( )]i id P C u and [ , ( , )]i id P S u v to within a required accuracy. The

method presented herein contains the following major components:

 A knowledge-guided formulation [17] that increases robustness, reliability and speed. Information, stored in
the knowledge base of a knowledge-guided NURBS kernel, is used to make intelligent decisions to get start
points, to avoid convergence failures and to speed up the computation via special casing.

 A wave model-based definition of point distance and its discretized implementation.
 A fast and parametrization-based decomposition of NURBS entities to aid in the localization of appropriate

start points.

 A spatial data structure for fast nearest neighbor searching and to accommodate multiple distance
computations without having to discretize the geometry more than once.

http://www.cadanda.com/
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The solution is global, i.e. no start/guess points are provided. It is the belief of the authors that the critical element of
distance computation is data preparation and start point selection for the iterative process. How fast and how reliably
the numerical process works depends nearly 100% on how well the data is prepared. To this end the following
operations need to be performed:

 Data validation, e.g. the number of knots and control points must satisfy the required conditions.
 Data cleaning, e.g. unnecessary knots and control points must be removed, the curve must be decomposed

so that the segments do not contain cusp or loops, etc.

 Data purging, e.g. large amount of control points/knots must be reduced as knots in close proximity can
cause numerical failures.

Experience has taught us that feeding a NURBS curve or surface blindly into numerical algorithms causes failures
almost certainly. We cast our lot to knowledge-guided systems that allow the application programmer to make
intelligent decisions and to make more robust use of numerical algorithms.

Prior work on point distance computation has not been as extensive as the complexity of the problem would justify.
The majority of the references are in the field of robotics [4-6,14,15,23,24] (collision detection) and computer vision
[1,20] (registration). Special surfaces, e.g. canal surfaces, are singled out as they provide algebraic, closed form
solutions [2,10-13,22]. A few methods are available for NURBS [3,8,16,18,21], most of which employ control
polygon/net based subdivision and segment elimination [9,11]. While control polygon/net based methods come
natural in a NURBS-based environment, they work with flatness conditions that may not assist numerical iterations
that are inherently parametrization dependent.

The organization of the paper is as follows. Section 2 overviews some components of KGnurbs™, a knowledge-guided
NURBS kernel. In section 3 a summary of point distance formulas are given along with an analysis of major pitfalls.
Section 4 presents the wave model used to find the shortest distance and in section 5 curve and surface
decompositions are introduced without using the control polygons/nets. The main algorithm is outlined in section 6
followed by tests and examples in section 7. Some conclusions are provided at the end of the paper.

2. KNOWLEDGE-GUIDED NURBS
Knowledge-guided NURBS (KGN) [17] were introduced recently to address the raising concern about robustness and
reliability of CAD systems, data transfer, compatibility, integration and better design quality. The main components of
KGN are depicted in Fig. 1 below.

Fig. 1: Components of knowledge-guided NURBS.

Each NURBS entity consists of the following elements:
 Identity provides proper naming and identification.
 Definition means control points, knots and degree(s).
 Representation delivers information about the quality of the parametrization, the levels and types of

continuity and any or all forms of irregularities, e.g. cusp, zero curvature, etc.

 Classification tells the application programmer about the type of the entity, its origin and its intended
destination or possible applications.

 Design intent is most useful to know what functions were used to design the entity, what alternatives were
considered and what decisions were made.

Knowledge-Guided NURBS
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Design intent



Computer-Aided Design & Applications, 5(6), 2008, 855-866

857

 Relationship maps are complicated data structures that store object references, relationships and their
parameters. For example, when a NURBS circle is computed, the NURBS and the conic enter into a
definition relationship and all the parameters needed to recreate the design are saved.

Knowledge-guided NURBS are extensions of traditional NURBS in that they support design changes, data transfer,
design replay, and what is most relevant in this paper, more robust computations. To enhance the robustness of
distance computations, KGN is utilized in a number of different ways:

 Certain object types are handled by special algorithms. Lines and circles are handled separately for curves
and planes, spheres, cones, cylinders and torii for surfaces. Other types of surfaces that may be considered
separately are ruled surfaces and surfaces of revolution.

 Relationship maps are utilized in two ways: (1) to obtain the parameters of the original construction, e.g. once
it is determined that the curve type is circle, the center, the radius and the sweep angle are obtained from the
knowledge base, and (2) to glean an insight into the design process, e.g. the circle may be obtained via
definition or via fitting to a random set of points.

 Information on object representation is most useful in numerical processes like distance computations. The
following measures are utilized:

o Parametrization factor: an indicator that tells the system how far the curve is from being uniformly
parametrized. This becomes critical in finding the proper decomposition, i.e. the iterative process
does not “run-off” in case of highly non-uniform parametrization.

o Level of continuity: it is useful to know if the curve is G- or C-continuous and at what level. Many
numerical algorithms require first or second degree parametric continuity.

o Irregularities: typical problems that hinder numerical code from working are vanishing derivatives
and discontinuities, e.g. cusps, poles, seams or collapsing derivatives for surfaces. If the knowledge
is made available to the application programmer, robustness can be increased by special code
segments that account for these irregularities.

The algorithm presented below takes advantage of all of the above. The good news is that the robustness has been
increased considerably; the bad news is that it comes at a price of a very large code size. It requires a significant chunk
of an entire NURBS kernel supported by a sophisticated knowledge base.

3. DISTANCE FORMULAS
The basic formulas for distance computations are quite simple [18]. For curves we have:

'( ) ( ( )) ( ) 0f u P C u C u   

where P is the given point and a point on the curve ( )C u is sought at some parameter 0u so that the above equation

is satisfied. A common solution is to use Newton’s iteration, with a proper start parameter, to solve the univariate

functional equation ( ) 0f u  . The iteration is halted if (1) the point is near the curve, or (2) 0( )P C u and '
0( )C u are

nearly perpendicular, or (3) consecutive parameters do not change much. The method fails to converge under the
following circumstances:

 The start guess parameter is too far from the root and (1) the allowed iterations are not enough to reach
convergence, or (2) the new parameters jump too much and the iterative process simply gets lost. Remedy:
find a better start value.

 The curve is closed and the newly computed parameter is out of the domain. Remedy: bring the parameter
back at the other end of the domain. That is, if the domain is [ , ]L Ru u and the new parameter 1i Ru u  , then

reset the parameter as 1 1( )i L i Ru u u u    .

 The curve is open and the query point “falls off” at the end. In this case Newton is going to push the
parameters out of the domain. Remedy: clamp the parameters and stop iterations. The closest point is one of
the end points.

 The curve has a discontinuity, e.g. a cusp, and the closest point is at the point of discontinuity. In this case the
Newton method tends to jump over the discontinuity or hovers around it, entering into an infinite loop, if it is
the end point of a closed curve. Remedy: preprocess the curve into continuous pieces and process them
individually.

For surfaces there are two equations to be solved:
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( , ) ( ( , )) ( , ) 0

( , ) ( ( , )) ( , ) 0

u

v

f u v P S u v S u v

g u v P S u v S u v

   

   

The solution is at the point 0 0( , )u v where the vectors 0 0( , )P S u v and 0 0( , )uS u v , and 0 0( , )P S u v and 0 0( , )vS u v

are perpendicular. Using multivariate Newton iteration, the process is stopped when the point is found to lie on the
surface, the above vectors are perpendicular, or the parameters do not change. The common pitfalls are the same as
those for curves, plus two more:

 The numerical process for surfaces is much more dependent on the choice of the start point. The presence of
the u- and v-directional parametrizations (with independent knot vectors) makes it difficult for the algorithm
to converge if one (or both) of the parametrizations is far from being uniform. Remedy: choose the start point
with a higher level of accuracy (decomposition) than for curves.

 If the nearest point happens to be one of the boundary points, i.e. the perpendicular projection of the query
point is off the patch, the surface algorithm will enter into an infinite loop. This is because the simultaneous
perpendicular conditions above cannot be satisfied in at least one direction. Remedy: extract the boundary
and use the curve algorithm to find the nearest point on the boundary.

While the mathematics of distance computation is very simple, implementation of the formula into a robust code is a
highly non-trivial task. Newton method works at its best when the start parameter is near the solution and the NURBS
entities are smooth and free from irregularities. Data preparation is the key ingredient here and the more knowledge is
available the better job the preprocessor does on slicing up the NURBS entities for failure free distance computation.

4. THE WAVE MODEL
Assume that a fisherman is out fishing in the Golf of Mexico, off the coast of South Florida. He receives a warning on
his marine radio that a hurricane is heading to the Golf and it is advisable to come ashore as fast as possible.
Theoretically speaking, he may find the shortest distance to the West Coast as follows: he drops a big rock in the water
and follows the path of the circular waves the rock creates, Fig. 2(a). The point where the wave hits the first time is the
closest point defining the straight course that gets him to safety the fastest possible way. That is, to find the shortest
distance between a point and a NURBS object (the shoreline curve in our example), all needs to be done is to
propagate a circular wave and find the point of first hit. Although this is a simple idea, the implementation may not be
that efficient.

Fig. 2: The wave model to find the closest point: (a) the physical model, (b) its discretized implementation.

Let us reconsider the idea from the point of view of spatial orientation (subdivision) and efficient implementation.
Assume that the wave can take on a shape of a rectangle, Fig. 2(b). As the rectangle grows bigger, it will hit the shore
either at a vertex or along an edge. Because this may not provide the shortest distance, we allow the wave to penetrate
into the shoreline a certain distance to get a piece that contains the location of the endpoint of the shortest vector
(empty circles mark the candidate area in Fig. 2(b)). A discrete sampling along the candidate area provides a good start
point for iteratively, via Newton, finding the foot-point of the shortest distance.

(a) (b)
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To make this idea a useful algorithm, the following details need to be worked out:
 Decomposition of the NURBS entities for fast localization and to accommodate multiple point distance

computations.

 Spatial subdivision and object binning to hold the data for fast range searching (nearest neighbor finding).
 Finding start points for fast Newton-type iteration using the wave model just described.

The sections below elaborate on the relevant details.

5. OBJECT DECOMPOSITION
In the world of NURBS, decomposition almost always triggers the process of subdivision [9,16,20], i.e. splitting the
objects into smaller segments until they are close enough to a line (curve case) or to a quadrilateral (surface case).
While NURBS subdivision is a nice geometrical technique, it has several drawbacks when used for closest point
computation:

 It is not cheap as computations have to done on the control points in 3-D. The method proposed below
works primarily with 1-D B-splines.

 Subdivision algorithms require sophisticated memory management (a dynamic stack needs to be managed
holding intermediate results) which is time consuming.

 For good start points a fairly fine subdivision is required, which is fine if segments that are known not to
contain the closest point can be eliminated. However, if there are a large number of query points, possibly
randomly distributed, the subdivision may have to produce a fine polygonal approximation.

The method presented below is inexpensive and requires no complicated memory management. It is also easily
adjustable based on the information available in the knowledge base. The main idea comes from many years of
experience with Newton-type methods that worked quite well for curves and surfaces that were uniformly or nearly
uniformly parametrized.

Fig. 3: Decomposition problems: (a) small hook at the start and tiny segment at the end; (b) curve comes close to itself
does not pose a problem.

NURBS curves are decomposed into segments by computing a nearly uniform point distribution as follows. Given a
tolerance tol which is a percentage of the arc length, and a jitter factor jit , the algorithm computes a nearly uniform

point distribution to satisfy the following inequality:

1( ) ( )l i i u l uC u C u jit tol tol        

If 1.0jit  the distribution is almost uniform, and if 0.0jit  it is random within the allowed tolerance. In most of our

tests we used 5%tol  and 80%jit  . The major components of the algorithm are as follows:

1. Get the upper bound as the required percentage of the approximate arc length, and the lower bound by
jittering the upper bound.

2. Get the first guess parameter by dividing the parametric domain with the expected number of points, e.g. if
the upper tolerance is 5%, the expected number of points is 20.

3. Apply a binary search type method to find the first parameter for which the above inequality holds. Get the
first parameter increment as the difference between the found parameter and the left knot.

(b)(a)
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4. Increment the found parameter with the difference and bring the new guess point into compliance with the
inequality applying the same binary search type method.

5. The new guess parameter at any given point is obtained by incrementing the current parameter with the
difference between the current and the previous.

6. The algorithm stops when the end point of the curve is reached.

This is a very simple method that requires point evaluations only which needs about a third of the computations of
subdivision. It is also fairly efficient as it relies on spatial coherence, i.e. there is not much change from segment to
segment. That is, the guess parameter needs to be adjusted only occasionally. Practical experience shows that
computing N nearly uniformly spaced points requires about 1.25 N point evaluations for most practical curves.

Fig. 3(a) shows two slight drawbacks of the method: a small hook at the beginning and a tiny segment at the end. The
small hook produces a segment that is somewhat longer than expected and the tiny segment is somewhat shorter.
Neither one of these impact the algorithm adversely because the upper tolerance is conservatively chosen and the
segments will be further decomposed to find a good start parameter for Newton iteration. A seemingly problematic
case is depicted in Fig. 3(b), where the curve comes close to itself. Because the curve is topologically equivalent to a
line and because the stepping is done in the parameter space, no jump to the other part of the curve is made (dashed
line). The computed points will sweep out the curve irrespective of how close it comes to itself.

NURBS surfaces use curve decomposition to generate a grid of points. First, the surface is refined so that the control
net is close to the surface (the approximate longest extents in both directions do not change more than a given
percentage). Then the longest iso-curves (computed at the nodes of the refined control net [18]) are extracted and the
curve algorithm above is applied to get a nearly uniform point distribution. The parameters of the corresponding points
are then used to get a grid of points on the surface. Two difficult examples are shown in Fig. 4 where the crosses mark
decomposition points. Both the dust pan (left) and the paint brush handle (right) have highly varying curvatures and
dimensions. Since the sampling relies on the longest iso-curves, some areas will be sampled as desired, others will be
over-sampled. Fortunately, this is not a problem either for the sampling routine (the computation is proportional to
sampling two curves) or for the Newton iteration that gets a better start point in the over-sampled areas.

Fig. 4: Surface decomposition examples using a grid of points.

In order to make the decomposition algorithm work for practical applications, the upper bound tol and the jitter factor
jit must be properly chosen. It may seem that they can be adjusted experimentally, a closer look at parametrization

reveals a surprising fact. Good start points are easy to find if the curve/surface is parametrized uniformly, i.e. if the
particle moves along the path of the curve/surface with constant speed while the parameter sweeps out the parametric
domain. Since speed is measured by the magnitude of the first derivatives, a measure, called parametrization factor is
introduced (and stored in the knowledge base) as follows:

max min
min max

max

, are min-max derivatives
D D

pf D D
D






Computer-Aided Design & Applications, 5(6), 2008, 855-866

861

If the curve is parametrized uniformly max minD D and 0pf  . On the other hand, if the entity has a vanishing

derivative (the particle comes to a stop), the parametrization factor is 1. In other words, the smaller the factor, the more
uniform the parametrization. The maximum and the minimum derivative magnitudes are computed (approximately) as
follows:

 Compute the derivative curve/surface using symbolic operators [19].
 The maximum and the minimum derivatives are computed from the derivative curve/surface via repeated

knot refinement (one or two levels of knot refinement provides a very good estimate).

Once the parametrizaton factor has been computed, various categories can be set up based on the type of application
at hand. For example, styling application designers may establish the following relationship:

Pf Parametrization Tolerance Jitter
0.0≤pf≤0.2 Nearly uniform 0.2 0.5
0.2<pf≤0.4 Nearly non-uniform 0.1 0.6
0.4<pf≤0.7 Non-uniform 0.05 0.7
0.7<pf≤1.0 Highly non-uniform 0.01 0.8

Practical experience shows that Newton can always be made to work if the algorithm receives a close enough start
parameter. The categories above, perhaps in a more refined format, can greatly enhance the reliability (convergence to
the correct root) and the performance (optimal level of refinement) of distance routines. To illustrate that such
knowledge base is necessary, the Tab. 1 below shows parametrization factors for circular arcs of various degrees.

Degrees Pf/min-max weights 90˚ arc 120˚ arc 360˚ arc

pf 0.14 0.06 0.14

maxw 1.0 1.0 1.02p 

minw 0.707 0.86 0.707

pf 0.005 0.007 0.007

maxw 1.0 1.0 1.04p 

minw 0.93 0.89 0.89

pf 0.04 0.07 0.51

maxw 1.35 1.43 5.05p 

minw 1.23 1.21 1.0

Tab. 1: Parametrization factors for circles of different degrees and sweep angles.

The NURBS circle is a very disappointing entity as its parametrization is not only non-uniform, as one would rightfully
expect, the parametrization factor is different from arc to arc. Here is a serious problem. Take a query point and a
circular arc of 90 degrees sweep, and compute the distance between the two. Now, extend the same arc by 30 degrees
and repeat the distance computation. The results will not be the same! So the conclusion is simply this: numerical
processes are subject to the parametrization that has to be made available to the application process, i.e. the
knowledge base must contain information on the validity of the results as a function of the parametrization factor.

6. THE MAIN ALGORITHM
Given a NURBS curve or a surface, a set of random points, a point coincidence tolerance and a perpendicularity
tolerance, the algorithm outlined below computes the distances of the given points from the NURBS entities to within
the required accuracy. The major steps of the algorithm are as follows:

1. Check the object classification to see if the NURBS entity is a line, circle, plane, sphere, cone, cylinder or a
torus. If yes, mine the knowledge base to find how the entities were created and get the defining parameters.
Use special purpose code to compute the distances between the points and the conic/quadric.

2. Check the object representation to find out if information on parametrization, continuity and irregularities
have been recorded into the knowledge base. If yes, use these to adjust decomposition parameters. If not,
compute the parametrization factors and set the proper tolerance and jitter factors as described above.

3. Decompose the NURBS into smaller pieces using the tolerance and jitter factors.
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4. Bin the segments into a spatial data structure for fast nearest neighbor search.
5. For all query points use the wave model to find nearest segments.
6. Refine the nearest segment, with a somewhat finer subdivision, to get a start point for fast Newton iteration.
7. Call Newton with the guess parameter and account for anomalies such as cusps and boundary points.

The steps that require additional details are the spatial data structure setup and the wave model based start point
search. Spatial data structures for nearest neighbor search have been the subject of extensive research. Lots of models
have been set up ranging from simple binary partitioning trees through Voronoi-based methods to fancy structures like
vp-trees (vantage point tree). Our method is based on a simple uniform grid subdivision primarily because of the
following:

 NURBS entities are subdivided into nearly equal segments that naturally call for a uniform space division.
 Implementing the wave model requires a grid structure and although the size of the grid in each direction

could be different, for ease of computation uniformity is enforced.

 More complicated techniques such as octrees or Voronoi diagrams require quite a bit of computational cost,
the majority of which is memory management. Dynamic memory allocation and reallocation can be more
costly than floating point operation, and significantly more costly than running empty loops (empty cells
cause the algorithm to jump, i.e. the loop will run without doing any computation).

Fig. 5: Curve example with min-max box: decomposition (left) and registering segments with cells (right).

The major steps of data binning are as follows:
1. Compute the min-max box of the NURBS. Note that refinement is needed in order to avoid large bounding

boxes. Some operations, such as interpolation, may produce control points that are way to far from the
NURBS curve or surface.

2. Compute the extents of the box in x-, y- and z-directions and get the maximum of these. The size of the
spatial cell is the maximum extend divided by the number of subdivision points for curves, or the maximum
subdivision points for surfaces in u- or v-directions.

3. Now augment the bounding box by adding the query points and compute the x-, y- and z-resolutions by
dividing the updated x-y-z extents with the cell size. The reason why the cell size is computed based on the
NURBS’ bounding box is because the query points can lie quite far from the NURBS giving rise to large cell
sizes which would nullify the localization provided by the subdivision.

4. For each cell provide a buffer of fixed size (our implementation used 15). This avoids constant memory
reallocation which would slow down the program. Update the buffers if they happen to overflow during data
binning (on average each buffer contains only a few entity references).

5. Using the subdivision points (parameters) extract NURBS sub-curves or sub-patches and bin them into the
cell data structure.
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6. For each NURBS segment, find the cells that contain this segment. This is done by computing the min-max
box of the segment and getting the indexes of the cells that contain the entire min-max box. To avoid
multiple registrations, check the cell if it contains the segment index already.

This process, although quite a bit of programming, is very cheap as the most expensive part is bounding box
computation. Memory is allocated once for the multidimensional index array that holds the segment indexes and
reallocation is nearly never done. After the data binning is completed, each small NURBS segment or patch is
registered with one or more cells in the uniform data structure. Fig. 5 shows an example of data binning. On the left the
curve, embedded into its bounding box, is decomposed into nearly equal segments using 0.5tol  and 80%jit  .

The right side of the figure shows all the cells the segments are registered with. Note that some cells do not intersect the
curve. This is because the individual pieces are binned into the structure using their bounding boxes. Using other
techniques, such as a fine control polygon obtained via knot refinement, could produce a cell structure with less cells.
However, the extra cost is not worth the effort because query points may lie far from the curve requiring cells, not
intersecting the curve, to be visited. The algorithm below applies proper book keeping to make sure that cells are
visited no more than once and to avoid multiple sampling of curves/surfaces as well.

After the segments/patches have been binned, the algorithm is ready to send in the waves to find closest points. The
critical steps are as follows:

1. Mark each cell as non-visited and each segment as non-sampled. This bookkeeping avoids multiple visits to
cells and multiple sampling of segments.

2. Find the cell the query point is in, and initialize the search distance with the shortest distance between the
query point and the closest plane of the cell.

3. While not done do
3.1 Propagate the wave from the query point and visit cells surrounding the unvisited cells.
3.2 If a cell is found to be un-visited, find the segment registered with the cell.
3.3 If the segment is not yet sampled, obtain a nearly uniform sampling using the same method

described above. Note that the object gets decomposed two times: once the entire object gets
decomposed to obtain a coarse subdivision for segment binning, and the candidate segments get
sampled again, possibly with a finer subdivision, for finding start points/parameters.

3.4 Obtain the nearest point and the corresponding parameter and update the minimum distance.
3.5 Mark the cell visited and the segment sampled.
3.6 If the minimum distance is less than the search distance, done.
3.7 Update the search distance by the cell size.

4. Perform Newton iteration with the given start parameter(s).

Fig. 6: Shortest distances of query points (left) and the extent of wave penetration (right).
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This process is then repeated for each query point without having to change the spatial data structure or sampling
segments that have been sampled already. Simply put, for each query point a cubical wave is sent towards the object
and it is allowed to penetrate the object until it is found that the shortest distance is smaller than the distance to the
boundary of the expanding wave. Fig. 6 shows an example. On the left part shortest distances from the corners of the
bounding box are computed, whereas the right figure shows how far the cubical wave penetrates into the spatial
subdivision. Note that only two candidate segments have been found and cubes that do not have segments inside are
simply skipped over.

7. TESTS AND EXAMPLES
The algorithm above has been tested on numerous examples, both for curves and surfaces. Two fairly difficult surface
examples are shown in Fig. 7 below. Both the dust pan, Fig. 7 left, and the brush handle, Fig. 7 right, contain high as
well as low (zero) curvature areas, small neck areas and wide planar parts, and parts where curvature changes rapidly
from zero to a high value. The dust pan is used to test how the algorithm handles mostly concave parts, whereas the
brush handle provides a convex skin from which distances are computed. In addition, both of them contain plenty of
boundary cases, i.e. the closest point falls on the boundary.

Fig. 7: Distances of random points from dust pan (left) and brush handle (right).

Numerical tests have been performed on a large set of curves and surfaces. The data provided below are for the curve

in Fig. 6 and for the two surfaces in Fig. 7. In all cases the point coincidence tolerance was set to 610 and the

perpendicular tolerance was 410 . One hundred (100) random points were used to compute distances and to study the
behavior of the algorithm. The decomposition as well as the sampling tolerances were changed with a constant jitter of
80%. The questions to which we wanted to find answers were: (1) how well Newton behaved, i.e. how long it took to
find the solutions, (2) what was the optimal spatial subdivision, and (3) how far we could push the method to get real-
time results. The tables below are representatives of consistent results across a wide variety of NURBS entities.

D 10% 10% 10% 5% 5% 5% 1% 1% 1%

S 10% 5% 1% 10% 5% 1% 10% 5% 1%

nit 1><2 1><2 1 1><2 ≈1 <1 <1 <1 <1

Tab. 2: Convergence result for the curve in Fig. 6.

The notation is interpreted as follows: D is the decomposition relative tolerance, e.g. for 10%, the data structure in

the worst case is a 10 10 10  grid, S is the sampling tolerance, so for 5% roughly 20 points are sampled nearly

uniformly, nit denotes the number of iterations; 1><2 implies that the number of iterations is one or two, ≈1 means
that convergence is reached in 1 iterations almost always, <1 means that Newton needed zero or 1 iteration to find the
closest point, and the column with bold numbers indicate the recommended optimal setup. The result clearly illustrates
that the key to proper distance computation via Newton is proper data preparation.
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Let us now look at the numerical indicators for the dust pan and the brush handle. Tables 3 and 4 below contain the
results. It is worth noting right here that Newton has a much more difficult time with surfaces than with curves, i.e.
converging to the solutions takes much longer for surfaces than for curves (two equations must be satisfied
simultaneously and two new parameters must be computed so that the candidate point moves towards the foot-point
of the perpendicular). Therefore finding good start points it more critical for surfaces than for curves.

,u v
D D  10% 10% 10% 5% 5% 5% 1% 1% 1%

,u v
S S  10% 5% 1% 10% 5% 1% 10% 5% 1%

nit 1><2 1><2 1 1><2 ≈1 1 1 <1 <1

Tab. 3: Convergence result for the dust pan.

,u v
D D  10% 10% 10% 5% 5% 5% 1% 1% 1%

,u v
S S  10% 5% 1% 10% 5% 1% 10% 5% 1%

nit 1><2 1><2 1 1><2 ≈1 <1 <1 <1 <1

Tab. 4: Convergence result for the brush handle.

The tables show and extensive testing clearly indicate that proper curve/surface subdivision and spatial data structure
setup allows Newton to always converge within one or two iterations. Because it is faster to compute points on NURBS
entities than managing memory or computing higher derivatives, the following is recommended:

 Set up the spatial data structure based on a coarse subdivision. For curves 5% is recommended and surfaces
can make do just fine with 10%.

 Sample the sub-segments at 1% density to get very good start values. This allows Newton to converge in one
iteration on average. Since the sampling is done only once, computing distances for multiple points creates
practically no overhead.

It is simply not worth the effort to set up a very fine spatial data structure, and in fact, as the level of subdivision
increases, the amount of memory grows exponentially, i.e. a 1% surface decomposition may result in 1 million cells!

The question of how fast the algorithm is depends on the computing environment, both hardware and software. The
method uses a large array of capabilities from KGnurbs™ all of which are fine tuned, i.e. reproducing the timing results
is nearly impossible. However, just to provide a flavor, we were able to compute distances of random points for curves
up to 10,000 in real time using an off-the-shelf laptop, using a 1.73GHz processor and 2GB RAM, with no optimization
or other kind of fancy gadgets. Surface timings were much slower; roughly 1,000 points were computed in real time for
the complicated surface types in Fig. 7.

8. CONCLUSIONS
Newton type methods have been hounding the CAD community for decades. While the underlying math is very
simple, distance routines have been tweaked to accommodate individual failures. This paper presented a knowledge-
guided approach to a stubborn problem: (1) identify critical object types and apply non-numerical techniques, (2) use
knowledge about parametrization, continuity and irregularities to adjust the algorithm and to make intelligent decisions
in case Newton is unable to move fast enough toward the solutions, and (3) set up a spatial data structure for fast
nearest neighbor search based on a discrete version of the wave model, and to find appropriate start parameters
guaranteeing convergence within one or two iterations. The method works well with multiple points distributed
randomly and generalizes to other query object types, such as lines, planes and curves.
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