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ABSTRACT

Recently we developed a periodic surface model to assist the construction of nano structures
parametrically for computer-aided nano-design. In this paper, we study the properties of periodic
surfaces for degree elevation and reduction. Degree elevation approaches are developed to
incrementally increase shape complexities, including native, variational, and boundary constrained
elevations. A generic degree reduction operation is defined for surface approximation based on an
algebraic distance. The goal is to enhance the flexibility of the periodic surface model and allow for
multi-resolution representation.
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1. INTRODUCTION
Computer-aided nano-design (CAND) is an extension of computer based engineering design traditionally at bulk scales
to nano scales. Enabling efficient structural description is one of the key research issues in CAND. Traditional
boundary-based parametric solid modeling methods for engineering design do not support efficient construction of
complex nano-scale geometries, such as super-porous structures and crystal packing. Visualization methods such as
models of space-filled, wireframe, stick, ball-and-stick, ribbon and solvent-accessible surface do not support parametric
construction and modification of molecular structures. Providing engineers and scientists efficient and easy-to-use tools
to create structures that are reasonably close to optimal conformations with the minimum energy is highly desirable to
improve the efficiency of simulation in material design. Expanding the horizon of available shapes for design engineers
for nano-scale geometries is a new task in developing CAND tools.

With the observation that hyperbolic surfaces exist in nature ubiquitously and periodic features are common in
condensed materials, we recently proposed an implicit surface modeling approach, periodic surface (PS), to represent
geometric structures in nano scales [1, 2]. Periodic surfaces are either loci or foci. Loci surfaces are fictional continuous
surfaces that pass through discrete particles in 3D space, whereas foci surfaces can be looked as isosurfaces of potential
or density in which discrete particles are enclosed. The surface model allows for parametric construction from atomic
scale to meso scale. Reconstruction of loci surfaces from crystals was also studied [3].

In this paper, we study the properties of degree elevation and reduction for periodic surfaces, which are two basic
mechanisms to control the complexity of periodic surfaces and enable multi-resolution representation. In the remainder
of the paper, Section 2 gives an overview of related work and the periodic surface model. Section 3 describes three
approaches of degree elevation. And Section 4 presents a generic degree reduction method based on an algebraic
distance measurement.

2. BACKGROUND

2.1 Implicit Surface Modeling
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Implicit surfaces [4] are not as widely used as parametric surfaces in interactive modeling environment, largely due to
the lack of intuitive shape manipulation and control. Yet, implicit surface modeling has some advantages such as
straightforward ray tracing and closure of Boolean operations. Research in implicit surface modeling include “blobby
model” based on the Gaussian kernel [5, 6, 7] and polynomials [8]. Topics such as implicitization [9, 10, 11, 12, 13],
blending [14, 15, 16, 17, 18], interpolation [19, 20], control [21, 22], curvature formulation [23, 24, 25], as well as
polygonization [26, 27, 28] and direct ray tracing [29, 30] have been studied.

2.2 Molecular Surface Modeling
For visualization purpose, there has been some research on molecular surface modeling to visualize molecular
structures [31]. Lee and Richards [32] first introduced solvent-accessible surface, the locus of a probe rolling over Van
der Waals surface, to represent boundary of molecules. Connolly [33] presented an analytical method to calculate the
surface. Recently, Carson [34] represented molecular surfaces with B-spline wavelet. Edelsbrunner [35] described
molecules with implicit-form skin surfaces. Bajaj et al. [36] represented solvent accessible surfaces by NURBS (non-
uniform rational B-spline). Au and Woo [37] studied the topological changes of macromolecules during folding with
the aid of ribbons. Ryu et al. [38] constructed NURBS molecular surfaces by the aid of Euclidean Voronoi diagrams.
Zhang et al. [39] constructed implicit solvation surfaces from the Gaussian kernel. These research efforts concentrate
on visualization of molecules, whereas construction support of molecular structures for design purpose is not
considered.

2.3 Periodic Surface
We recently proposed a periodic surface (PS) model to represent nano-scale geometries. It has the implicit form
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where l is the scale parameter, p [ , , , ]Tm m m m ma b c  is a basis vector, such as one of
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(2.2)

which represents a basis plane in the 3-space 3 , r [ , , , ]Tx y z w is the location vector with homogeneous coordinates,

and lm is the periodic moment. We assume 1w if not explicitly specified. The degree of r( ) in Eqn.(2.1) is

defined as the number of unique periodic vectors in p{ }m . The scale of r( ) is defined as the number of unique scale

parameters in { }l . In this paper, we assume scale parameters are natural numbers ( l   ).

Fig. 1 lists some examples of PS models. Triply periodic minimal surfaces, such as P-, D-, G-, and I-WP cubic
morphologies that are frequently referred to in chemistry and polymer literature, can be adequately approximated.
Besides the cubic phase, other mesophase structures such as spherical micelles, lamellar, rodlike hexagonal phases can
also be modeled.

With the aid of continuous PS models, discrete crystals can be constructed by operations such as intersection and
modulation. Basis vectors play an important role in model construction and interactive manipulation. As illustrated in

Fig. 2, each basis vector represents a 2D subspaces in 3 . We call    p r p r pˆT T
m m m md the projective distance

between the origin and the subspace where r resides with respect to the basis plane pm . We call 0 0 0 0 1e [ , , , ]T in

Eqn.(2.2) the ideal plane in which the corresponding projective distance does not depend on the Euclidean position of
r .
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Fig. 1: Periodic surface models of cubic phase and mesophase structures [2].
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(a) basis vectors form discrete 2D subspaces

(b) projective distances between origin and basis planes

Fig. 2: Discrete subspaces corresponding to basis planes.

A volume domain 41[ , ] [ , ] [ , ]x x y y z z      is called complete for a periodic surface r( ) if

0 0( ) , ( ), ( ) ( )d n n n           r r r r R r



  (2.3)

where 0    R 0[ , , , ]Tx x y y z z is the range of  . If the number of period within  is 1, that is, for

' ( ' )      , 0( )d  r r

'

, then  is called a minimally complete domain for ( ) r . In general, the inner

product of two periodic surfaces in a domain  is defined as

1 2 1 2( ), ( ) : ( ) ( )d    r r r r r



(2.4)
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Two periodic basis vectors 1p and 2p are called orthogonal at scales 1 and 2 respectively in a domain  if the

corresponding periodic basis functions  1 12 p rcos ( )T and  2 22 p rcos ( )T have the relation

       1 1 2 2 1 1 2 22 2 2 2 0cos ( ) , cos ( ) cos ( ) cos ( )T T T T d        p r p r p r p r r



(2.5)

Notice that orthogonality of basis vectors is scale and domain dependent. Two periodic surfaces 1 r( ) and 2 r( ) are

called orthogonal if there exists a domain   such that

1 2 1 2 0, ( ) ( )d     r r r



(2.6)

3. DEGREE ELEVATION
Degree elevation allows us to incrementally increase the complexity of models. Three approaches of degree elevation
for periodic surfaces are studied here. They include the scale-independent native degree elevation, scale-dependent
variational degree elevation, and constrained degree elevation with boundary conditions of continuity.

3.1 Native Degree Elevation
Because of the orthogonality of periodic basis functions, the native degree elevation of Eqn.(2.1) is to simply add new
basis vectors with the corresponding moments as zeros. That is,
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  r p r'( ) cos ( )
L M V

T
lm l m

l m

   (3.1)

where 0lm for all 1 , ,l L and 1  , ,m M M V .

Example 1. Zeolites are known as molecular sieves that have porous structures of molecular sizes. This allows small
molecules such as water to pass through layers of sieves while bigger molecules are filtered out. Zeolites are widely
applied for purification and separation as detergent, catalyst, and others. Fig. 3 shows a loci PS model for one type of
zeolites, Faujasite crystal.
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(a) Faujasite crystal. Each tetradecahedron encloses a
Fe, each hexagonal prism encloses an Al, and each
vertex of the polygons represents a Si.

(b) Loci PS model of Si
in Faujasite

Fig. 3: Loci PS model of Faujasite crystal.

If 1/8 of the model in Fig. 3(b) is considered, we can have a zoom-in view of the model as in Fig. 4(a). When more
detailed controls during the design process are needed so that the positions of atoms can be fine-tuned, the degree
elevation operation provides the needs. We may introduce three more basis vectors with the corresponding moments
as zeros. Modifying the moments further we can create a different design, such as the new surface model r'( ) in Fig.

4(b).
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(b) An example of the elevated PS model

'( ) r to support detailed modifications

(a) Original loci PS model ( ) r
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Fig. 4: An example of degree elevation to support fine-tuned modification of the Faujasite PS model.

3.2 Variational Degree Elevation

There exists no general scale-independent degree elevation such that 3 r 

   
1 1

2 2ln

 

   p r p rcos ( ) ' cos ( ' )
M N

T T
lm m n

m n

    (3.2)

where    p p 'm n , 0lm and 0ln ' for all , ,l m n , and  ,M N at some scale  .

Although there is no general non-native scale-independent degree elevation scheme, we can have an approximated
variational degree elevation that is scale-dependent. For some small Δpm ’s,
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where 1 4 q ( , , , ( ))lm m m m m la b c w  is a scale-dependent translated pm . In a given domain  , for any l and m , if

we can find some small moments  lm ’s such that

Δ
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then the scale-dependent variational degree elevation is
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(3.5)

For a given domain  , the largest projective distances occur at the vertices of  . As illustrated in Fig. 5, the largest

Δ p rT
m in the 2D domain always occurs at the corner points. Thus the lower and upper bounds of  lm ’s can be

easily estimated.

Example 2. P surfaces can be used to model cage-like structures, such as Sodalite minerals in Fig. 6(a). In the standard
unit domain

0 1 0 1 0 1 0 1: {( , , , ) | ; ; }x y z x y z       (3.6)
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an example of variational degree elevation of a standard P surface with the scale parameter 1  and moments

1 2 3 1     can be obtained as follows. Basis vectors are 1 1 0 0[ , , ]Tp , 2 0 1 0[ , , ]Tp , and 3 0 0 1[ , , ]Tp . Suppose

vector deviations are 1 0 001 0 0[ . , , ]T p , 2 0 001 0 001 0[ . , . , ]T p , and 3 0 001 0 001 0 001[ . , . , . ]T p . It is easy to find

1 0 001.  , 2 0 002.  , and 3 0 003.  . With different vector deviations  1 2 3, ,j j p , the original and

elevated surfaces are compared in Fig. 6.

r



p

pp 

p

p

o

Fig. 5: The lower and upper bounds of  lm are estimated at the vertices of domains.

(b) T]0,0,001.0[
1
p

T]0,001.0,001.0[
2
p

T]001.0,001.0,001.0[
3
p

(a) P surface models Sodalite
lattice of 14-sided cages. Vertices
correspond to Si (Al) and edges
represent Si-O-Si (Si-O-Al) bonds

(c) T]0,0,01.0[
1
p

T]0,01.0,01.0[
2
p

T]01.0,01.0,01.0[
3
p

(d) T]0,0,1.0[
1
p

T]0,1.0,1.0[
2
p

T]1.0,1.0,1.0[
3
p

Fig. 6: Examples of variational degree elevation of P surface, where each of the yellow surfaces is the original P surface
and each of the green surfaces is the elevated one.

Example 3. We apply variational degree elevation to the Faujasite crystal model in Fig. 3. The elevated surface ''( ) r

is shown in Fig. 7(b).

(b) The variationally elevated PS

model ''( ) r
(a) Original loci PS model ( ) r of

Faujasite crystal
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Fig. 7: Variationally elevated surface model of the Faujasite crystal in Fig. 3.
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Theorem 1. The variational degree elevation is an approximation with quadratic convergence.

Proof. For any l and m ,
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3.3 Constrained Degree Elevation
Complex nanostructures are expected to be assembled based on some basic building blocks. Piecewise construction is
needed in the assembly process. To support piecewise construction of PS models, certain levels of surface continuity
conditions may be required at the domain boundaries in degree elevation, which is called the constrained degree
elevation process.

Theorem 2 ([19]). If implicit surfaces 0( ) r and 0( ) r intersect transversally in an irreducible curve ( ) r , then

any algebraic surface 0( ) r that meets 0( ) r with kG rescaling continuity on ( ) r must be in the form

1( ) ( ) ( ) ( ) ( )k      r r r r r where ( ) r and ( ) r are polynomial functions that are not identically zero on ( ) r .

If considered in the standard unit domain 0 in Eqn.(3.6), the periodic grid surface that defines the domain boundary

is

     2 2 2( ) cos ( ) cos ( ) cos ( )T T T
g g x g y g z      r e r e r e r

where 1 0 0 1 2[ , , , ]Tx  e , 0 1 0 1 2[ , , , ]Ty  e , 0 0 1 1 2[ , , , ]Tz  e , and 1 2g  . It is rewritten in the generic form as

 
4

1

2( ) cos ( )T
g g g gi

i

  


 r e r (3.7)

where 1 1 1 1 3 2[ , , , ]Tg  e , 2 1 1 1 1 2[ , , , ]Tg   e , 3 1 1 1 1 2[ , , , ]Tg   e , 4 1 1 1 1 2[ , , , ]Tg   e , and 1 4g  .

Given a periodic surface 0( ) r , we can create a new surface 0( )( )k r that meets with the original surface on the

curve boundaries 2 2 0( ) ( ) ( )g    r r r with kG rescaling continuity as

1( )( ) ( ) ( ) ( ) ( )k k
g      r r r r r (3.8)

where ( ) r and ( ) r satisfy the condition that 0 0 0, ( ) , ( ) ( )     r r r r .
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Example 4. An example of constrained degree elevation of P surface with 0G continuity on the unit boundary is
surface
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as compared in Fig. 8(a) and Fig. 8(b).

7.0,3.0   6.0,4.0  

(a)
0G continuity

7.0,3.0   6.0,4.0  

(b)
1G continuity

Fig. 8: Examples of constrained degree elevation of P surface with 0G and 1G continuities, where yellow surfaces are
the original P surfaces and red surfaces are the elevated ones.
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Example 5. A polymer morphological model
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as shown in Fig. 9(b) is elevated with boundary continuity constraints. Following Eqn.(3.8), we can construct two

elevated PS models with 0G and 1G continuity as shown in Fig. 9(a) and Fig. 9(c) respectively.

(a) 0G continuity (b) original polymer model (c) 1G continuity
9.0,1.0   9.0,1.0  

Fig. 9: A polymer PS model with constrained degree elevations.

4. DEGREE REDUCTION
For a surface in Eqn.(2.1), degree reduction in a domain  is to find a
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is minimized, where  is complete with respect to both  and ' . Eqn.(4.1) is rewritten as

 

   

   

   

1 1

1 1 1

1 1

2 2

2 2 2

2 2

dist , ' ( ) '( ), ( ) '( )

cos ( ) , cos ( )

cos ( ) , ' cos ( ' )

' cos ( ' ) , ' cos ( ' )

M M
T T

lm l m lm l m

m m

M N
T T

lm l m l n

l m n

N N
T T

l n l n

n n

     

   

   

   

 

  

 

  

 
  

 
 
 

    
 
 
    
 

 

 

 

r r r r

p r p r

p r p r

p r p r

ln

ln ln

L


(4.2)



Computer-Aided Design & Applications, 5(6), 2008, 841-854

850

Given a new set of periodic vectors { ' }np , the goal of degree reduction is to find optimal moments { ' }ln so that the

distance in Eqn.(4.2) is minimized. A necessary condition for the optimality is
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Thus, the problem of deriving optimal moments is reduced to solving L linear equation systems
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The computational complexity is mostly dependent on the numerical integral algorithms to compute the
1( )LN N  coefficients in Eqn.(4.6) and Eqn.(4.7).

Example 6. Surface
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which contains detailed features is reduced to a G-surface
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1 is the yellow surface in Fig. 10(a), and 1g is the blue surface in Fig. 10(b).
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2 is the yellow surface in Fig. 11(a), and 2g is the blue surface in Fig. 11(b).
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(a) original surface (b) reduced surface

Fig. 10: Degree reduction of surface 1 where the original surface is in yellow and the reduced G-surface is in blue.

(a) original surface (b) reduced surface

Fig. 11: Degree reduction of surface 2 where the original surface is in yellow and the reduced G-surface is in blue.

Lemma 3. Based on the algebraic distance in Eqn.(4.1), if the set of the new basis vectors { ' }np is a subset of the

original vectors { }mp , i.e.,  1' , ,n n n N p p  , and the basis vectors { }mp are orthogonal to each other at the

same scale in a domain  , then degree reduction in  is simply to extract the corresponding subset of moments

 1' , ,n n n N    .

Proof. From Eqn.(4.6), because of the assumed orthogonality, for any given scale l , we have

   

0

2 2

( )

cos ( ' ) , cos ( ' ) ( )
lnm T T

l n l n

if m n
a

if m n 




 
  

p r p r
. Similarly, from Eqn.(4.7), we have

   2 2cos ( ' ) , cos ( ' )T T
ln ln l n l nb     p r p r . Solving Eqn.(4.5), we can easily derive  1' , ,ln ln n N    .

□

Lemma 3 ensures the simplicity of degree reduction for the special case. Suppose there are K pairs of moments and
periodic vectors that are common for  and ' , that is, 'lm lm  and 'm mp p for all 1, ,l L  and

1, ,m K  . It is easy to verify that
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Thus only those components that are different in either moments or periodic vectors in two surface models contribute
to the algebraic distance.
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(4.8)

In particular, if all pairs of basis vectors are identical but the corresponding moments are different, that is, 'm mp p

and 'lm lm  for all 1, ,l L  and 1, ,m K M   , then the distance in Eqn.(4.8) is reduced to

       2

1 1

2 2||dist , ' ' cos ( ) , cos ( )
L M

T T
lm lm l m l m

l m K

     
  

     p r p r

If basis vectors mp ’s and 'np ’s are all orthogonal to each other at every scale l in  , then Eqn.(4.8) is reduced to
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5. CONCLUDING REMARKS
Degree elevation and reduction operations are two basic mechanisms to control the complexity of surface models in
multi-resolution representations. In this paper, we study degree operations of periodic surfaces. Three degree elevation
approaches are developed, including native degree elevation that is scale independent and without modifying existing
basis vectors; scale-dependent variational degree elevation which modifies existing basis vectors; and constrained
degree elevation with boundary continuity conditions which supports piecewise construction and assembly. A generic
degree reduction method is also developed based on an algebraic distance measurement. The study is to seek the
extension of the traditional degree operation concept in surface modeling to periodic surfaces for nano-scale geometric
design.
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