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ABSTRACT

We present a symbolic-numeric algorithm for Boolean set operations, closed in the algebra of
curved polyhedra triangulated with compactly supported cubic algebraic surface patches. The input
simplicial polyhedral representation includes the vertices of the triangulation and prescribed vertex
normals. On each triangle of this boundary representation, a piecewise cubic algebraic interpolant
is constructed, using a C!-continuous algebraic patch (prism A-patch) that interpolates the triangle
vertices, with given normals. In order to represent flat and/or sharp local features, the normal-per-
face and/or normal-per-edge may be given, respectively. The boundary topology is described by
storing, for each triangle, the two triples of pointers to incident vertices and to adjacent triangles.
For each triangle, a scaffolding prism is built, which provides a containment volume for the
interpolating A-patch. When looking for the result of a regularized Boolean operation, the O-set of a
three-variate polynomial within each such prism is generated, and intersected with the O-sets of the
other curved polyhedron, when two prisms have non-empty intersection. The intersection curves
are traced and used to decompose each boundary into the 3 standard classes of subpatches,
denoted in, out and on. While tracing the intersection curves, a locally refined triangulation of
intersecting patches is produced, and added to the boundary representation.

Keywords: Boolean operations, A-patches, Free-form surface, Boundary representation.
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1. INTRODUCTION

A-Patches are smooth algebraic surface patch families, defined using a fixed degree trivariate polynomial within a
compact polyhedron domain (also called the patch scaffold). Simple A-patch elements use a tetrahedron, or a cube, or
a triangular prism scaffold. An exact union or intersection Boolean operator is often not closed inside the domain of
fixed degree A-patches. The reason is simply that the intersection of two algebraic surfaces of degree d (say cubic) is in
general, a space curve of degree d? (i.e. nine). In this paper, we provide an efficient solution, using a clever
combination of symbolic and geometric methods, for the subproblems below:

(i) The robust computation of the intersection of a pair of algebraic curves, and/or surfaces;
(ii) The decomposition of the explicit union of a pair of A-patches, into a small set of A-patches of the same
scaffold type.

The combination of (i) and (ii) provides a union operator capable of reproducing A-patches maintaining the topology
of the exact solution. These methods are currently being implemented in the context of the PLaSM Language and
using the Ganith Algebraic Toolkit. The computation of the union of A-patches is a necessary step for the development
of Boolean set operations on algebraic finite elements in an integrated software package.
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The main assumption we make here is that the boundary of the solid is triangulated by curved algebraic patches,
where each patch is single-sheeted and contained within the prismatic scaffold on the triangles of the coarse linear
approximation of the solid boundary. This assumption reduces the Boolean problem with curved solids to the much
easier and well-known problem with linear polyhedra (see, e.g. [3], [12],[16], [17], [18]). For the same reason, we
may represent quite complex curved solids using the very simple winged-triangle (WT) boundary representation,
which does not require the use of Euler operators [8]. Such winged representation was introduced in [21], and later
generalized to solid decompositions and higher dimensional manifolds in [20].

Previous and related work Modeling of solids with implicit algebraic patches, include C! piecewise quadric
patches [7]. Clough-Tocher split for C! cubic patches [11]. Single valued cubic C! A-patches [1]. Quintic C? A-
patches [6]. Rational C! A-patches [22]. C! Prism A-patches and shell A-patches [4], [5]. Boolean/Trimming of free
form surfaces include: Interactive boundary computation of Boolean combinations of sculptured solids [14]. Netbased
modeling [15]. Approximate Boolean operations on free-form solids [2]. ESOLID - a system for exact boundary
evaluation [13]. Adaptive trimming of cubic triangular Bézier patches [9].

The rest of this paper is organized as follows. In Section 2 some useful concepts are recalled and preliminary
definitions are given. In particular, we discuss in detail in Sections 2.2.1 the mathematical toolbox required for
manipulating triangular (and quadrangular) prismatic A-patches. In Section 3 we give a synthetic introduction to
Boolean algorithms between curved triangulated solids. In Section 4 we discuss the implemented intersection between
prismatic A-patches, with tracing of intersection curves and local triangulation refinement. In the Examples Section 5
we show the results of our prototype implementation, including the computation of the Boolean union of the docked
complex of two proteins containing several hundreds of cubic patches. In the Conclusion section 6 the open problems
are described and future extensions and work are outlined.

2. BACKGROUND
2.1 Preliminaries
Polyhedron An m-polyhedron [22] is any compact set P C E" that allows at least one triangulation (K, %), where

K is a simplicial m-complex, and & : |K| — P a homeomorphism, where the support space of K , denoted as|K

, is
the point-set union of simplices o € K . An m-polyhedron is said linear if h is the identity function; it is said regular if
the complex K associated with it is pure, i.e. if each simplex is a face of some m-simplex. Two simplices o, and o, in

a complex K are s-adjacent if they have a common s-face; they are s-connected if a sequence of simplices in K
exists, beginning with o, and ending with o, , such that any two successive terms of the sequence are s-adjacent.

Surface We call surface any 2-polyhedron which supports a triangulation (K,h) such that:

(i) any 1-simplex in K is a face of at most two 2-simplices in K ;
(ii) for each O-simplex v € K , the 2-simplicies of K for which v is a face can be circularly ordered so that
any consecutive pair is 1-adjacent.
Such conditions impose that a surface should be a manifold object, where the neighbourhood of each point is
homeomorphic to the open disc. If the first condition is strictly verified, i.e. if each 1-simplex in K is a face of exactly
two 2-simplices in K, then the surface is closed; otherwise it is open. If the surface is closed and orientable, then it is the
boundary of a solid.

Shell A maximal 1-connected component of a closed surface is called a shell of the surface.

Boolean algebra The domain of the representation scheme [23] discussed in this paper is the Boolean algebra of
solid polyhedra with bounded boundary and where complementation simply exchanges the interior with the exterior.
It is easy to see that it verifies all axioms of a Boolean algebra, and that it also has to verify all theorems known for a
Boolean algebra. In particular, we may evaluate the intersection and difference of polyhedra from their union and
complements, using the notion that conjunction is dual to disjunction by way of the De Morgan’s laws. To complement
any boundary representation of a solid is O(n), since it is sufficient to reverse the direction of all the normal vectors to

0- and to 2-cells.
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Regularized operations Also, it is well-known and easy to see (e.g. [23]) that a Boolean operation between regular
polyhedra may give a non regular result, i.e. a point set with subsets of different dimensions. For this reason the

concept of regularized Boolean was introduced. If op € {U,N,—} , then the regularized op is defined as:
op* := clos o int oop

so that, for every solid pair of the same dimension P; and P,, it is
Pop P, == clos (int (PopPR,)).

Where clos and int respectively denote topological closure and interior. Therefore, in the following of this paper we
only discuss algorithms for regularized union operation.

2.2 PRISM A-PATCHES

Prism A-patches are low-degree finite elements of algebraic surfaces, with dual implicit and rational parametric
representations. In [4], [25] in input is given a matched triangulation pair T=(T,, T;) (also called a fat triangulation)
with attached normals at each vertex, which offers a linearization of the inner and outer boundary surfaces of a shell
domain. The goal is to reconstruct a smooth fat surface whose bounding surfaces provide approximations of T, and
T,, respectively. Additionally mid-surfaces between the boundary surfaces may be also generated.

The matched pair of surface triangulations with normals could be obtained via several methods, including close iso-
contours of volume data, point clouds, single surfaces, etc. Actually, a single triangulation T is sufficient, together with
external normals n n;,ny, attached to either the 0-cells (vertex normals), or to the 1-cells (edge normals, to denote the
parallel transport of sharp features), or to the 2-cells (face normals) of T.

2.2.1 Triangular Prism A-patch
The triangular prism A-patch element is de[Ined within a prism scaffold. For each triangle [v,v,v,] of a triangulation T
of the surface, let

v,(A\) =v, + An,, =173k, Ael:=[-11],

where the unit normals n, point outward. Then define the prism
Dy ={p:p=0ov;(N)+ay v;(A) +azv,(A\),\ € I}, (0.1)

where (ay,,,03) are the barycentric coordinates of points in [v,v,v,]. The coordinate transformation from local

(prism’s) coordinates to global (world’s) reference system can be written, by substitutinga; =1—a; — a , as:

T 1 1
y| = D]y | = (v,(0),%,(0) = v,(0), v (N = v, (V) . (0.2)

The mapping (0.2) is three-linear in \,ay,a -

. ,\i 0

Fig. 1: (a) A prism Dy, constructed based on triangle [v;,v;,,v;]. (b) The control coefficients of a cubic Berstein-Bézier
basis of function F. (c) Smooth connection of two prism A-patches.

The surface S of a patch is defined as the zero contour of a scalar field defined as a polynomial in the Benstein-Bézier
(BB) form over the prism Dy:
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Fla )= Y au(VBj(a), (0.3)
where B;"( a ) is the Bézier basis
" n! ik
BZ/](( ) = Z..,ialagaé .

Since S passes through the vertices v;, v;, v,, we know that
Qg0 = Qg0 = Qo3 = A - (0.4)

To obtain C! continuity at the vertices, we let ayy — 39 = %VF(1)1)~(vj()\) —v,;(A\)) where VF(v;) = n, . Therefore
1
Qo1p = A+ gnzﬁ'(vj(/\) —v,(\) (0.5)

@190, Qo5 Grga, Aot , Gg1» are defined similarly.

The final remaining coefficient a,;; is computed using a side-vertex interpolation method, and is given by

1 = wlaﬁ)l + wzafﬂ + wgap (0.6)
where
aja} . o
w;, = 55 1=123i=j=k
0‘20‘3 +0‘10‘3 T ajoy
Let
d,(\) = j(/\) -v(A)=B-A4
dy(oy, a9, 03) = m; +apn; +agny, = C (0.7)
d;(oy,q,05,A) =dy xdy = BxC+CxA
and
11 11
C:O(§’§7O)7 d3()\):d3(575707)\):B><c+c><A (0.8)

Then as given in [25] we have
o — d;(\) " (3ay,0B x ¢ + 3y x A+ Ax B)
111 —
3] d;(\) P
The a;;,% and a;;,”) are defined similarly. For the surface evaluation, given the barycentric coordinates of a point
(o4, 9,3) in the triangle [v,v;,v,], we solve the equation /' = 0, for A by Newton’s method, where F is defined in

(0.9)

(0.3). Then the corresponding point is
(2,9, Z) = ov;(A) + QyV; (A +agvi (). (0.10)

2.3 Scaffold Data Structure
To represent in memory the polyhedral envelope that contains the A-patches which cover the boundary of a curved
solid, we use the WT (winged-triangle) [21] representation scheme, i.e. a boundary representation based on vertices
and triangles (0- and 2-simplices) of a simplicial complex that triangulates the object boundary. This scheme provides
a relational representation with tuples of constant length, that allows multishell polyhedra to be dealt with, regardless of
the topological genus of their boundary surfaces. Nonmanifold objects are represented by duplicating some adjacency
information. The space of mathematical models represented by the WT scheme is quite extensive. It coincides with the
set of regular 3-polyhedra which are possibly: unconnected; unbounded (but with bounded boundary); non-manifold;
multishell; with multiply connected faces, i.e. with multiple edge loops.
In particular, the WT representation can be implemented as a table in first normal form, where each tuple, indexed by
the t; triangle, contains:

e 3 references to incident vertices;

e 3 references to adjacent triangles.
This scheme is characterized by the design choice of making no use of Euler operators. This choice is allowed by the
extreme simplicity of the data structure representing the triangulation of the boundary, and by the straightforwardness
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of the Boolean algorithms, discussed in the following section, where the consistency of the boundary simplicial
complex is easily maintained.

Fig. 2: (a) The scaffold of a surface; (b) the triangulated scaffold, showing the trilinear nature of each prism.

3. ALGORITHM FOR BOOLEAN SET OPERATION

Several approaches to the computation of Boolean set operators using a boundary representation can be found in the
solid modeling literature (see, e.g. [3], [12], [16], [17], [18]). The very simple Boolean algorithms defined with the
winged-triangle (WT) boundary representation, that does not require the use of Euler operators [8], can be found
in [21].

Outline of the algorithm The main assumption we make is that the boundary of the solid is triangulated by curved
algebraic patches, where each patch is single-sheeted and contained within the prismatic scaffold defined by one or
two (adjacent) triangles of the linear approximation of the solid boundary. This assumption reduces the Boolean
problem with curved solids to the much easier and well-known problem with linear polyhedra.

The algorithm for the regularized set union of two regular polyhedra P;, and P, is composed of two main steps
(see [21]). In the first step, each shell of P, is intersected with every shell of P,, where a boundary shell is a maximal
connected subset of the boundary. The result of this computation is the space curve where the boundary surfaces of
the input polyhedra intersect. In general, this space curve is nonplanar and may be disconnected, i.e. it may contain
more than one cycle (connected component). The second step of the union algorithm reconstructs the output
boundary 9(P, U P,) by subdividing the input shells in alternate patches along the intersection curve previously

determined, and by choosing which subpatches must be collected into the result.

The intersection curve subdivides each intersecting shell into no more than three disjoint open surfaces: the surface
outside, inside and on the boundary of the other polyhedron. The part of the boundary of the resulting polyhedron,
generated by the intersecting shells, is very easy to set up: the corresponding algorithm is detailed in the paragraph on
partitionable shells. The paragraph on isolated shells analyses how to evaluate the part of the boundary of the union
where input shells do not intersect. Such isolated shells may or may not appear in the resulting boundary: to discard or
to collect them in the Boolean result will depend on their position with respect to the polyhedron to which they do not
belong.

Shell extraction The Boolean operations are closed in the set of polyhedra only if may regard a polyhedron as
unconnected. Even a connected polyhedron may have an unconnected boundary. As an example consider an empty
sphere, with an external and an internal boundary shell.

In order to perform a Boolean operation, say P, U P, , the shells of both arguments must be preliminarly extracted from

the data structure used as their computer representation. A very simple recursive algorithm working in linear time may
be used with the WT representation, starting a new shell as containing a first boundary triangle, marking it, and
extracting recursively the unmarked adjacent triangles. When the extraction stops, a shell (a maximal 1-connected
boundary subset) has been extracted. A new shell can then be started from the first non marked triangle in the data
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structure, if any, and so on, until no more unmarked triangles remain. Let us denote with S; and S, the sets of shells of
P; and P,, respectively.

Shell intersection Each pair of shells (s;,s,) € S} xS, must be checked for empty intersection, using both global

5;58;
tests, e.g. checking for intersection of the containment boxes or spheres of s; and s;, and local tests when the former do
not succeed. A local test will check for patch intersection, discussed in the next paragraph.

A shell of P; which does not intersect any shell of P, is referred to as an isolated shell. A shell of P, that intersects at
least one shell of P, is referred to as a partitionable shell. Let I and T be two sets containing the isolated and
partitionable shells of S, respectively, so that S = T UT . A shell of P, moves from the set I; (initially set to S;) to the set
T, (initially set to 0 ) when one of its patches gives a valid intersection with some patch of P,.

An intersection between two curved triangles (i.e. two A-patches) is said valid when there exists points of P; that
belong to both the below and the above subspaces of P,, and viceversa, i.e. there exists points of P, that belong to
both the below and the above subspaces of P;. In other words, an intersection between two patches is valid when they
really cross each other, and do not simply touch (i.e. intersect) on a subset of points (topologically: a cell) of whatever
dimensionality.

Patch intersection and splitting When a valid intersection between two A-patches occurs, the intersection curve is
inserted in both input A-patches, by splitting the support triangles ¢; and t, (and possibly their adjacent triangles) so as
to split the patches into subpatches supported by two new subsets of triangles, pairwise containing a segment of the
intersection curve as the common edge. The algebraic formulation of the intersection problem is discussed in
Section 4.1; the numerical tracing of the intersection curve is shown in Section 4.2 , and the final triangle splitting is
discussed in Section 4.3 .

Partitionable shells The intersection curves subdivide the partitionable shells into no more than three sets, which
contain the surface patches that are internal, external and on the boundary of the other polyhedron, respectively. Such
surfaces must be alternatively chosen to collect the whole boundary of the resulting polyhedron. In the general case,
the envelope of the polyhedron P, U P, will be composed by:

(i) all the boundary patches of P; external to P, (and vice versa);

(ii) some of the patches laying on the boundary of both input polyhedra. In particular, the only common
patches with same orientation of the external normals;

(iii) some of the nonintersecting input shells, that we named isolated patches (see the next paragraph).

Isolated shells An isolated shell may appear or may not appear in the resulting solid P, U P, : it will be collected in
the final result only if it resides in the exterior of the object to which it does not belong. More precisely: given a shell
s € I, (respectively I,), where I, is the set of isolated shells of P; (respectively P,), then s C 9(P, U R,) if and only if it is

external with respect to P, (respectively P;). The problem of classifying a shell versus a nonintersecting polyhedron is
reduced to the classi[Jcation of a single shell point. To solve efficiently this classification problem with respect to every
cardinality of the set of patches, some sort of spatial index (say, a BSP-tree) would be very useful.

The algorithm for set union in pseudo code is thus:

1. Extract the shell sets S; and S, of polyhedra P; and P,
2. For each shell pair (s;,5,) € S, x S,

a. If (s

Else store s; and s;into I, , I,

5;) intersect then partition s, and s; into (s; 7, s;7), (s; -

+ 0.
155, ;7,5 ") and s; %

L)

3. Assemble the result R (i.e. glue s, * and s; * along s; 9,
4. Add each external isolated shell of I; and of I,)to the result R.

Operationally, step 2.a may be decomposed into:
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2.a. If the bounding boxes or spheres of (s;,s;) € 5, xS, intersect:
i For each patch pair (#,,%) € s, xs;, if intersect:

i. For all the intersection curves compute an A-spline approximation t,, °;
ii. Partition t, and t, into A-patch sets t, *, t,~ and t, ", t; *, respectively;
ii. If no intersecting patch pairs are found, then store s; and s; into I, , L.
Using the adJacency information:

i. Link all t,,° into loops;

ii. Propagate the partitioning and classification to all non intersecting

patches t, of s; (and t; of s));
iii. Create the new adjacency information.

4. INTERSECTION METHODS
Given two solids, represented by a boundary representation of prismatic A-patches, the Boolean algorithm in
section 3 has the two critical steps: (1) computation of the intersection of two patch elements; and; (2) split along the
intersection into a new patch sets. In this section we describe an approximate solution. The prismatic A-patch
intersection may be further decomposed into:

e algebraic formalization of the intersection problem;

e topologically sound piecewise-linear tracing of the intersection curve between two patches;

e construction and classification of new prism (sub)patches along the approximate intersection.
The Boolean algorithm will then select the appropriate (sub)patches according the classification given to compute a
Boolean operation.

4.1 Intersection of A-patches

Consider two prismatic A-patches A and B. Patch A (respectively B) is built on prisms D (respectively E) of vertexes
VU,V (resp. w,w,w,) and normals n,n,n, (resp. o0,0,0). Call the prism’s local coordinates,
a = (ay,qy, ) (resp. 8 = (8,,05,,0;) ) for the barycentric part, and, A (resp. pu) for the height along the interpolated

normal n(a) = ayn; + aon; + azn, (resp. o( ) = ...). The global coordinates generic point in the prism is v = D(\)a
(w=E(u)8 ). The surface patch is defined as the zero-contour of scalar field F(a,\) =0 (G(3,1) = 0).The scalar
field may be written in B.B. form as

FlaN) = > au(aNBj(a) |resp.GBu)= > byu(BmBy(B)|.

i+j+k=n i+j+k=n
Given a certain point «(3) in the barycentric coordinate, by root finding and selecting the A € I, , one has a
procedural parametric formulation of the surface
A= p(@) (7’esp.u = /LG([j’)).
Restricting the attention to cubic A-patches, the B.B. coefficients are uniquely determined by the prism data (see
section 2.2). With the sole exception of aj; (by;), the coefficients are simple linear
expressions a;;(\) = %MJF%k .The boundary curves of a patch have a simple rational parametric form

(le.ay =0 and ay=1-—q):

(0) (0)
Z a Bj(l-a,a) Z b Bi(1—5,6)
i+j=n i i+j=n
A= Aplay) = resp.p = p1g(8) = =
Z a B1j(1 —ag,0) Z b B — By, 61)
iti=n ik = gk

The intersection between the two surfaces of the patches is implicitly defined by the two surface equations and by
equating the coordinate transformation of the two prisms. The intersection is a system of 5 non-linear equations in 6
variables thus describing a curve.
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1 1

D)oy | = E(u)| B

Qg /32
Fla,\) = 0
GBp) = 0

The objective is to reduce the system in a minimal number of equations involving only the barycentric coordinates of
one of the two prisms (i.e. E).
Consider the coordinate transformation of prism D()\)as a A -family of linear transformations and invert keeping

A symbolic
X (v;N) = Vi) x (v () = vi(N)
D()) 1=m (v = v, () x v,(V)
V(M) x(v;(0) =v;(N)
One may then compose with E(u)
1 1
a; | = D) 'E(w)| 6,
a 3,

By bringing \D()\)\ to the left in the first row one has an equation relating in 8,\, iz . The second and third row define

« as rationals of 3, \, i . Denote these as Q(8,\, 1) = 0 and (3, A, u) respectively.
An operational example is, given any point (8,) in E coordinates: (1) solve Q(8,\u)=0 for X €1, ; (2)
compute a = a(B,\, 1) .
One may use the prism coordinates equations symbolically, substituting a(8,, ) in F(a,A) = 0, obtaining
F(B,2 1) = F(a(B, A ), \) = 0,
then use Q(3,\, 1) = 0 to eliminate A by resultant
F(B,1) = Resy o(F(3,\ 1),Q(B.\, 1)) = 0

The intersection equations are now reduced to two equations in the local coordinates of prism E

F(B.pm) = 0

G(B.1) 0

Conceptually, one may proceed further, and use the parametric form of the surface ;1 = p;(8) and reduce the

intersection to a curve in the barycentric coordinates 3 of prism E.

F(B) = F(B, 16 (3))-
Given any line in the barycentric coordinates 3 (eg: a linear constraint) one may by root finding compute the
intersection point. However, due to the procedural nature of u.(8) one may only proceed numerically. The
intersection between the surface of patch A and a border (ie. 3, = 0) of B may be fully developed symbolically by

plugging the rational 4(3,) into F(6,, ) obtaining F;(5,) = F(B,, e (8,)) -
Symmetrically the same intersection curve may be in defined in domain « of prism D.
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4.2 Intersection Approximation
The intersection points between the boundary of one patch and the surface of the other may be formulated as the
roots of univariate polynomials, albeit of high degree:

Fo(B) =0, Fy(B) =0, Fy(B;)=0, Gpla))=0, Gp(ey)=0, Gplas)=0.

Methods to approximate all the roots of a polynomial exist. This is a powerful starting point for a topologically accurate
tracing of the intersection curve. Even with the aid of computer algebra systems, the symbolic development of such
polynomials for a pair of generic patches, has been found too cumbersome. On the other hand the computation of
such polynomials for each specific pair of patches is too time consuming at implementation level.

In a prototype implementation a purely numerical approach has been used. Given a certain point 3, in E barycentric
coordinates:

(i) compute the height @ along the interpolated normal of the surface G using the procedural
form i = i ()

(ii) solve Q(3,\, 1) = 0 for \ by root finding and selecting A € I, ;

(iii) compute the corresponding barycentric coordinates in prism D by a = a(8,\, 1) ;

(iv) Compute F(a, \) .

This procedure effectively computes F( 3 ). Furthermore, the membership of the point in the interior of prism D is
determined. The computation may be used iteratively with a numeric root finding algorithm (such as the false position
method) to find an intersection point ( F,(3) = 0) along any line segment in the § barycentric domain.

Operationally, the barycentric domain of both prisms is subdivided. The particular subdivision is not important, for
simplicity the standard decomposition along iso-coordinates is used (Fig. 3a).

AESEREN ﬁg
JANAVAVAVAVAVAVAN

Fig. 3: Subdivision along: (a) iso-coordinates; (b) barycenter; (c) orthocenter.

Without loss of generality consider the prism E, the same operations are symmetrically done in the other prism D. For
each vertex of the subdivision the corresponding value of the surface scalar function F4( 3 ) is computed. Each sub-
triangle may either have no sign change (even number of intersections) or a sign change on two sides (odd number of
intersections). A simplistic approach is used and only one intersection in case of a sign change is searched. For each
intersection point save the barycentric coordinates (3, the height 1, and the corresponding coordinates a@ and A in
the other prism.

All intersection points in the same sub-triangle will be considered in the same connected component of the
intersection, thus a tracing of the intersection curve is possible. For the correctness of next steps it is important that: (1)
the trace of the intersection is done on both prisms; and; (2) both tracings contain the same points. (Fig. 4 and 5)

An advantage of this simplified algorithm is that the topology of the intersection in each sub-triangle is the same as the

intersection between two triangles and apt to be processed by the Boolean algorithm described in section 3 .
Topological errors are possible but their size is limited by subdivision granularity. (Fig. 6)
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Fig. 5: Tracing the intersection points on both domains: (a,b) a closed intersection curve between two A-patches; (c,d)
two unconnected segments of the intersection curve.

\ /

\
\

JAS WA

Fig. 6: Topological approximation.

4.3 Prism Scaffold Reconstruction

The final step of our intersection algorithm is to reconstruct triangular (and hence scaffold) support, conforming to the
topology of the intersection curve, for all the prism A-patches, that constitute the result of the Boolean operation.
Since the topology of the intersection curve is either an open or a closed curve in both the patch domains, the
necessary conforming triangulation can easily be affected in either or both domains.

In both the top and bottom rows of Figure 7 the leftmost figures show the intersection topology of the two A-patches
(shaded differently). The middle figures (top and bottom) depict the result of the union operation. The rightmost
figures show the patch decomposition into triangles and quads. The quads are further subdivided into two triangles,
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using any diagonal. The prism scaffolds are easily erected on each triangle based on the normals defined at the

vertices.

Note, for vertices lying on the intersection curve, there exist two vertex normals (one from each initial A-patch). Hence
these vertices are part of two prism scaffold edges.

Note that two adjacent prism scaffolds may intersect each other, since the resulting patches are no longer C!.

Fig. 7: Examples of conforming triangular supports of the prism A-patches that constitute the union of original twin A-
patches. Shown are parts of the scaffolds of the A-patches for two different topologies of the intersection curve. The
triangulation of the quad patches are not shown, just to maintain picture clarity.

Fig. 8: [Top row, Left]: Union of two spheres; [Top row, Middle]: The intersection curve shown on one of the spheres;
[Top row Right]: Zoom of the intersection curve shown on a single prism A-patch of the Sphere;[Bottom row, Left]:
Union of a green sphere with a blue free-form solid ; [Bottom row, Middle]: The Difference of the green sphere from
the Blue solid; [Bottom row Right]: Intersection solid region

Computer-Aided Design & Applications, 5(5), 2008, 730-742
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5. APPLICATIONS AND EXAMPLES

Molecular Models Physical models of molecular models via 3D printing have seen increasing use in bio-chemistry
kits, and more recently in tangible augmented interfaces, for experiential understanding of the complexity of molecular
interfaces, especially in docked complexes. Several CAD operations need to be performed on molecular models,
including Boolean set operations, thereby allowing, for example, the unioning of bonds, and differences to create
holes, before the 3D auto-fabrication process [10]. In Figure 9 we show two ligands proteins and the resulting complex
after a union, intersection and difference operation. Our prototype implementation has been used to compute the
actual intersection and union in the rest configuration. The reader should notice the small intersection curves, drawn in
color (magenta) on Figures 9 b, ¢, e and 9f.

(e) (f)

Fig. 9: The molecule M; with another molecule M,: (a) the union of M; and M,, (b) the difference M; — M,, (c) the
difference M, — M;, (d) the intersection of M; and M,, (e) zoom of the molecule M, with the intersection curves and (f)
zoom of the molecule M, with the intersection curves.

6. CONCLUSION

In this paper we have introduced a novel approach to Boolean operations with curved solids whose boundary is
triangulated by cubic A-patches, by using a boundary representation of the solids. We have also discussed a simple
and robust method to trace the intersection curves between two triangular or quadrilateral prismatic A-patches, while at
the same time locally refining the support triangulation. The prototype implementation provides for the computation of
Boolean operations between two free-form solids, modeled by A-patches. In the near future we plan to significantly
improve the efficiency of this approach with spatial progressive indices, and multiresolution evaluators, with local
refinement. Another interesting research direction consists in the direct modeling within both space and time
dimensions. In fact, the implicit geometric approach used here and the associated linear scaffolding can be extended
quite easily to work in higher dimensions. The most flexible finite element techniques for evolution equations are based
on spacetime discretizations, whereby the space and time domains are subdivided into finite elements. Evolution
equations are then discretized in both space and time on each element through low-order polynomial approximation
and numerical quadrature. Treating space and time in a unified way in the discretization provides a framework for both
mesh refinement and coarsening where needed in both space and time, driven by rigorously-derived a posteriori error
indicators.
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