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ABSTRACT

A semantic tolerance modeling scheme based on generalized intervals was recently proposed to
allow for embedding more tolerancing intents in specifications with a combination of numerical
intervals and logical quantifiers. By differentiating a priori and a posteriori tolerances, the logic
relationships among variables can be interpreted, which is useful to verify completeness and
soundness of numerical estimations in tolerance analysis. In this paper, we present a semantic
tolerance analysis approach to estimate tolerance stack-ups. New interpretable linear and nonlinear
constraint solvers are developed to ensure interpretability of variation estimations. This new
approach enhances traditional numerical analysis methods by preserving logical information during
computation such that more semantics can be derived from numerical results.
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1. INTRODUCTION
In tolerance analysis, estimations of accumulative tolerances are mathematically formulated and solved in different
ways. The typical approaches include variational estimation, kinematic formulation, statistical approximation, and
Monte Carlo simulation. The analysis process is simplified to the computation of pure numerical intervals. Methods of
linearization and high-order Taylor approximations are extensively used to compute parameters (e.g., statistical
moments) and variables (e.g., kinematic variations in assemblies). Because of these numerical treatments,
completeness and soundness of range estimations are compromised. A complete solution includes all possible
occurrences, which is to check if the range estimation includes all possible stack-up results. Conversely, a sound
solution does not include impossible occurrences, which consists in checking if the interval overestimates the actual
range.

The traditional worst-case linear stack-up methods focus on completeness while range estimations may not be sound.
The results usually are overly pessimistic. In contrast, Monte Carlo methods focus on soundness while estimations may
not be complete. Assuming the applied distributions and their parameters reflect the true variations, the simulated
ranges are complete only when the sample size is enormously large such that the pseudo-random numbers from a full-
period random number generator are exhausted. Kinematic formulation methods may result in solutions that are
neither complete nor sound because of the numerical treatments. This is illustrated by an example of one-way clutch in
Fig. 1. The known dimensional tolerances are the hub height 27 595 27 695[ . , . ]a , the ring radius

50 7875 50 8125[ . , . ]e , and the roller radius 11 42 11 44[ . , . ]r . The variation of the roller position b needs to be

estimated. By the direct linearization methods (DLM) with root-sum-square (RSS) and worst-case (WC) [1], we have

4 3585 5 2625[ . , . ]RSS b and 4 1368 5 4842[ . , . ]WC b respectively. However, the true variation range is

4 0838 5 4405[ . , . ]b , which can be derived from the direct analysis of geometry. The combination of the largest a and r

and the smallest e generates the lower bound of b. The combination of the smallest a and r and the largest e forms the

upper bound of b. We can see RSSb is sound but not complete, whereas WCb is neither complete nor sound.
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Fig. 1: An example of one-way clutch variation estimation.

Let 1( , , )nz f x x  be a general relation in tolerance analysis, where ix ’s ( 1, ,i n  ) are the variation source

variables (inputs), and z is the performance variable (output). Let [ , ]iix x ’s ( 1, ,i n  ) be the respective intervals of

the input tolerances and [ , ]z z a variation range estimate. [ , ]z z is complete if and only if the following statement is true:

“for any combination of inputs ix ’s within the respective [ , ]iix x ’s, the output 1( , , )nz f x x  must be included in the

estimated [ , ]z z ”. That is,

       11 11[ , ] [ , ] [ , ] ( , , )nn nnx x x x x x z z z f x x z       

Similarly, the estimation is sound if and only if the following statement is true: “for any output z within the estimated
[ , ]z z , there must exist a combination of inputs ix ’s within the respective [ , ]iix x ’s such that 1( , , )nz f x x  ”. That is,

       11 11[ , ] [ , ] [ , ] ( , , )nn nnz z z x x x x x x f x x z       

For instance, in the one-way clutch example of Fig. 1, we are able to assert

         2 227 595 27 695 50 7875 50 8125 11 42 11 44 4 0838 5 4405[ . , . ] [ . , . ] [ . , . ] [ . , . ] ( ) ( )a e r b b e r a r           

and

         2 24 0838 5 4405 27 595 27 695 50 7875 50 8125 11 42 11 44[ . , . ] [ . , . ] [ . , . ] [ . , . ] ( ) ( )b a e r b e r a r           

Therefore, the logic interpretation of numerical results as above enables us to assess the completeness and soundness
of range estimations. The attention of interpretability needs to be given in tolerance analysis. Recently, we proposed a
new semantic tolerance modeling scheme [2, 3, 4] based on generalized intervals to enhance the interpretability of
tolerance modeling. The purpose of semantic tolerance modeling is to embed logic relationships and engineering
implications into the mathematical representation. With logical quantifiers, the relationship between tolerance
specifications and implications of stacking may be derived from formulations. With the explicit differentiation between
a priori and a posteriori tolerances, models can capture process-oriented semantics such as the difference between rigid
and flexible materials in assemblies and the sequence of assembly.

In this paper, we present a semantic tolerance analysis approach based on interval vector loops to estimate tolerance
accumulations. To ensure the interpretability of numerical results, new interpretable Jacobi algorithms and
interpretable Hansen-Sengupta algorithms are developed to solve interval linear and nonlinear constraints. In the
remainder of the paper, a brief review of vector loop based tolerance analysis methods and the generalized interval as
the basis of semantic tolerance modeling are given in Section 2. In Section 3 the new interpretable linear system solver
is constructed. In Section 4 the interpretable nonlinear system solver is described. The new analysis approach is
illustrated with two numerical examples in Section 5.

2. BACKGROUND
There is a substantial amount of literature on tolerance modeling, analysis, and synthesis [5, 6, 7]. Here, we only give a
brief overview of vector loop based analysis methods that are closely related to the proposed semantic tolerance
analysis approach, as reviewed in Section 2.1. The main properties and notations of generalized intervals are
summarized in Section 2.2. And the quantified interval constraint satisfaction problem is reviewed in Section 2.3.
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2.1 Vector Loop-based Tolerance Analysis
Traditionally tolerance analysis is product-oriented. Dimensional limit, geometric variation, and kinematic displacement
can be modeled mathematically in vectors and matrices. The vectorial tolerancing methods (Wirtz et al. [8], Martinsen
[9]) model size, form, location, and orientation tolerances in a unified vector format in order to provide an integrated
quality control loop. Rivest et al. [10] employed the kinematic characteristics of links between datum and toleranced
features to model chains of variations. Clément et al. [11] identified and analyzed functional elements called TTRSs
which are associated with geometric constraints. The small-displacement torsor methods (Bourdet and Ballot [12],
Giordano and Duret [13], Descrochers [14]) approximate the rotation and translation displacement in the form of
torsors. The matrix representation methods (Whitney et al. [15], Desrochers and Riviere [16], Lafond and Laperrière
[17]) model small displacement in kinematic chains in the form of homogenous transformation matrices. Recently,
Desrochers et al. [18] combined the torsor and matrix-based representations for tolerance analysis. Chase et al. [1, 19,
20] performed analysis of assemblies with tolerance vectors and small kinematic adjustments with linear
approximations of implicit geometric constraints. Sacks and Joskowicz [21] analyzed 2D kinematic tolerances of
assemblies with contact changes by the aid of contact constraints. Zou and Morse [22] proposed a fitting condition test
method based on geometric constraints of gap closure between components.

In recent years, process-oriented analysis approaches were also proposed to consider the accumulation effects of
manufacturing processes. With 1D vector loops, Zhang [23] combined the relation between functional requirements
and dimensional tolerances with the one between dimensional and machining tolerances for simultaneous tolerancing.
Based on constraints of force closure (Liu and Hu [24], Chang and Gossard [25]), 3D vector loops were used to
predict variation accumulation in sheet metal joinings with the linearized finite element formulation. Long and Hu [26]
extended the method to include the variation of fixtures during assembly operations. The single-station methods were
also extended to multi-station approaches (Shiu et al. [27], Camelio et al. [28]) where variations are propagated in
stages with tooling variations incorporated. Recently, Huang et al. [29] developed a stream-of-variation method to
estimate dimensional variations in rigid-body assemblies for single-station and multi-station systems considering fixtures
based on kinematic constraints.

In the above vector loop based methods, variation problems are formulated based on constraints of either form closure
or force closure. The numerical treatments applied in these approaches prohibit interpretable numerical results. The
main reason is that the commonly used solving methods with linearization and high-order approximations do not
incorporate interpretability. During computation, the logic relationships among variables are left out. Therefore, the
completeness and soundness of the results cannot be verified. In this paper, we propose a semantic tolerance analysis
approach based on a new structure of interpretable system solvers. Generalized intervals are used for a unified
variation representation.

2.2 Generalized Intervals
The semantic tolerance model is based on modal interval analysis (MIA) [30, 31, 32], which is an algebraic and
semantic extension of the classic interval analysis (IA) [33]. A modal interval or generalized interval : [ , ]x x x  is

called proper when x x and improper when x x . The set of proper intervals is denoted by  [ , ] |x x x x 

and the set of improper intervals by  [ , ] |x x x x  . The width of x is wid[ , ] :x x x x  and the center is found

by   2mid[ , ] : /x x x x  . A real function ( )f x where nx   can be extended to ( )f x where nx  , which is

called a  -extension, AE-extension, or modal extension. The real arithmetic is extended to the so-called Kaucher
arithmetic [34].

Three special operators, pro, imp, and dual, are defined in the Kaucher arithmetic. Given a generalized interval
[ , ]x x x  , pro : [min( , ),max( , )]x x x xx and imp : [max( , ),min( , )]x x x xx return the respective proper and

improper interval values. dual[ , ] : [ , ]x x x x builds a relationship between proper and improper intervals. Related to the

arithmetic operations  , , ,     ,      dual dual dualx y x y  . The inclusion relationship between modal

intervals is defined as    [ , ] [ , ]x x y y y x x y     . The less than or equal to relationship is defined as

   [ , ] [ , ]x x y y x y x y     .
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Different from IA, the group property is maintained in MIA because generalized intervals are closed under the Kaucher
arithmetic operations. A generalized interval a is an algebraic solution of the equation ( ) f x b where x is unknown

if the original algebraic relation is still valid when the variable x is replaced by the interval result a , i.e., ( ) f a b . This

property is called algebraic closure. It simplifies the numerical analysis process while the interpretability is preserved.

Another uniqueness of generalized intervals is the modal semantic extension. Unlike IA which identifies an interval by a
set of real numbers only, MIA identifies an interval by a set of predicates which is fulfilled by real numbers. Each
interval x  has an associated logical quantifier, either existential (  ) or universal ( ). For a real relation

( )x z  where nx   and z   , the semantics of its modal extension can be expressed with the quantifiers, which

are derived based on the modalities of generalized intervals. As universal quantifiers precede existential ones, such
quantified propositions have the form of

       Q pro pro ( )zx z x x z     x z xP P I I

where P and I are disjoint sets of indices for proper and improper components of  x n
P I , Qz   if z  ,

and Qz   if z  .

2.3 Quantified Interval Constraint Satisfaction
The constraint satisfaction problem over intervals had been studied in the past decade [35, 36]. Given a constraint

1( , , )nc x x , the main objective is to find a 1( , , ) n
n x x  to approximate the solution set n S such that

     1 1 1( , , )n n nx x c x x   x x  . Recently, universally quantified interval constraints received more attention,

which is to find the solution 1( , , ) n
n x x  such that      1 1 1( , , )n n nx x c x x   x x  .

Quantifier elimination [37, 38] is the traditional method to solve quantified constraints. More recently, Benhamou et al.
[39, 40] developed an inner contracting algorithm by splitting the complementary domain for box consistency. Shary
[41, 32] formulated inner and outer estimation algorithms for generalized linear systems. Sainz et al. [42] developed
linear and nonlinear algorithms to find algebraic solutions of constraints. Ratschan [43, 44] developed a branch-and-
prune algorithm for inequality constraints over real numbers. Herrero et al. [45] developed a quantified set inversion
algorithm for inner and outer estimations based on the interpretability of MIA evaluations. Goldsztejn and Jaulin [46]
developed a branch-and-prune algorithm for inner and outer approximations of existentially quantified equality
constraints.

The above quantified constraint solving methods concentrate on inner or outer approximations of solution sets. The
interpretation requires that all variables are either universal or existential. In this paper, we generalize the quantified
interval constraint satisfaction problem such that the numerical result is remained interpretable when the collection of
variables is partially universal or existential.

3. SOLVING INTERPRETABLE LINEAR CONSTRAINTS
As mentioned in Section 2.1, the linearization approach used in the existing vector loop based tolerance analysis
methods does not support interpretability. Thus the completeness and soundness of the numerical results cannot be
verified. Here, we describe a new linearization and solving process that generates interpretable numerical results.

For nx  , a linear system of generalized intervals

 A x b (3.1)

where ( ) n n
ij n n


 A a  and nb  , is closely associated with two inclusion relationships  A x B and

 A x B , given as

          A x B A x B A x B (3.2)

If a Jacobi interval operator is defined as

 0 and 1

dual dual

( ) : pro , ,
dual

i ij j

i j
i ii

ii

i n


 

   

b a x

x a
a

 (3.3)
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the following theorem provides the foundation to solve the linear system in Eqn.(3.1).

Theorem 3.1 [42] (i) If x is a solution to  A x b , ( ) x is a solution to  A x b . (ii) If x is a solution to

 A x b , ( ) x is a solution to  A x b .

However, the linear system in Eqn.(3.1) is not interpretable if it includes multi-incident jx ’s which are existential.

Because the concatenation of x  x and x  x is not x  x in general. More formally

       
1 11 1 1 1 1 1 1Q pro pro Q pro ( , )y zy x z z f x y    y x z

and

       
2 22 2 2 2 2 2 2Q pro pro Q pro ( , )y zy x z z f x y    y x z

do not necessarily lead to

           
1 2 1 21 1 2 2 1 1 2 2 1 1 1 2 2 2Q pro Q pro pro Q pro Q pro ( , ) ( , )y y z zy y x z z z f x y z f x y        y y x z z

To ensure interpretability, a transformed and interpretable linear system

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

pro pro

pro pro

pro pro

n n

n n

n n nn n n

   


   


    


a x a x a x b

a x a x a x b

a x a x a x b









(3.4)

or

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

imp imp

imp imp

imp imp

n n

n n

n n nn n n

   


   


    


a x a x a x b

a x a x a x b

a x a x a x b









(3.5)

should be solved instead, where each occurrence of the variables except the diagonal ones is transformed to its proper
or improper counterpart in the new system. The notations of Eqn.(3.4) and Eqn.(3.5) are simplified as

pro A x b (3.6)

and
imp A x b (3.7)

The algebraic solutions can be interpreted as

             pro pro proP P I I P P I I P P I Ia b x a b x A x b             a b x a b x (3.8)

and

             pro pro proI I P P I I P P I I P Pa b x a b x A x b             a b x a b x (3.9)

respectively.

An enhanced interpretable Jacobi algorithm is developed to solve Eqn.(3.6), as listed in Fig. 2, where the Jacobi
operator is applied to the original and the transformed variables alternately. We define a proper transform Jacobi
interval operator as

 0 and 1

dual imp

( ) : pro , ,
dual

i ij j

i jpro
i ii

ii

i n


 

   

b a x

x a
a

 (3.10)

Applying the Jacobi operator in Eqn.(3.3) to the transformed variable prox is equivalent to applying the proper
transform Jacobi operator in Eqn.(3.10) to the original variable x .

Similarly, an interpretable Jacobi algorithm to solve Eqn.(3.7) is listed in Fig. 3, where an improper transform Jacobi
interval operator is defined as
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 0 and 1

dual pro

( ) : pro , ,
dual

i ij j

i jimp
i ii

ii

i n


 

   

b a x

x a
a

 (3.11)

Function _ ( , )interpretableJacobi prox A b

1. Initial estimation of 0( )y as the point (real) solution of

mid( ) mid( )x A b such that 0( )imp pro A y b ;

2. 0 0( ) ( )( ) x y associated with imp pro A x b , which is also

the initial solution to  A x b as 0k  ;

3. Iterate the follows associated with  A x b until x converges:

1k k  ;

If k is odd, 1( ) ( )( )k pro k  x x ;

otherwise, 1( ) ( )( )k k  x x .

Fig. 2: Proper transform Jacobi algorithm for the linear system in Eqn.(3.4).

Function _ ( , )interpretableJacobi impx A b

1. Initial estimation of 0( )y as the point (real) solution of

mid( ) mid( )x A b such that 0( )pro imp A y b ;

2. 0 0( ) ( )( ) x y associated with pro imp A x b , which is also

the initial solution to  A x b as 0k  ;

3. Iterate the follows associated with  A x b until x converges:

1k k  ;

If k is odd, 1( ) ( )( )k imp k  x x ;

otherwise, 1( ) ( )( )k k  x x .

Fig. 3: Improper transform Jacobi algorithm for the linear system in Eqn.(3.5).

Theorem 3.2 (i) If x is a solution to  A x b , then x is also a solution to pro A x b . (ii) If x is a solution to

 A x b , then x is also a solution to imp A x b .

Proof. (i) Because of the monotonicity of inclusion in the Kaucher arithmetic, i.e., ( ) ( )       x x y y x y x y 

where { , , , }     . For any , u v  , pro v v and pro u v uv . Thus pro j jx x for 1, ,j n  , and

1 1

pro
n n

ij j ij j

j j 

 a x a x for 1, ,i n  . Therefore, P   A x A x b . (ii) can similarly be proved. □

In Fig. 2, at the ( 2k )th step in the iterative solving process, applying the Jacobi operator in Eqn.(3.3) to 2 1( )kx , we

receive 2 2 1( ) ( )( )k k  x x such that 2 2( ) ( )pro k k   A x A x b . Then at the ( 2 1k  )th step, applying the proper

transform Jacobi operator in Eqn.(3.10) to 2( )kx , we have 2 1 2( ) ( )( )k pro k  x x such that 2 1( )k A x b . The iteration

continues until stopping criteria are met. If ( )kx converges to x , x is a solution to the interpretable linear system in
Eqn.(3.4). The iteration of the algorithm in Fig. 3 is similar.

The interpretable linear system solving algorithms in Fig. 2 and Fig. 3 ensure the interpretability of numerical results.
This is regarded as an important step towards interpretable tolerance analysis. Based on this, an interpretable nonlinear
constraint solver is developed in Section 4.
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4. SOLVING INTERPRETABLE NONLINEAR CONSTRAINTS
In general, we would like to find the solution to a nonlinear system : m n n f    of generalized intervals

0( , ) f u x (4.1)

where mu  and nx  . The correspondingly desirable interpretation of the solution x is

         0pro pro ( , )u x u x f u x        u x u xP P P P I I I I (4.2)

The Hansen-Sengupta (HS) operator is one of the most used methods to estimate the outer enclosure of nonlinear
systems, which is based on the interval Gauss-Seidel (GS) operator

 0 and 1( , , ) : , ,

i ij j

i j
i i ii

ii

i n


 

    

b a x

A b x x a
a

 (4.3)

for the classic interval linear system Ax b where n nA  , nb  , and nx  . If a Lipschitz matrix n nJ 

with respect to x for a continuous function 0( )f x  can be found such that

for all( ) ( ) ( ) ( , )f x f y x y x y   J x (4.4)

then the HS operator is defined as

0 0 0 0( , , , , ) : ( , ( ), )f C x x C Cf x x     J x J x (4.5)

where 0x  x and n nC   is the preconditioning matrix that usually is 1(mid )J . In particular, an interval evaluation

of the continuous function’s Jacobi matrix is an instance of Lipschitz matrices.

The guaranteed existence of the solution from the HS operator has been proved and summarized in the following
theorem.

Theorem 4.1 ([47] Theorem 5.1.8) If the HS operator in Eqn.(4.5) is applied in contraction, then (i)
1

00( ) ( , , , , )f f C x  x J x ; (ii) If 0( , , , , )f C x   x J x , then f contains no zeros in x ; (iii) If 0 int( )x  x and

0( , , , , ) int( )f C x   J x x , then J is strongly regular and f contains a unique zero in 0( , , , , )f C x J x .

Now we show the extension of the classic HS operator for our interpretable nonlinear systems in Eqn.(4.1). If a
Lipschitz matrix [ (pro ), (pro )]u xJ J x J u where :u n n mJ   and :x m n nJ   can be found such that

0 0 0 0 for and( , ) ( , ) ( ) ( ) ( pro pro )u xf u x f u x u u x x u x        J J u x (4.6)

then

0 0 0 0 for and( , ) ( , ) (pro ) (pro ) ( pro pro )u xf u x f u x u x u x        J u J x u x (4.7)

If we replace the interval GS operator in Eqn.(4.5) by the proper transform Jacobi interval operator in Eqn.(3.10), a
proper transform HS operator is then defined as

 0 0 0 0 0 0( , , , , ) : ( pro , ( , ) dual pro ( ) , )pro x pro x uf C x x C Cf u x C u x        J x J J u x (4.8)

where 1(mid )xC  J . Similarly, an improper transform HS operator is defined as

 0 0 0 0 0 0( , , , , ) : ( imp , ( , ) dual imp ( ) , )imp x imp x uf C x x C Cf u x C u x        J x J J u x (4.9)

Theorem 4.2 (i) The solution of the nonlinear system Eqn.(4.1) by the proper transform HS operator in Eqn.(4.8) is
interpreted as

             0pro pro ( , )u u x xu x g g u x f u x            u x J J u xP P P P I I I I (4.10)

(ii) The solution by the improper transform HS operator in Eqn.(4.9) is interpreted as

             0pro pro ( , )u u x xu x g g u x f u x            u x J J u xI I I I P P P P (4.11)

Proof.

(i) If x is an algebraic solution of the linearized system  0 0 0 0pro ( ) ( , ) dual pro ( )x pro uC x Cf u x C u      J x J u ,

which is equivalent to 0 0 0 0 0( , ) pro ( ) pro ( )u x prof u x u x      J u J x , then the interpretation of the solution is
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 0 0 0 0 0

pro pro

( , ) ( ) ( )

u u x x

u x

u x g g u x

f u x g u u g x x

           

    

u x J J u xP P P P I I I I
(4.12)

Since the interpretation of Eqn.(4.7) is

         0 0 0 0pro pro ( , ) ( , ) ( ) ( )u u x x u xu x g g f u x f u x g u u g x x            u x J J (4.13)

the concatenation of Eqn.(4.12) and Eqn.(4.13) yields the interpretation in Eqn.(4.10).

(ii) If x is an algebraic solution of the linearized system  0 0 0 0imp ( ) ( , ) dual imp ( )x imp uC x Cf u x C u      J x J u ,

which is equivalent to 0 0 0 0 0( , ) imp ( ) imp ( )u x impf u x u x      J u J x , then the interpretation of the solution is

           

 0 0 0 0 0

pro pro

( , ) ( ) ( )

u u x x

u x

u x g g u x

f u x g u u g x x

           

    

u x J J u xI I I I P P P P
(4.14)

The concatenation of Eqn.(4.14) and Eqn.(4.13) yields the interpretation in Eqn.(4.11). □

The interpretable nonlinear system solving algorithms based on the proper and improper transform HS operators are
listed in Fig. 4 and Fig. 5 respectively. With the interpretable solvers, the completeness and soundness of numerical
estimations in tolerance analysis can be verified. This is illustrated by examples in Section 5.

Function _ ( , )interpretableHS pro fx u

1. Initial guess of 0( )x such that 0 0( )pro , pro , ( , )u x f u x    u x ;

2. Calculate prou

f

u




 x

J ,
u

prox

f

x





J ,   1

mid xC


 J , 0 midu  u , 0 midx  x , pro xC A J ,

and 0 0 0[ ( , ) dual(pro ( ))]uC f u x u     b J u ;

3. 0_ ( , )interpretableJacobi pro x x A b ;

4. Go to Step 2 until x converges.

Fig. 4: Proper transform HS algorithm for the nonlinear system in Eqn.(4.1).

Function _ ( , )interpretableHS imp fx u

1. Initial guess of 0( )x such that 0 0( )pro , pro , ( , )u x f u x    u x ;

2. Calculate prou

f

u




 x

J ,
u

prox

f

x





J ,   1

mid xC


 J , 0 midu  u , 0 midx  x , imp xC A J ,

and 0 0 0[ ( , ) dual(imp ( ))]uC f u x u     b J u ;

3. 0_ ( , )interpretableJacobi imp x x A b ;

4. Go to Step 2 until x converges.

Fig. 5: Improper transform HS algorithm for the nonlinear system in Eqn.(4.1).

5. NUMERICAL EXAMPLES

5.1 Stacked Block Assembly
Fig. 6 shows an example of a stacked block assembly including a base, a rectangular plate and a cylindrical rod. With
the known size tolerances of manufactured components, the kinematic variations of the assembly can be calculated
with three interval vector loops. Each of the closed loops defines the algebraic relations between the size and kinematic
variations. The vector components in each 2D translational or rotational direction sum up to zero, as listed in Tab. 1.

The tolerance analysis problem is formulated by nine constraints. It can be solved by using the improper transform HS
algorithm in Fig. 5. The size tolerances ( , , , , ,a b c d e f ) are assigned to be proper, and the resulted kinematic variations

( 1 2 3 4 5, , , ,u u u u u ) and angular variations ( 1 2 3 4, , ,    ) are improper. Based on the interpretability rule in Eqn.(4.11),

the result is interpreted as: for all the possible values within the kinematic variation ranges, there exists a combination
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of size tolerances such that the nonlinear constraints are satisfied. In other words, the kinematic variation estimations
are sound. Generating verifiable numerical results is the main advantage of solving interpretable systems compared to
the traditional analysis methods, where estimations are not interpretable. Consequently completeness or soundness of
the estimations is unknown.

u5

b

f

4

2

u3

c

e

u4

b

d

f

3

2

u3

u2

a a

u3

u1

1

2

d

c

b

a

ef

Base

Rod

Plate

(b) vector loop 1

(c) vector loop 2 (d) vector loop 3

(a) known parameters

Fig. 6: A stacked block assembly with closed loops of variations.

Known
Size Variations

6 62 0 2 6 805 0 075 10 675 0 125

4 06 0 15 24 22 0 35 3 905 0 125

. . . . . .

. . . . . .

a b c

d e f

     

     

Unknown
Kinematic
Variations

1 2 3 4 518 7181 8 6705 10 0477 2 1894 27 2965. ? . ? . ? . ? . ?u u u u u         

1 2 3 474 7243 74 7243 105 2761 105 2761. ? . ? . ? . ?             

Loop 1
1 2 2 2 1 2

2 3 2 2 2 1 2 1

3 2 1

90 180 180 0

90 180 180 0

90 90 90 90 360 0

cos( ) cos( ) cos( )

sin( ) sin( ) sin( )

F u a a

F u u a a u

F

   

   

 

        


         


       

Loop 2
4 2 4 2 2 3

5 3 2 4 2 2 3

6 2 3

90 90 0

90 90 0

90 90 90 90 180 0

cos( ) cos( ) cos( )

sin( ) sin( ) sin( )

F b u d f

F u b u d

F

   

   

 

        


       


       

Loop 3
7 2 5 2 2 4

8 3 2 5 2 2 4

9 2 4

90 90 0

90 90 0

90 90 90 90 180 0

cos( ) cos( ) cos( )

sin( ) sin( ) sin( )

F b u c e f

F u b u c

F

   

   

 

         


       


       

Result of the
Improper
Transform HS
Algorithm

1

2

3

4

5

19 2237 18 2128

9 1142 8 2268

10 3430 9 7524

2 4497 1 9291

27 8137 26 7794

[ . , . ]

[ . , . ]

[ . , . ]

[ . , . ]

[ . , . ]

 
   
   
   
    
   
   
    

 

u

u

u

u

u

1

2

3

4

75 9385 73 5092

73 5092 75 9385

104 0615 106 4908

104 0615 106 4908

[ . , . ]

[ . , . ]

[ . , . ]

[ . , . ]

 
   
    
    
    
        

φ

φ

φ

φ

Interpretation of
the Result

1 2 3 4

1 2 3 4 5

73 5092 75 9385 75 9385 73 5092 106 4908 104 0615 106 4908 104 0615

18 2128 19 2237 8 2268 9 1142 9 7524 10 3430 1 9291 2 4497 26 77

( [ . , . ])( [ . , . ])( [ . , . ])( [ . , . ])

( [ . , . ])( [ . , . ])( [ . , . ])( [ . , . ])( [ .u u u u u

                

          94 27 8137

6 42 6 82 6 73 6 88 10 55 10 8 3 91 4 21 23 87 24 57 3 78 4 03

, . ])

( [ . , . ])( [ . , . ])( [ . , . ])( [ . , . ])( [ . , . ])( [ . , . ])a b c d e f           

The above constraints are satisfied.

Tab. 1: The numerical formulation of the stacked block assembly in Fig. 6.



Computer-Aided Design & Applications, 5(5), 2008, 654-666

663

5.2 MEMS Mirror Assembly
Fig. 7 shows a second example, which is a polysilicon micro mirror mechanism. The assembly includes transmission
gears, a linear rack, pop-up mirrors, and hinges. Constraints are formulated based on five closed loops, as shown in
Fig. 7(b). Tab. 2 lists the size and kinematic variables, constraints, and the numerical result. The system was solved by
using the proper transform HS algorithm in Fig. 4. The interpretation is based on the interpretability rule in Eqn.(4.10).

(a) Polysilicon Micro Mirror Assembly (Courtesy of Sandia National Laboratories,
SUMMiTTM Technologies, mems.sandia.gov)

(b) Five closed loops of interval vectors

x

z

x

y

d3

d2

k4

r1
r2

r3

r4

k1

r1k3
d4 3

4

k2

k5
k3

d3

d5

1

k4

d5

4

k4

k4

k2

k5

d1 2

Fig. 7: The MEMS mirror assembly with closed loops of variations.

Known
Variations

1 2 3 4 1

2 3 4 5 4

0 655 0 003 1 945 0 003 0 475 0 003 1 225 0 003 12 50 0 05

1 145 0 003 10 40 0 05 14 30 0 05 3 45 0 05 32 0 5

. . . . . . . . . .

. . . . . . . . .

r r r r d

d d d d 

         

        

Unknown
Variations

1 2 3 4

5 1 2 3

0 54 11 2 2 0 2 9

1 8 42 7 7

. ? . ? . ? . ?

. ? ? ? ?

k k k k

k   

       

       

Constraints 1 1 4 3 2 2 4 1 2 2 3 1 1 2 2 3 1

3 3 4 4 3 1 2 4 3 3 3 5 4 2

5 5 4 4 5 4

0 0 0

2 0 0 0

0 0

cos ( )cos sin ( )sin

cos sin cos

sin cos

r k r r r k k d r r d r r

k d k d r d d k d d k

k d k d

   

  

 

            

             

    

Result of the
Proper Transform
HS Algorithm

1 2 3 4

5 1 2 3

0 5520 0 5280 11 5874 10 9336 2 2836 1 8470 2 9843 2 8672

1 8811 1 7754 56 2146 28 2061 8 1120 6 8354 7 2812 7 1813

[ . , . ] [ . , . ] [ . , . ] [ . , . ]

[ . , . ] [ . , . ] [ . , . ] [ . , . ]

   

   

k k k k

k φ φ φ

Interpretation of
the Result

1 2 3 4

1 2 4 5 4

1 2

0 652 0 658 1 942 1 948 0 472 0 478 1 222 1 228

12 45 12 55 1 142 1 148 14 25 14 35 3 40 3 50 31 5 32 5

0 5280 0 5520 10 933

( [ . , . ])( [ . , . ])( [ . , . ])( [ . , . ])

( [ . , . ])( [ . , . ])( [ . , . ])( [ . , . ])( [ . , . ])

( [ . , . ])( [ .

r r r r

d d d d

k k



       

         

    3 4 5

1 2 3 3

6 11 5874 1 8470 2 2836 2 8672 2 9843 1 7754 1 8811

28 2061 56 2146 6 8354 8 1120 7 1813 7 2812 10 35 10 45

, . ])( [ . , . ])( [ . , . ])( [ . , . ])

( [ . , . ])( [ . , . ])( [ . , . ])( [ . , . ])

k k k

d  

     

       

The above constraints are satisfied.

Tab. 2: The numerical formulation of the MEMS mirror assembly in Fig. 7.
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In general, different modality assignments of tolerance intervals lead to different numerical results and different
interpretations. Depending on the designer’s intention or desired semantics, the corresponding combinations of proper
and improper intervals can be applied.

6. CONCLUDING REMARKS
Semantic tolerance modeling is to enrich tolerance modeling and analysis structures such that more process-oriented
tolerancing semantics and intents can be embedded in mathematical representations. The ultimate goal is to support
better design and manufacturing specifications. In this paper, we presented a semantic tolerance analysis approach by
solving quantified interval constraints. To ensure the interpretability of numerical results, new interpretable Jacobi
algorithms are developed to solve linear constraints. The interpretable relations among variables can be maintained
during computation. New proper and improper transform HS algorithms are also developed to solve nonlinear
constraints. Based on logic relationships, completeness and soundness of numerical results can be verified. Generating
verifiable numerical results is the main advantage of solving interpretable systems compared to the traditional analysis
methods where results are not interpretable.

The future work includes the extension of the current approach for under- and over-constrained systems. With the
logical quantifiers, it is possible to convert under- or over- constrained systems to well-constrained ones. The
convergence conditions of nonlinear system solvers and how the preconditioning affects the interpretation need to be
investigated further. The developed interpretable methods can also be extended to other applications. Since the
developed numerical methods are generic in nature, they could potentially be applied in other engineering domains
such as robust control and prediction under uncertainties.
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