
Computer-Aided Design & Applications, 5(5), 2008, 639-653

639

Computer-Aided Design and Applications

© 2008 CAD Solutions, LLC
http://www.cadanda.com

Feature-Based Design – An Overview

Tamer M. M. Shahin1

1UAEU University, Tamer.Shahin@uaeu.ac.ae

ABSTRACT

This paper presents an overview of the research carried out in feature-based design (FBD). Detailed
definitions of features are presented and a summary on the work that has been carried out in areas
such as feature taxonomies, mapping, validation, constraints in FBD, interfaces, engineering
information storing schemes and the object-oriented approach is provided. A way forward is
explored and a recommendation for further research is suggested in order to minimize production
lead time and cut down capital costs by introducing and implementing methodologies for the
automation of complex model creation.

Keywords: Feature-based design, parametric design, design by features, form feature recognition,.
DOI: 10.3722/cadaps.2008.639-653

1. INTRODUCTION
Today CAD workstations are an essential tool in the hands of a design engineer. Indeed, over the last 40 years,
computers have revolutionized the way that engineering designs are created. Initially, computers were used as a
drafting tool [3]. Progressively, the technological advances in computer software and hardware introduced the
computer as a medium to model engineering creations in three-dimensions. “Geometric modeling” became a powerful
technique in engineering, providing the ability to determine through different types of modelers the construction
sequences, behavior, strengths and weaknesses, and other characteristics of most of the engineering models before
they were physically constructed. The next step was FBM (Feature–Based Modeling). Features were introduced in the
engineering designers’ arsenal of tools that helped bring together design with manufacturing and provided a means for
engineers to develop a link between CAD and CAM (Computer-Aided Manufacturing) as well as techniques to
automate the procedures [30]. This automation resulted in higher production rates (efficiency) and capital cost
reduction. With the aid of modern, state-of-the-art design software, the creation of a part’s manufacturing code (i.e.
Numerical Control-NC Code) can now be made on the fly. However, it is still a relatively new field and the future
success of such computer software packages will depend on the ability of CAD systems to implement new techniques,
handle more complexity, and potentially aid in the decision-making in order to ultimately make the design and
representation of a product a more accurate and efficient process [41].

Figure 1 illustrates the different areas of research within FBD. This paper presents an overview of the research carried
out in feature-based design (FBD). Current methods, definitions and procedures are reviewed and analyzed further so
as to determine their drawbacks and to emphasize the need for development of new techniques.

2. FEATURE DEFINITION
There have been various different definitions about what exactly a feature represents. Early informal feature definitions
were analyses and process planning oriented. That was because at the time most of the Computer-Aided Design (CAD)
applications needed a boost so as to increase the design efficiency with the integration of other applications based on
analyses and process planning. An early feature definition was “a specific geometric configuration formed on the



Computer-Aided Design & Applications, 5(5), 2008, 639-653

640

surface, edge or corner of a workpiece, intended to modify outward appearances or to assist in achieving a given
function” [39].

Fig. 1: Feature-based design areas.

Another early feature definition was that “a feature is a geometric form or entity that is used in reasoning in one or
more design or manufacturing activities” [39].

More recent definitions have been introduced that can be used in various domains other than process planning. Such a
definition is that “features encapsulate the engineering significance of portions of the geometry of a part or assembly,
and, as such, are important in product design, product definition, and reasoning, for a variety of applications” [42].

Lamit defines form-features as “shapes that contain engineering knowledge such as, structure, development stage, and
parameters such as dimensions and material information and can be used by the designer in order to speed up the
design process” [28].

In Chu and Gadh [10] features are classified according to the number of possible tool approaches for machining. A
detailed classification of machining features is given by Feng et al [16]. Some definitions (generic and non-generic
based on geometric information) are presented below:

 “Features are considered as regions of parts having some manufacturing significance in the context of
machining” [17].

 “Recurring patterns of information related to a part’s description” [44].
 “A carrier of product information that may aid design or communication between design and manufacturing,

or between other engineering tasks” [40].
 “A set of information related to a parts description or relations between parts” [21].
 “Features are protrusions or depressions; a protrusion feature is a convex face set closed by a concave

boundary loop whereas a depression feature is a concave face set closed by a convex boundary loop”
[49].

Further research began to see a convergence of object-oriented design/models and features. Salomons states ‘features
can be treated as design objects, belonging to a general class, which inherits properties from other classes’

Because of the nature of features, different information can exist and thus altering their primary role to different
application contexts. Some of the different kinds of features are functional features [41] [43], assembly features [42]

Feature-Based Design

Definition Creation Techniques Taxonomies

Mapping Validation Object-Oriented Approach

Libraries &Databases Constraints Interfaces

Design Storing Methods



Computer-Aided Design & Applications, 5(5), 2008, 639-653

641

[21] [43] [14], analysis features [39], tolerance features [43], technological features [42] [21], material features [42]
[44] [43], precision features [42] [44] [21], mating features, abstract features [40] and physical features. Shah
however places some generic criteria to fulfil the definition and properties of a feature, “A feature is mappable to a
generic shape, is a physical constituent of a part, and has engineering significance and predictable properties” [50].

The use of features nowadays has been transformed to incorporate recent advances. Features are control tools that
incorporate dynamic engineering knowledge to aid engineers for design, reuse and manufacturing. They can be used
in various different ways and they always result in engineering model generation. It can be seen from the literature that
feature definitions broadly are divided into two main categories, one for design features and the other for
manufacturing features. Design features are usually defined as sets of geometric entities that represent certain shapes
patterns and have certain functions or embedded information. Manufacturing features are usually portions of a
workpiece that can be generated with metal removal processes. In general though, a feature is a physical constituent of
a part and as a result parts are physical constituents of assemblies. Thus, any feature attribute is a characterisation of
parts and their assemblies. Substantial research has gone into the means to create or recognize these features and in
the next section, different methodologies for creating and using a feature will be reviewed.

3. FEATURE CREATION TECHNIQUES AND REPRESENTATION
There are three major design and manufacturing strategies/approaches whereby Feature-Based Design can be used.
The first approach is called Concurrent Design. In concurrent design the design engineer creates models with respect to
their manufacturing processes. As such, there is an optimisation in the production period that helps the engineers to
think in advance and be able to modify the original model in case of any possible inadequacies by following a path of
iterative procedures. It can be stated that this strategy is mainly process planning based and its main characteristics as
stated by Duan et al [13] are as follows.

 Design is carried out in manufacturing mode
 The primitives that are used are mainly manufacturing features
 It is suitable for fabricating moulds on matching centers for small batches.

The second approach is called Design for Assembly (DFA). This approach has become one of the favourite in the
recent years because of its simplified use. Most of the current DFA software packages are interactive and user friendly.
The main target of this approach is to minimise the possible number of parts in an assembly and at the same time
minimise lead time, reduce the capital and running costs. These techniques are primarily quantitative or qualitative
[55] and use the cost-tolerance design methodology mainly [13].

Finally, the third is the parametric design which is the approach and focus of this paper. It groups similar products into
product families helping in that way the designer to create a new or modify pre-existing solid models on the fly. Thus
new, and reuse of previous designs can be achieved with a variant approach. This approach has emerged from the
integration of CAD with computer-aided process planning (CAPP). Today, it is widely used by the variety of designers
and software developers such as Parametric Technology Corporation (PTC), SolidWorks, Unigraphics, Aries, AutoDesk
and other.

With the above applications in mind, approaches to Feature-Based Design have progressively merged into two main
categories: ‘Design by Features’ and ‘Feature Recognition’ [32]. These will be discussed in more detail in the following
sections, but essentially, Design by Features is a method of using design features to realize the creation of a CAD model
whereby Feature Recognition aims to recognize features from an already completed model. There are two main
approaches to Feature Recognition: Interactive Feature Recognition and Form Feature Recognition. Following is a
summary of the main research that has been developed in this field. Zhao, Ghosh, and Link [1990] used a wireframe
model to develop a methodology and algorithm of recognizing machined features by using graph theory. Kang and
Nnaji [26] proposed a feature representation and classification model for an automatic process planning system. Kao
and Kumara [25] proposed the super relation graph (SRG) method to recognize machining features such as slots, holes
and pockets. Sheu [46] developed a computer integrated manufacturing system for rotational parts. The parametric
design and feature-based solid model were used to specify the manufacturing information needed for the proposed
system. Venkataraman, Sohoni, and Kulkarni [54] developed a feature recognition system for recognizing User Defined
Features (UDF). The feature recognizer used a graph-based approach to represent and recognize features. Nasr and



Computer-Aided Design & Applications, 5(5), 2008, 639-653

642

Kamrani [2006] proposed an intelligent feature recognition methodology (IFRM) to develop a feature recognition
system which has the ability to communicate with various CAD/CAM systems.

3.1 Interactive Feature Definition (Hybrid Scheme)
This technique was introduced before even FBD systems were developed (Figure-2). It was used as a means to provide
feature data for process planning [3] [42] [43]. The procedure takes place in two steps. Firstly, a geometric model is
created or loaded and inserted to a generic geometric modelling interface. The second step involves the interaction of
the designer. The user picks entities according to the features that are needed to be specified. These can be edges,
vertices, faces combined to form a manufacturing feature. In Thompson et al [52], an interactive software solution
(REFAB) that helped to create feature-based models from scanned parts was proposed.

Geometric
Modeller

Geometric
Model

Feature
Model

User

User

Feature
Library

Feature
Recognition

System

Interactive
Graphics
System

Fig. 2: Interactive feature definition (Shah, 1991).

It is also possible to have libraries with predefined features. In that way, the job of the designer can be simplified even
further by having the computer to execute an analysis. The computer searches for possible matches in the database
and prompts the user to continue with the feature definition by selecting any remaining entities. For example,
considering Figure-3, if one chooses to define the flat bottom hole the computer will subsequently ask the user to
define a cylindrical and a planar face. All the necessary calculations which ensure that the result feature is valid are
made by the computer automatically.

In both Form Feature Recognition and Design by Features techniques, drawbacks exist [47]. A grouping of the two, on
the other hand has been found that eliminates many of their weaknesses. This can be referred to as the “hybrid
scheme” for FBD [47].

Fig. 3: A Simple flat bottom hole feature on a rectangular part.

A typical example of the hybrid scheme is the system proposed by De Martino et al [12] that enables the user to either
start modelling by using features or by a predefined geometric model and create a feature-based model from it using
an intermediate model as a mean between the two techniques. Guerra and Hinduja [23], examine a hybrid scheme for
axisymmetric turned and milled components. Laako and Mantyla [29] present a hybrid interactive feature-modelling
system named EXTDesign.



Computer-Aided Design & Applications, 5(5), 2008, 639-653

643

3.2 Form-Feature Recognition
Often referred to as Automatic Feature Definition (AFD) (Figure-4), this approach was mainly established to fully
automate the feature creation or extraction procedure. Features are automatically recognised from an object subjected
to consideration [40]. Gindy [22] defined form features as volumes enveloped by entry/exit and depth boundaries and
proposed a hierarchical structure for form features classification. Based on the different categories, form features are
classified into classes and sub-classes. There are many different classification schemes. Case et al. [7] implemented
such a classification for CAD/CAM integration and using a similar feature classification scheme, Xu and Hinduja [57]
proposed a feature recognition approach to recognize rough machining features in 2-1/2D components. A boundary-
based technique for feature extraction is presented by Qamhiyah et al [36]. A multiprocessor algorithm for fast feature
recognition is presented in Regli et al [38]. In Han and Requicha [24] a novel feature finder that uses hint-based
feature recognition written in C++ and Lisp is presented. Barwick and Bowyer [4] propose a two-dimensional feature
recognition methodology, based on Woodwark’s method, that returns possible matches to the user. Similarly, De
Floriani and Bruzzone [11] present a feature extraction method based on the topological information contained in a
relational model of the boundary of a solid object is examined.

Geometric
Modeller

Geometric
Model

Feature
Recognition

System

Pre-defined
Features

Feature
Model

Feature
Extraction
Algorithm

User

Fig. 4: Automatic feature definition (Andrews, 1999).

Shah [42] [43] proposed a distinction between two different groups of form feature recognition

a) Machining-region recognition
b) Pre-defined feature recognition (of which exists several techniques)

In the former, features are recognised by searching the model using different methods and algorithms as opposed to
the latter where a feature library is used in which the software searches until it finds a feature to match to the shape or
part of the geometric model. E.g in Figure-5 the computer executes a code that extracts recognised features from the
geometric model. This can be achieved by using different sets of algorithms that aim to find similarities between the
features that are contained within the predefined libraries and the features of the geometric model. As soon as a match
between the two is achieved the features of the part are identified (i.e. a hole feature, a step feature, an open pocket
and so on). Generally, in case “a” the computer will try to distinguish (depending on the method and algorithm) the
characteristic morphology of the part and thus create its constituent features. On the other hand, in case “b” the
computer will scan the part and try to match its characteristics with features that are predefined and stored in its
database.

Although the advances in the form feature recognition method has been significant throughout the years, there are
various issues that need to be considered and are highlighted in the reference literature. For example, the criteria that
are used to identify a feature still depend on the application that is used, and depending on the desired output (model,
NC code etc), features do not always represent the processes needed to be identified (e.g machining features). On the
other hand, features often interact with each other and this has posed several problems (43a). There is still much work
being carried out to develop advanced software package that can distinguish between two, or more, interacting
features with success.



Computer-Aided Design & Applications, 5(5), 2008, 639-653

644

Fig. 5: Sample Part Containing Various Features.

3.3 Design by Features (DbF)
This is a rather manual process in which the user builds a feature-based (geometric) model with the aid of feature
libraries. In those libraries, a variety of predefined features are stored in a form accessible by the user through a solid
modelling software package. The user can specify dimensions, location parameters and various other attributes and
relationships so as to position the feature in the desired location [42] [43]. This can be an advantage to the user in
terms of reducing the design lead-time. On the other hand, it is possible to experience difficulties due to insufficient
feature entries in the feature library [42] [49].

Shah [42] divides design by features into the following categories. These are:

 Destructive modelling with features (Figure-6)
 Synthesis by features (Figure-7)

Moreover, he mentions a third approach for the sake of completeness named “Feature databases unassociated with
solid models”.

Destructive modelling consists of volume subtracting operations from a base model so as to create the feature model.
On the other hand, synthesis (or constructive modelling), allows the user to add or subtract volumes/features without
the need of a base model. In Feru et al [17] a different view of DbF categories is presented.

Feature
Model

User

Base Stock
Part

Features
to be

Extracted

Fig. 6: Destructive modelling with features (Shah and Mantyla, 1995).

Feature
Model

User

Base
Feature

Feature
Addition

Feature
Library

Fig. 7: Synthesis by features (Shah and Mantyla, 1995).



Computer-Aided Design & Applications, 5(5), 2008, 639-653

645

As an example, consider an L-bracket with a through pocket feature (Figures 8a and 8b). In the case of Synthesis by
Features (Figure-8a), the user starts off by creating/selecting the base feature. The next step is to create another block
feature that will be constrained to the first one so as to form the L-shaped bracket. Finally, a through pocket feature
depression will be created and placed into the bracket to form the final feature-based model. However, using
Destructive Modelling with Features (Figure-8b), the user starts off by declaring a base stock part. By subtracting the
illustrated volume the result L-shaped bracket is formed. Finally, the next step is to subtract the pocket feature by using
a cut and thus obtaining the end model.

(a) Synthesis (b) Destructive Modeling

Fig. 8: Feature modeling.

4. FEATURE CONCEPTS
This section summarizes the main concepts and area of current research in Feature-Based Design, including, Feature
Taxonomy, feature mapping, feature validation and feature libraries and databases. As this paper is an overview in
feature-based design, constraint satisfaction problems will not be examined.

4.1 Feature Taxonomy
The use of features in feature-based design has introduced some minor drawbacks. More specifically, because the
number of features is not finite, the introduction of classes that consist of features that are related (families of features)
had to be made. Furthermore, the relationship between the families of features must be available to the user by means



Computer-Aided Design & Applications, 5(5), 2008, 639-653

646

of computer software. This implies in the introduction of object-oriented programming in the basis of current feature
databases.

Taxonomies are specialised categories in which features are classified. The aim is to distinguish different forms of
features and make them case specific and so to simplify their use. In CAM-I [51], features at the top end are classified
as rotational, non-rotational and sheet and are either volumetric or surfaces. This taxonomy was developed by John
Deere. STEP (ISO 10303) (Standard for Exchange of Product Data) is also widely used as a tool for classification and
data exchange. Features are distinguished in three main categories; volume, transition and pattern features [42].
Additionally, features have been classified static or kinetic Static features are further sub classified into different
categories [42]. Vandenbrande and Requicha [53] also proposed a form feature taxonomy including profiles, holes,
slots, grooves and pockets. The primitive features in this taxonomy are concave form features and do not include
other types of form features such as a boss on a surface, which is a convex form feature. They defined these primitive
features and rules and described ways to combine them into more complex shapes called composite features

To date there is not a standard way that features are classified although there have been various attempts to do so.
Most of the researchers propose and develop their own techniques to classify features according to shape, state,
significance, application and so on. There is a vast need for a generic feature classification technique that will allow the
engineers to easily adopt it and be able to exchange in the best way possible feature information.

Shah and Mantyla [43] stated that there is a possibility to create a universal interface as a result of feature taxonomies
that will be supported by different applications. Moreover, the ability to inherit properties from parent features (tree
form) would be possible [40]. This could be an advantage over normal feature libraries because it enables the designer
to search between related features and feature families when creating new, modifying or altering previous models
maximising at the same time the efficiency of the modeller.

4.2 Feature Mapping
Often there is need to export feature-based models into different applications upon their creation. This would be
impossible without a successful feature mapping scheme. Essentially, to be able to export models for further analysis
such as in FEA (Finite Element Analysis) software or even to produce an NC code that will represent the original model
for manufacture, feature mapping needs to take place. In reference [13] feature mapping in a proposed FSMT (Feature
Solid Modelling Tool) is presented using the two already discussed downstream applications. Furthermore, in reference
[40] a generic mapping shell has been proposed.

Shah and Mantyla [43] define feature mapping as:

 a “catchall phrase”
 covers various different types of transformations between feature models

Since the derivation of feature models from other feature models is desirable a lot of research is focused in the field of
feature mapping or else feature transformation. There are a number of ways that mapping processes have been
defined in the past. The main problem is that because of the different nature of features (i.e. manufacturing, form,
design etc) a wide and complicated range of feature mapping is needed. For example, there are several ways when
from a feature model one needs to convert into a machining feature model so as to develop the NC code to automate
the construction process of the potential part/assembly. Duan et al propose a mapping strategy that can be applied
into analysis and manufacturing. He suggests that a 3-D mesh can be generated in a parallel way with that of feature
generation. Firstly a 2-D mesh is obtained on the 2-D shape of the feature and then it is swiped to produce the 3-D
mesh. Likewise, any of the sweeping processes can be translated as a manufacturing operation to assist the NC
programming. A more generic mapping technique named ASU has been developed and it is based between
application specific feature cases [44].

It can be said that feature mapping is a general concept. This can be understood if one thinks of the infinite number of
existing feature applications. For these very different applications the mapping procedure will always vary. As with
feature taxonomies, feature mapping lacks from a fully specified generic procedure. It is essential for one to be able to
convert any potential model into a different feature-form to follow a pre-specified generic methodology so as to
maintain feature information that is necessary.



Computer-Aided Design & Applications, 5(5), 2008, 639-653

647

4.3 Feature Validation
The validity of form-features has to be accomplished. This is very important so as to be able to define features with
success. There are certain cases in which features overlap with each other. Additionally, features often have to be
deleted or modified. In that situation feature validation is necessary.

There are not any specific ways of validating a feature. Thus, there are frequently circumstances where the result
operations might give a valid solid but with invalid features [43]. Salomons et al [40] state that features should be
application dependent when trying to handle feature interactions. On the other hand, in references [55] [27] believe
that invalid feature models arise from the application of feature operators because the corresponding changes are
results of feature operations. Han and Requicha [24] propose a hint based approach for feature validation. Case and
Hounsell [6] propose a validation scheme focused on the designer’s intents. They introduce FRIEND (Feature-based
validation Reasoning for Intent-driven Engineering Design), a mechanism that performs feature validation driven by
the designer’s intents. It is stated that with the aid of FRIEND, one can represent, capture, manipulate and use the
designer’s intents during the design process as opposed with the use of Boolean operations. When complex objects are
introduced for validity checking the process turns to a composite validation task. In the majority of software packages,
validation is an iterative as well as an interactive procedure in which question loops are presented to the user until
feature validity is satisfied.

4.4 Features and Object-Oriented Approach
The use of object-oriented programming has increased steadily in the recent years. This has resulted from the need to
develop software packages that integrate design and manufacturing activities [30] [40].

Object-oriented programming is centred to classes and objects. The inheritance between classes helps to the good
representation of feature libraries. Objects can hold information as well as procedures [43]. If some of the objects hold
matching variables they form a class. A class may have several subclasses in a tree-form. It is essential to mention that
the latter inherits major variables or procedures from the former. Most of the object-oriented programming is done in
object-oriented languages such as C++ or Visual Basic.Net.

The main characteristics of object orientation as stated by Latif and Hannam [30] are the following:

 Information hiding (encapsulation)

 Inheritance via classes
 Data abstraction (polymorphism)

4.5 Libraries as a Mean for Storing Feature Information
The need for accurate representation of real life engineering models is immense. In feature-based modelling, it is
common sense that the result models are described in terms of features. In all cases of feature-based modelling (DbF,
FFR and IFR), features must be included in the modelling software. In the case of automatic feature recognition, the
computer via some form of interface communicates with a library of predefined features, from which chooses the best
possible solution for each specific model bearing in mind topological information and possible design constraints.
When designing by features, features that are available to the user have been predefined. In the majority of modern
engineering applications it is possible, for one, to specify new features (user-defined). There are some feature sets in
several software packages that are categorised according to specific standards. The standardisation of features was
initiated by CAM-I and the United States Air Force (USAF) [40]. In general there are a number of different ways to
build a feature library and another to represent features. An example of the latter is that in most cases a feature is
described by a set of parameters that in some cases are constrained, a unique identity and type of representation, sets
of attributes and a set of procedures for feature manipulation [12]. Shah and Rogers [44] describe a procedure for
building a feature library. Further information on feature libraries can be found in references [30] [21] [33] [35].

It can be said, that feature library structure is fundamental when dealing with feature-based design. As feature models
become complex so do the feature libraries. The most used programming language for the creation of such libraries is
C++. That is because of it is object-oriented and facilitates the creation of feature families in tree forms. Also, it
enables the storage of information and procedures. The main characteristics of the object-oriented approach are
described in outlined in section 4.4.



Computer-Aided Design & Applications, 5(5), 2008, 639-653

648

The area of interest in feature libraries must expand. When dealing with complex multi-part assemblies that contain
various user-defined features difficulties occur. It is very difficult for one to alter, for example, a specific feature and not
to have problems in the product model. Of course, in such cases the need for constraint satisfaction is crucial, but in
this paper we are focusing on the feature viewpoint. When interfacing with commercial packages feature libraries
already predefined and stored within these programs. But because the main aim of Feature-Based Modelling is the
boost of automation of engineering models, it is important to create new “state of the art” procedures that will help the
accomplishment of this task.

If the designer can make use of predefined feature-based parts that can be fully adjustable to specific requirements, the
modelling process will be simplified even further. The problem that arises is that for every different task (i.e. model),
different sets of feature parts would be needed. But this technique is aimed for medium to large enterprises. For
example, a vehicle company that makes use of feature-based design has several different departments. Every
department creates specific models (i.e. engines, pumps, electronic instruments etc.). Thus the majority of parts that are
used are of standard nature. Even if this is not the case, the software supported creation of feature-parts can be
implemented within a “state of the art” computer software package. An implementation of such system will have a
great impact in the cost minimisation and improvement of lead time.

4.6 Constraints in Feature-Based Design
Detailed analysis of constraints as a part of FBD is beyond the scope of this paper. However, it is a very important
aspect of FBD and following is a brief summary of existing research in the field.

Constraints are more or less integrated with the use of features. In every different family or set of features the
topological information is the same but geometric relations and parameters may vary according to the application. To
be able to express this variation of relations and parameters, so as to result to a different working model, constraints are
needed. On the other hand, to retain the history of a model for future reference or modification, the use of constraints
and operations is fundamental. This is because the modeller must “know” the history in order to allow the user to
modify the model without having to re-construct or even start from scratch (i.e. modification of a base feature in a
complex model where parts are interrelated would not be feasible). Solano and Brunet, [48] in their research, state that
the use of constraints can lead to the description of dependencies between objects and components within them.

There are several different types of constraints. In computer-aided design, focus of researchers on geometric constraint
satisfaction is great. The constraint satisfaction description is held by producing a number of non-linear equations.
Several approaches have been proposed that aim to satisfy the geometric constraint solution. The main classification
can be distinguished to symbolic and numerical approaches. In the former, algebra techniques are used to determine
the best possible way that equations can be solved for geometric constraint satisfaction. In the latter, the set of non-
linear equations is solved numerically [1]. More information on constraint-based design, constraint satisfaction and
naming schemes can be found in references [5] [2] [15] [19].

4.7 Interfacing
Modern commercial feature-based modellers, rely on the integration of several modules in order to enrich their
capabilities. Multi role modellers include add-on features, such as finite element analysis modules, automation of the
production of engineering drawings (i.e. two-dimensional drafting), numerical control code construction, rapid
prototyping, mould creation etc.

The majority of research in the field is aimed in the creation and development of systems that can perform the task that
are designed for as independent software or add-on modules to existing software packages. Examples can be found in
references [13] [33] [9]. Although most of the currently available applications and systems work by using an object-
oriented structure (i.e. C++) there is not a standardised way of interfacing modules. In most cases a unique way of
communication has to be designed for every system. Also, compatibility issues arise when different versions of software
are launched into the market.

4.8 Computerization Process
One of the main difficulties in traditional and old companies is to computerise existing paper-based drawings.
Moreover, traditional models and engineering drawings created during recent years need to be converted into feature-



Computer-Aided Design & Applications, 5(5), 2008, 639-653

649

based. This is a time and money consuming process. It has become possible to convert computer pre-existing
computer models to feature-based by using techniques such as feature-recognition described in chapter 3. Additionally,
the use of old designs into the creation of new ones becomes feasible (i.e. design reuse). As a relatively new research
field, further research is still needed to fully realise the potential of this area. Some preliminary work is found in [3]

5. FEATURE-BASED DESIGN REUSE
It is essential to be able to store engineering designs that can be used as a reference for the future. For centuries,
engineers have relied on past designs to develop and adapt new ones. Semi-automated methods for capturing
detailed designs are an attempt to incorporate the advantages of retaining a high level on design intent, whilst using
techniques, such as Parametric and Variational Design and Feature Based Design, to automate the generation (or
instancing) of similar designs, i.e. its variants.
The two principal techniques for the semi-automated capture of past (and the creation of new) designs, are the
Generative (sometimes called Procedural) and Variant Design Methods (Figure 9).

(a) Generative Methodology (b) Variant Methodology

Fig. 9: Generative and variant feature-based design.

Identify all parameters

Check reliability of model

Build Model

Break-down product
into features

Extract a CSGtree
of each feature

Manually write a
macro for each

feature

Mathematically define
geometry of each feature

Parameter & constraints
definition of each feature

Manually build a solid
model of the nominal

design

Identify driving parameters

Create relations between
features

Create Global Parameters &
relate to feature parametrs

Regenerate Model

Break-down product
into features

Determine base feature

Specify Global and
feature parameters

For each feature:
1) Create profile sketch
2) Constrain profile
3) Create feature



Computer-Aided Design & Applications, 5(5), 2008, 639-653

650

5.1 Generative Methodology
This method adopts a procedural technique to create a parametric model for a given design. The Generative Model is
essentially a sequential list of events, or instructions, that represent the design’s construction process. Real numbers,
representing geometry, are replaced with variables, by editing this data structure. Other parameters, not necessarily
relating to geometry can also be added. Individual instances can then be generated by declaring values for these
variables and parameters, and then re-executing the procedural data structure. Shahin [45] encompasses the
generative method and outlines a methodology to create a series of similar solid models from a single Generative
Model, with a goal towards design optimisation. Figure 9a outlines the relevant sections of this methodology, which is
categorised by the following three objectives:

Objective 1 - defines various elements of the design that are related to design intent, e.g. parameters, features and
constraints. Note that the user of this system is required to manually define the geometry, constraints and relations for
geometric elements and features.

Objective 2 - is concerned with the creation of a reliable model. The nominal solid model should be the best possible
representation of all instances that are to be generated.

Objective 3 - describes a scheme to explicitly model each feature of the nominal model by, either writing an
application-specific macro, or by extracting its representative data structure. This is then edited to include parameter
definitions, constraints and relationships. Finally individual models are instanced by assigning a new set of parameter
values and re-generating the model.

Clearly the process of manually identifying parameters and features that form a given design is a distinct representation
of design intent. Also, having to mathematically define these features places an intent retaining emphasis upon how
their related elements will react when new parameters are declared. In his research, Shahin makes use of a hybrid
CSG/B-Rep data structure, as the basis of his Generative model. This is formed by creating a nominal design using a
suitable CAD modelling application. The hybrid data-structure may then be extracted, if such a feature is available
within the application, and edited to include variables (or parameters) in the place of numerical geometry.

5.2 Variant Methodology
Although similar in operation, the Variant approach to storing solid geometric models differs primarily in the
construction of its models. Whereas the generative approach involves the often tedious operation of editing a complex
data structure to enable parameterisation, the Variant Method makes use of Parametric and Variant Modelling
techniques [43][20]and Feature Based Design, in particular User Designed Features to interactively draft a geometric
model. It requires virtually no complex mathematical and programming operations, and is typically implemented via an
efficient and familiar user-interface. Despite the difference in terminology, perhaps the most well known commercial
example of this technique is the ‘Parametric Modeller’, Pro/ENGINEER, which was pioneered in 1990. More recently
other applications vendors have adopted this technique, including Autodesk, with ‘Mechanical Desktop’ as an
extension to AutoCAD, and ‘SolidWorks’.

The process of creating a variant model is initially similar to that of the generative model. Where, to begin with, the
driving design parameters and features, are identified. The majority of current modelling systems work with a
‘Synthesis by Features’ approach, where features are constructed in a hierarchical fashion, thereby requiring the
creation of a base feature. Here, features are created by either using predefined, library features (primitives), or by
generating User Defined features, which involves the creation of a 2D sketch (or profile) for each feature, which is
parametrically dimensioned and constrained. (If this feature is not the base feature, then its profile must also be
constrained to its parent feature, e.g. the base). This profile is then transformed, typically by parametric extrusion, to
form a solid feature model. And the process is repeated for all identified features in the design. Finally, relations
between features can be established. These generally govern the control of a given feature’s driving parameters, and
can be either on a feature to feature basis, or defined globally. In this case a set of global parameters is typically created
to oversee the declaration of (subordinate) feature parameters. Variants of the model can now be instanced by
modifying features and global parameters, and re-solving the models constraint set (regeneration). A further feature,
that is typical in many variant design systems, is the ability to momentarily hide, or Suppress, various child features,
and Resume these features when desired.



Computer-Aided Design & Applications, 5(5), 2008, 639-653

651

5.3 A Comparison of Generative and Variant Design Methods
These two methods are divided by a fundamental difference in their creation. The Generative Method employs a
programmatic approach, whereas the Variant Method provides a more naturally, concurrent approach. However,
generative models are highly customisable. This is very favourable in the case of attempting to combine a number of
topologically dissimilar designs within a single model. Here the generative model can be programmed to switch
between various features depending upon which individual design is required. Trying to attempt this problem with the
variant method is difficult, as the variant method inherently ‘varies’ a given model, and cannot invoke and respond to
yes/no decisions, by itself.

Variant based modelling systems are, on the whole much simpler to use than their generative counterparts. They also
require less human resources to create a ‘parametric’, or adaptive, model for a given design. Furthermore, such
systems based (even partially) on Flexible Constraint Satisfaction techniques, allow for faster model regeneration, as
here only the modified and directly related features and entities are updated. However, innovative application methods
have to be developed to exploit this power.

6. CONCLUSIONS
Feature-based design is now a well established research area, beginning from feature recognition for manufacturing
purposes and developing into a broader method for designing by features. Most recently attempts to formalize its
processes and representation have been attempted with more focus being recently employed towards design intent and
manipulation of one model into multiple instances of a family of products. However it is still very much limited to
rather simple assemblies. Implementation of more complex geometric constraints, a formalized mapping and taxonomy
system as well as the introduction of web-based interfaces for complex mechanical assemblies are still at an early
research phase and a framework combining all of these is proposed as the next step to progress this field further.

7. REFERENCES
[1] Anantha, R.; Kramer, G. A.; Crawford, R. H.: Assembly modelling by geometric constraint satisfaction,

Computer-Aided Design, 28(9), 1996, 707-722.
[2] Anderl, R.; Mendgen, R.: Modelling with constraints: theoretical foundation and application, Computer-Aided

Design, 28(3), 1996, 155-168.
[3] Andrews, P. T. J.; Shahin, T. M. M.; Sivaloganathan, S.: Design Reuse in a CAD Environment: Four Case

Studies in Design Reuse. Computers in Industry Journal, 37(1-2), October 1999, 105-109.
[4] Barwick, S. P.; Bowyler, A.: Multidimensional set-theoretic feature recognition, Computer-Aided Design,

27(10), 1995, 731-740.
[5] Capouleas, V.; Chen, X.; Hoffmann, C. M.: Generic naming in generative, constraint-based design, Computer-

Aided Design, 28(1), 1996, 17-26.
[6] Case, K.; Hounsell, M. S.: Feature modelling: A validation methodology and its evaluation, Journal of Materials

Processing Technology, 107, 2000, 15-23.
[7] Case, K; Gao, J. X.; Gindy, N. N. Z.: The implementation of a feature-based component representation for

CAD/CAM integration, J Engng Manufact, IMechE, 208, 1994, 71–80.
[8] Chieh-Yuan, Tsai; Alec Chang, C.: A two-stage fuzzy approach to feature-based design retrieval, Computers in

Industry 56, 2005, 493–505
[9] Choi, D. S.; Lee, S. H.; Shin, B. S.; Whang, K. H.; Yoon, K. K.; Sarma, S. E.: A new rapid prototyping system

using universal automated fixturing with feature-based CAD/CAM, Journal of Materials Processing Technology,
113, 2001, 285-290.

[10] Chu, C. C. P.; Gadh, R.: Feature-based approach for set-up minimisation of process design from product
design, Computer-Aided Design, 28(5), 1996, 321-332.

[11] De Floriani, L.; Bruzzone, E.: Building a feature-based object description from a boundary model, Computer-
Aided Design, 21(10), 1989, 602-610.

[12] De Martino, T.; Falcidieno, B.; Giannini, F.; Hassinger, S.; Ovtcharova, J.: Feature-based modelling by
integrating design and recognition approaches, Computer-Aided Design, 26(8), 1994, 646-653.

[13] Duan, W.; Zhou, J.; Lai, K.: FSMT: a feature solid-modelling tool for feature-based design and manufacture,
Computer-Aided Design, 25(1), 1993, 29-38.

[14] Falcidieno, B.; Giannini, F.; Porzia, C.; Spagnuolo, M.: A uniform approach to represent features in different
application contexts, Computers in Industry, 19, 1992, 175-184.

[15] Feng, C. X.; Kusiak, A.: Constraint-based design of parts, Computer-Aided Design, 27(5), 1995, 343-352.



Computer-Aided Design & Applications, 5(5), 2008, 639-653

652

[16] Feng, C. X.; Kusiak, A.; Huang, C. C.: Cost evaluation in design with form features, Computer-Aided Design,
28(11), 1996, 879-885.

[17] Feru, F.; Cocquebert, E.; Chaouch, H.; Deneux, D.; Shoenen, R.: Feature-based modelling: state of the art and
evolution, Manufacturing in the Era of Concurrent Engineering, 1992, 29-50.

[18] Fua, M. W. et al.: An approach to identify design and manufacturing features from a data exchanged part
model, Computer-Aided Design, 35, 2003, 979–993.

[19] Fudos, I.; Hoffmann C. M.: Constraint-based parametric conics for CAD, Computer-Aided Design, 28(2), 1996,
91-100.

[20] Fuha, J. Y. H.; Lib. W. D.: Advances in collaborative CAD: the-state-of-the art, Computer-Aided Design, 37,
2005, 571–581.

[21] Gardan, Y.; Minich, C.: Feature-based models for CAD/CAM and their limits, Computers in Industry, 23, 1993,
3-13.

[22] Gindy, N. N. Z.: A hierarchical structure for form features, Int J Prod Res, 27, 1989, 2089–103.
[23] Guerra, A. R. O.; Hinduja, S.: Modelling turned components with non-axisymmetric features, Computer-Aided

Design, 29(5), 1997, 343-359.
[24] Han, J. H.; Requicha, A. A. G.: Integration of feature-based design and feature recognition, Computer-Aided

Design, 29(5), 1997, 393-403.
[25] Kao, C-Y.; Kumara, S. R. T.; Kasturi, R.: Extraction of 3D object features from cad boundary representation

using super relation graph method. IEEE Transaction on Pattern Analysis and Machine Intelligence, 17(12),
1995, 1228–1233.

[26] Kang, T. S.; Nnaji, B. O.: Feature representation and classification for automatic process planning systems,
Journal of Manufacturing System, 12(2), 1997, 133–145.

[27] Kim, C.; O’Grady, P. J.: A representation formalism for feature-based design, Computer-Aided Design, 28(6/7),
1996, 451-460.

[28] Lamit, L. G.: Pro/ENGINEER 2000i2, Brooks/Cole, USA, 2001.
[29] Laako, T.; Mantyla M.: Feature modelling by incremental feature recognition, Computer-Aided Design, 25(8),

1993, 479-492.
[30] Latif, M. N.; Hannam, G.: Feature-based design and the object oriented approach, Journal of Engineering

Design, 7(1), 1996, 27-37.
[31] Li, W. D.; Ong, S. K.; Fuh, J. Y. H.; Wong, Y. S.; Lu, Y. Q.; Nee, A. Y. C.: Feature-based design in a

collaborative and distributed environment, Computer Aided Design, 36(9), 2004, 775–97.
[32] Lin, A. C.; Lin, S. Y. Lin; Cheng, S. B.: Extraction of manufacturing features from a feature-based design

model, International, Journal of Production Research, 35(12), 1997, 3249–3288.
[33] Mantripragada, R.; Kinzel, G.; Altan, T.: A computer-aided engineering system for feature-based design of box-

type sheet metal parts, Journal of Materials Processing Technology, 57, 1996, 241-248.
[34] Nasr, E. S. A.; Kamrani, A. K.: A new methodology for extracting manufacturing features from CAD system,

Computers & Industrial Engineering, 51, 2006, 389–415.
[35] Pedley, A. G.: The potential to exchange feature models with user defined feature libraries, Journal of Materials

Processing Technology, 61, 1996, 78-84.
[36] Qamhiyah, A. Z.; Venter, R. D.; Benhabib, B.: Geometric reasoning for the extraction of form features,

Computer-Aided Design, 28(11), 1996, 887-903.
[37] Raimundo, R.; da Cunha, M.; Dias, A.: A feature-based database evolution approach in the design process,

Robotics and Computer Integrated Manufacturing, 18, 2002, 275–281.
[38] Regli, W. C.; Gupta, S. K.; Nau, D. S.: Towards multiprocessor feature recognition, Computer-Aided Design,

29(1), 1997, 37-51.
[39] Roller, D.: Design by features: an approach to high level manipulations, Computers in Industry, 12, 1989, 185-

191.
[40] Salomons, O. W.; Van Houten, F. J. A. M.; Kals, H. J. J.: Review of research in feature-based design, Journal of

Manufacturing Systems, 12(2), 113-132.
[41] Schulte, M.; Weber, C.; Stark, R.: Functional features for design in mechanical engineering, Computers in

Industry, 23, 1993, 15-24.
[42] Shah, J. J.: Assessment of features technology, Computer-Aided Design, 23(5), 1991, 331-343.
[43] Shah, J. J.; Mantyla M.: Parametric and Feature-Based CAD/CAM, John Wiley & Sons, Inc., USA, 1995.
[44] Shah, J. J.; Rogers, M. T.: Expert form feature modelling shell, Computer-Aided Design, 20(9), 1988, 515-524.



Computer-Aided Design & Applications, 5(5), 2008, 639-653

653

[45] Shahin, T. M. M.: Automated Feature-Based Modeling for Finite Element Analyis and Optimisation, PhD
Thesis, Brunel University, December, 1996

[46] Sheu, J. J.: A computer integrated manufacturing system for rotational parts, International Journal of
Computer Integrated Manufacturing, 11(6), 1998, 538–547.

[47] Sheu, L. C.; Lin, J. T.: Representation scheme for defining and operating features, Computer-Aided Design,
25(6), 1993, 333-346.

[48] Solano, L.; Brunet P.: Constructive constraint-based model for parametric CAD systems, Computer-Aided
Design, 26(8), 1994, 614-621.

[49] Suh, H.; Ahluwalia, R. S.: Feature modification in incremental feature generation, Computer-Aided Design,
27(8), 1995, 627-635.

[50] Shah, J. J.; Sreevalsan, P.; Billo, R.; Mathew, A.: Current status for features technology, report for task 0,
Technical Report R-88-GM-01, CAM-I, Inc., Arlington, TX.

[51] Technical Report: CAM-I. Requirements for support of form features in a solid modeling system. Technical
Report R-85-ASPP-01, Computer Aided Manufacturing International, Inc., Arlington, TX, 1985.

[52] Thompson, W. B.; Owen J. C.; James, H.; Stark, S. R.; Henderson, T. C.: Feature-based reverse engineering of
mechanical parts, IEEE Transactions on Robotics and Automation, 15(1), 1999, 57-66.

[53] Vandenbrande, J. H.; Requicha, A. A. G.: Spatial reasoning for automatic recognition of machinable feature in
solid models, IIE Trans Pattern Anal Mach Intell, 15, 1993, 1–17.

[54] Venkataraman, S.; Sohoni, M.; Kulkarni, V.: A graph-based framework for feature recognition, Proceedings of
the Symposium on Solid Modeling and Applications, Ann Arbor, MI, 2001, 194–205.

[55] Wang N.; Ozsoy T. M.: A scheme to represent features, dimensions and tolerances in geometric modelling,
Journal of Manufacturing Systems, 10(3), 233-240.

[56] Wu-Hon F. Leung: Program entanglement, feature interaction and the feature language extensions, Computer
Networks, 51, September 2006, 480–495.

[57] Xu, X; Hinduja, S: Recognition of rough machining features in 2-1/2D components, Computer-Aided Design,
30, 1998, 503–16.

[58] Zhao, Z.; Ghosh, S. K.; Link, D.: Recognition of machined surfaces for manufacturing based on wireframe
models, Journal of Materials Processing Technology, 24(1), 1990, 137–145.


