
Computer-Aided Design & Applications, 5(5), 2008, 589-600

589

Computer-Aided Design and Applications

© 2008 CAD Solutions, LLC
http://www.cadanda.com

Meshless Extraction of Closed Feature Lines Using Histogram Thresholding

Kris Demarsin1, Denis Vanderstraeten2 and Dirk Roose3

1Katholieke Universiteit Leuven, kris.demarsin@cs.kuleuven.be
2Metris, Denis.Vanderstraeten@metris.com

3Katholieke Universiteit Leuven, dirk.roose@cs.kuleuven.be

ABSTRACT

In reverse engineering, the reconstruction of a surface model from a point cloud requires the
extraction of closed feature lines at the borders of the different surface patches. In this paper we
propose a new algorithm to extract such closed polygonal feature lines, representing sharp or
smooth edges, from a point cloud. Based on the variation of the normal vectors and a graph
approach we extract the sharp edges, which are used to divide the point cloud in smooth regions.
Smooth edges, such as fillets, are extracted for each smooth region separately using a novel
approach for 1D-histogram thresholding: we use the curvature histogram in a multi-resolution
manner in order to split a point set in different regions of similar curvature (patches). The
polygonal smooth edges at the borders between these different patches are extracted by point
clustering and processing a graph of the point clusters.

Keywords: reverse engineering, point clouds, histogram thresholding, feature lines.
DOI: 10.3722/cadaps.2008.589-600

1. INTRODUCTION
Feature lines on a surface model are defined via local extrema of principal curvatures along corresponding principal
directions. In this paper we classify feature lines into two types (see Fig. 1.): smooth and sharp edges. On a surface
model we define a sharp edge as a curve dividing two surfaces which are tangent discontinuous. A smooth edge on
the other hand, separates two surfaces which are tangent continuous but curvature discontinuous. Feature lines are
used in many applications, e.g. visualization, improvement of the mesh quality, reverse engineering,... Our algorithm
operates on point clouds and we detect feature lines as polygonal lines which represent sharp or smooth edges.

1.1 Related Work
Methods related to the detection of feature lines, can be classified into two groups. The first category consists of
algorithms which extract unconnected feature lines from a mesh ([11],[14],[23]) or from a point cloud ([10],[17]).
Although such unconnected lines are very useful for e.g. visualization, they make it difficult to construct a curve
network defining the surface patches. The second category is known as segmentation, of which recently an overview
paper appeared ([1]), although only mesh segmentation is considered in that paper. Segmentation methods are
typically divided into two groups: face-based approaches and edge-based approaches. Face-based algorithms
([9],[12],[21]) group points with similar geometric properties, using for example a region growing method or a
classification algorithm (e.g. K-Means). When the user is interested in the segment borders, these are typically
determined by intersecting adjacent fitted surface patches through these point clusters; however, as noted in [2],
surface-surface intersection can become unstable for smooth edges. Edge-based algorithms ([6],[13],[24]) detect
border points (or edges in case of a mesh) and connect them to obtain border curves. Most of these algorithms
require a threshold for this edge detection, e.g. an angle threshold between two adjacent facets or a curvature
threshold. The corresponding segments are usually found by a region growing method.

Computer-Aided Design & Applications, 5(5), 2008, 589-600

590

Some algorithms cannot be classified in any of the two segmentation groups. For example Benko et al. [2] discard
triangles in the vicinity of sharp edges or small blends causing disjoint regions which might be further subdivided by
smooth edges. To find the sharp edges, surface-surface intersection is used. A more recent example of such a
combined approach is described by Várady et al. [22]. This algorithm uses morse theory to separate the relatively
flat regions by highly curved transitions, called the separator sets, on the entire mesh. Then, contour lines are
extracted and optionally extended. The algorithm results in a well-aligned structure required for surface fitting.

1.2 Our Approach
This paper introduces a new algorithm to extract polygonal feature lines, representing sharp or smooth edges, from a
point cloud for the purpose of surface reconstruction. Since the reconstruction of a surface model requires a network
of closed feature lines indicating the borders of the various surface patches, the extraction of closed lines is
emphasized.
The presented algorithm is a combination of an edge-based and a face-based approach: a clustering method gives
an initial segmentation of the point cloud and extracts candidate feature points. Building and processing a graph of
these clusters results in the closed feature lines, which can be used to perform the segmentation.
This paper proposes a multi-step approach, combining the extraction of sharp and smooth edges. First, closed sharp
edges are extracted using the variation of the normal vectors and graph processing, as described in [4].
Using these sharp edges (and the external boundary if the point cloud does not represent a solid, as in Fig. 1.), we
divide the cloud in subsets enclosed by sharp edges (and optionally an external boundary). These subsets, which
contain no sharp edges anymore, are called smooth regions (see Fig. 1.) and each smooth region is treated
separately to extract the smooth edges. In this paper, we only consider point clouds which can be divided in patches,
i.e. a patch is a set of points with similar curvature. In a smooth region, a smooth edge is located at the border
between two patches. Therefore, the smooth regions are split in sub-regions of similar curvature using one or more
curvature thresholds. A new multi-level thresholding approach, based on a curvature histogram, is proposed to
determine these thresholds. Each threshold is determined by a multi-resolution analysis of the curvature histogram.

Fig. 1: Illustration of a point cloud with the different features used in this paper.

To determine the smooth edges at the borders of the different patches, a region growing method is applied, which
results in point clusters indicating the smooth edges and allows building a graph connecting neighboring clusters.
After processing this graph, using similar operations as for the sharp edges ([4]), we obtain the smooth edges which
separate the different patches.
The advantages of the algorithm are:

 The multi-step approach allows the use of optimal parameter values per smooth region. For point clouds
with different types of smooth edges in the separate smooth regions, this approach can be more accurate
compared to single-step approaches (e.g. [22]), which extract all edges at once using one set of parameter
values.

 While single-step approaches might smooth also the sharp edges, our multi-step approach preserves these
edges since we perform smoothing after the sharp edge extraction.

 The required curvature thresholds are automatically estimated.
 Mesh generation is unnecessary.
 The extracted lines are closed, making the algorithm suitable as pre-process for surface reconstruction.
 The graph approach allows to process point clouds very efficiently.

A + B + C = entire point cloud
A, (B + C) = smooth regions
A, B, C = patches
a = sharp edge
b = smooth edge
c = external boundary

Computer-Aided Design & Applications, 5(5), 2008, 589-600

591

The paper is structured as follows. Section 2 constitutes the main contribution of this paper, i.e. the histogram
approach to separate the different patches in a smooth region. The other steps of the algorithm to construct
polygonal feature lines representing smooth edges are explained in section 3. Results of the feature line extraction
algorithm for real-world point clouds with sharp and smooth edges are illustrated in section 4. The conclusions are
formulated in section 5.

2. HISTOGRAM THRESHOLDING

2.1 Introduction
We first define the following notions:

 :curv set of curvature values with ()curv p equal to the mean curvature in point p. To compute the mean

curvature in p, we fit a quadric through the k nearest neighbors of p, as described in e.g. [18].
 : curvature threshold, i.e. a curvature value used to divide a smooth region in two different areas (low

and high points, see the next definition). All the curvature thresholds i together divide a smooth region in

patches.

 Low points: set of points with a curvature below (or equal to) the given threshold .
 High points: set of points with a curvature above the given threshold .
 L: resolution of a histogram, i.e. the number of equally sized bins, among which we distribute the given

values.

 h: 1D curvature histogram h = (hi)i=1...L with bin size
max() min()curv curv

bin
L

 and hi the frequency

of curvature values in bin i, i.e. if min() (- 1) * () min() *curv i bin curv p curv i bin then ()curv p

belongs to bin i. The last bin also counts the values that are equal to max()curv .

 Lstart: the start resolution, i.e. the histogram resolution from which the thresholding algorithm starts.
 Start histogram: the curvature histogram h with L = Lstart.

Although other curvature measures exist, i.e. the principal curvatures and the Gauss curvature, we choose the mean
curvature for the following reason. Using one principal curvature does not allow distinguishing between all different
patches. For example, for a rounded cube (see Fig. 7.) the fillets and the planar regions have the same minimum
curvature. Similar, the maximum curvature cannot distinguish between the fillets and the corners. The Gauss
curvature is also unable to separate the fillets from the planar areas, since this curvature is defined as the product of
the principal curvatures. Because the mean curvature is defined as the mean of the principal curvatures, this
curvature is better suited to distinguish between the different patches.

Using histogram thresholding, a smooth region is segmented in homogeneous point regions with respect to some
property. For this property, the mean curvature is chosen, since smooth edges are located at the borders between
regions of significantly different mean curvature (patches). This definition for 3D point cloud segmentation originates
from image segmentation ([8],[16],[20]): an image is segmented into homogeneous pixel regions, i.e. the pixels of
one region are similar with respect to e.g. color, intensity, or texture. In image segmentation, histogram thresholding
is an extensively used technique. Bi-level thresholding (binarization) assumes that the gray levels of pixels belonging
to the objects are substantially different from the gray levels of the pixels belonging to the background, such that one
threshold separates the objects from the background, e.g. the extraction of text characters from a document image.
However, more complex images, e.g. color images, require multi-level thresholding to separate all the objects in the
image. Thresholding algorithms based on a histogram of pixel intensity values, assume that the histogram peaks
(modes) represent the different objects that need to be separated. Determination of the segmentation thresholds
corresponds to searching the valleys of the histogram. Many thresholding methods view the histogram as a mixture
of density functions ([3],[15]), or use functional histogram approximation ([19]). Parametric approaches ([5]) make
an assumption on the underlying probability density function, e.g. the Gaussian Mixture Model, and the related
parameters are estimated to segment the histogram.
Similar to image segmentation, we determine the valleys of the 1D mean curvature histogram under the assumption
that the histogram peaks represent the different patches in the point cloud. Another reasonable assumption is made,
namely the width of a histogram valley is at least as large as the width of the preceding peak. As more samples
create a clearer image histogram, more points in the point cloud create a clearer curvature histogram. However,

Computer-Aided Design & Applications, 5(5), 2008, 589-600

592

there are also some important differences between a gray-level histogram and a curvature histogram. The first one is
the determination of the number of histogram bins. For a gray-scale image the maximum intensity is known in
advance (e.g. 256). The number of different possible curvature values in a point cloud is not known in advance and
thus the choice for a good resolution of a curvature histogram is far more difficult. Fig. 2. illustrates the histograms of
the mean curvature at three different resolutions for a noisy rounded cube (see Fig. 7.). In Fig. 2(b). we see three
peaks representing the three different patches (respectively planar regions, fillets and corners). We want to determine
the curvature threshold 2 , located after the peak of the planar areas, and 1 , located after the peak of the fillets, to

separate the different patches of the rounded cube. While this resolution clearly shows the valleys we are interested
in, a too coarse resolution hides the peaks, see Fig. 2(c). A too fine resolution for a noisy point cloud might cause a
histogram without any significant peaks since there is too much variation on the curvature. For the cube, when we
take a resolution which is as large as the point cloud size, see Fig. 2(a)., we still see the two largest peaks, but many
local minima exist (caused by noisy peaks), making it difficult to determine the correct valleys. Related to the
unknown boundaries of the curvature values, a second difference with image histograms arises: noisy point clouds
typically have points with a curvature which is significantly larger than the curvature of the other points, causing the
histogram to deform. Later on, we will discuss this into more detail.

(a) (b) (c)

Fig. 2: Mean curvature histogram for a noisy rounded cube at three different resolutions: (a) L = |point cloud| ≈
30000; (b) L = 50; (c) L = 4.

2.2 Automatic Threshold Detection
We present a novel approach for multi-level threshold selection for a smooth region, using a non-parametric 1D-
histogram approach which does not assume an underlying density function and does not rely on functional
histogram approximation. The algorithm is robust to noisy peaks and avoids the resolution problem of the curvature
histogram: in a fast and memory efficient manner, multiple resolutions of the mean curvature histogram are
considered and the best resolution to extract a curvature threshold is automatically detected. Recursively applying
this approach results in multiple thresholds.
Since we assume that a smooth region is the union of different patches, the number of points in one patch is much
higher than the number of points located between two neighboring patches. Consequently, in the curvature
histogram with a good resolution (see Fig. 2(b).) the peaks are alternated by valleys with the thresholds in between.
The idea behind the multi-resolution approach is to coarsen a ‘fine enough’ histogram to obtain a histogram at a
resolution for which a peak and the following valley are each represented by one bin such that the threshold after the
peak is characterized by a large ratio of the frequencies of the two coarsened bins.

In Fig. 2 we illustrated that a too coarse resolution makes it impossible to detect the valleys and thus we choose a
start resolution Lstart which is ‘fine enough’. The only requirement for Lstart is that the start histogram shows the global
peaks and valleys, but noisy peaks are allowed. For the tested models in this paper Lstart = 50 is sufficient.
Suppose we know the threshold we want to determine in the start histogram, e.g. 1 or 2 for the rounded cube

(see Fig. 2(b).). To make the algorithm robust to noisy peaks, the start histogram is coarsened by joining bins. We
join k bins starting from to the left of the histogram until the peak is represented by one bin, see Fig. 3(a).
Assume that the curvature threshold corresponds to the right end of bin ()p of the start histogram, i.e.

Computer-Aided Design & Applications, 5(5), 2008, 589-600

593

min()
()

curv
p

bin

 and let _ *start curv k bin , i.e. () (_)k p p start curv . Then the frequency of

curvature values in this coarsened bin is
()

1

(_) 1

p

i

i p start curv

b h

 . If we assume that the width of a histogram valley

is at least as large as the width of the preceding peak, then by joining k bins starting from to the right, the valley

(or at least a part of it) is represented by one bin with a frequency of curvature values
()

2

() 1

p k

i

i p

b h

 .

Consequently, at the threshold we have a large ratio 1

2

b

b
.

In our threshold selection procedure, we consider all possible curvature values for _start curv and :

_ min() * for 0,..., 2

_ * for k 1, ..., ((_))/2 .

start

start

start curv curv i bin i L

start curv k bin L p start curv

If we define 1

2

(, _) ,
b

start curv
b

 then we are able to formulate the algorithm to determine one curvature

threshold of the start histogram: we search the values _start curv and for which (, _)start curv attains its

maximum.
For the rounded cube, Fig. 3(b) illustrates that max((, _))start curv

 attains its maximum for _ 0.22start curv

and Fig. 3(c) shows that this maximum is attained for 1 . For _ 0start curv we have 2 . Since the

algorithm determines the maximum of (, _)start curv the threshold 1 0.32 , located in the second valley of

the start histogram.

(a) (b) (c)

Fig. 3: Illustration for the rounded cube: (a) the histogram with bins joined at 1 and 2 to represent each

peak/valley by one bin; (b) the maximum ratio for each value of _start curv ; (c) the values for for each value of

_start curv such that (, _)start curv attains its maximum.

The algorithm to determine the maximum of (, _)start curv can be implemented very efficiently. We consider all

possible values for _start curv and for a fixed value of _start curv we join k

(1,..., ((_))/2)startk L p start curv bins. Since we compute new values for 1b and 2b very efficiently from their

previous values (1 _b prev and 2 _b prev) and since we use Lstart = 50 in this paper, the algorithm runs fast.

Computer-Aided Design & Applications, 5(5), 2008, 589-600

594

Moreover, experiments indicate that only one run of the algorithm is sufficient, i.e. for _ min()start curv curv , we

obtain similar results than when we consider all possible values for _start curv . This leads to a very simple and

short implementation:

1...

1 2

1 1

2 2 2* -1 2*

2

() ;
0; max_ - 1;

_ 0; _ 0;

(/ 2)
1;

_ ;
_ - ;

(! 0)

starti i L

start

k

k k k

h h
k ratio
b prev b prev

while k L
k k
b b prev h
b b prev h h h

if b

1 2

1

1 1 2 2

1

/ ;
;

(max_)
max_ ; max_ ;

_ ; _ ;

min() ma

ratio b b
else ratio b
end if

if ratio ratio
ratio ratio k k

end if
b prev b b prev b

end while

curv

 x_ * ;k bin

Fig. 4(a) illustrates the influence of Lstart = 2,…,50 on the threshold found for the rounded cube: from Lstart =13 the
fluctuations become less and the threshold converges to 0.32. For Lstart = 50,…,|point cloud|, see Fig. 4(b)., we
obtain 0.32 with a precision of 0.6%. This states the assumption we made earlier: Lstart must be ‘fine enough’
and typically, Lstart = 50 is sufficient.

(a) (b)

Fig. 4: Illustration of the influence of the start resolution Lstart on the threshold found for the rounded cube.

2.3 Additional Thresholds
We demand input from the user at two different stages: (a) after the high-low division is made using a curvature
threshold and (b) after the feature lines are extracted. The first user-input requires an indication whether the
computed threshold is correct. As we will see in the results section, even though the determined threshold is located
in a valley, it is not necessarily the desired valley. For example, the point cloud in Fig. 9(a) contains two fillets, but we
see that the initial high-low division is not correct and the user indicates that another threshold needs to be
determined. Our approach enables to shift the threshold to a previous or to a next valley in a fast and easy manner:
the same algorithm is used, but only the curvature values below or above the originally determined threshold are
considered. For this purpose, the user has to indicate whether a higher or lower curvature threshold is required,
which is not a difficult task assuming that the user has some notion of the different curvature areas. This user-input

Computer-Aided Design & Applications, 5(5), 2008, 589-600

595

can reduce the cost of the algorithm drastically: the graph of all neighboring clusters (see section 3) is only built and
processed once with the correct threshold. For the rounded cube, the initial threshold 1 is accepted since it

separates the corner points from the other points, which results in correct lines at the corners.
The second input demands an indication whether the extraction of the feature lines is complete. If not, additional
thresholds are determined until the user is satisfied. This avoids the automatic determination of the number of
desired thresholds, which is, as in image segmentation, a difficult task. For the rounded cube, a second threshold,
lower than the initial threshold, is required to separate the fillets from the planar areas. For this purpose, we build a
histogram with only the curvature values below the first threshold 1 , see Fig. 5. The maximum of (, _)start curv

is attained for _ 0start curv and 2 0.05 , with 2 located in the first valley of the start histogram (Fig.

2(b).). The two thresholds 1 and 2 result in the separation of the planar regions, the fillets and the corners of the

rounded cube. In a similar way, the user can indicate to consider the histogram of the curvature values above the
preceding threshold.
Most of the point clouds we considered have a curvature histogram which consists of only one large peak
representing the planar areas. Typically, the different patches are surrounded by points located in this large peak and
using one threshold immediately after the first peak is sufficient.

Fig. 5: Histogram with the curvature values below the first threshold (rounded cube).

2.4 Noise
Since the point clouds for which we build the histogram have no sharp edges, Laplacian smoothing is typically
performed for noisy point sets before the histogram is built.
Noisy point clouds typically have points with a curvature which is significantly larger than the curvature of the other
points. Such outliers have a negative influence on the histogram: the peaks are shifted to the left causing less clear
valleys in between, see Fig. 6(a). Removal of a specified percentage of the highest curvature values from the
histogram, reduces this effect, see Fig. 6(b).

(a) (b)

Fig. 6: Histogram before (a) and after (b) removal of outliers.

Computer-Aided Design & Applications, 5(5), 2008, 589-600

596

3. CONSTRUCTION OF POLYGONAL SMOOTH EDGES
The algorithm described in section 2 results in an initial labeling of low and high points. The high points are further
divided into points situated inside a higher curvature region and points at the border of such a region:

 Inner points: the high points with only high points in the 1-ring neighborhood ([7]).
 Border points: the remaining high points with at least two inner points in the 1-ring neighborhood. We

request that two neighbors are inner points, because in the ring neighborhood of a point p, the neighbors
are distributed around p, i.e. a point on the border of a higher curvature region will typically have some low
points and some inner points as neighbors. Since the size of a ring neighborhood is typically 5 or 6, two
inner points as neighbors of a border point is an appropriate choice.

This labeling causes the inner points to be separated from the low points by border points. High points that are not
inner or border points are considered to be noisy isolated points and are added to the set of low points. Fig. 7(a).
illustrates the different labels for the rounded cube at the first threshold: the corner areas consist of inner points and
are bounded by border points.

(a) (b)

Fig. 7: Rounded cube with (a) labeling using the first threshold: low points in blue, inner points in green, border
points in black and the noisy points in red; (b) extracted feature lines using two thresholds.

Afterwards, we divide the smooth region in point clusters with a region growing approach, based on these labels. The
purpose of this clustering is similar as described in [4]: we want to create large clusters surrounded by small clusters.
These small clusters indicate the smooth edges and thus a graph is built connecting neighboring clusters to extract the
smooth edges.
We randomly choose an inner or a low point as a seed to start the growing process. As long as we encounter a point
with the same label, we add this point to the current cluster. When we meet a point with a different label than the
cluster we are growing, a small cluster consisting of only the encountered point is created. When the growing stops, a
new seed is chosen (inner or low point) to restart the growing and this is repeated until all points belong to a certain
cluster. In this way, the different patches are split up in large clusters of neighboring points surrounded by small
clusters, e.g. for the cube, the patch of corner points is divided into 8 clusters corresponding to the 8 corners.
To construct closed polygonal lines at the smooth edges, we build and process a graph of all neighboring clusters, as
described in [4]. Fig. 7(b) illustrates the end result for the rounded cube using two thresholds. The lines at the corners
are not connected to the lines between the fillets and the planar areas since we used two thresholds, each resulting in
closed feature lines. In addition, the smoothing step increases the distance between the two resulting feature line
graphs.

4. RESULTS
We tested the algorithm on several point clouds obtained by scanning actual objects. A first point cloud with three
extracted fillets is illustrated in Fig. 8.: one fillet has constant radius and the two other ones have a decreasing radius
that vanishes at the end. This point cloud has no sharp edges and thus we immediately start with the threshold
determination. After smoothing, the first curvature threshold was sufficient to obtain the perfectly closed feature lines.
The boundary of the point cloud is extracted and included in the graph.

Computer-Aided Design & Applications, 5(5), 2008, 589-600

597

Fig. 8: Noisy point cloud (9202 points) with three extracted fillets.

Fig. 9(c) illustrates the extracted fillet lines for a point cloud of 6440 points. The histogram of this point cloud is
shown in Fig. 6(b). Here the difficulties are: the occurrence of noise (smoothing was necessary), two fillets close to
each other, low sample density and a fillet neighborhood which is not entirely flat.
The first selected threshold is located in the first valley and results in the high-low division as shown in Fig. 9(a).;
however, the desired threshold is located after the second peak. After user-input, we obtain a correct high-low
division, see Fig. 9(b)., which results in the extraction shown in Fig. 9(c).

(a) (b) (c)

Fig. 9: Noisy point cloud with (a) rejected and (b) accepted high-low division, and (c) the two extracted fillets.

A point cloud, representing a part of the cover of a mobile phone, see Fig. 11(a)., was used in [4] to illustrate the
sharp edge extraction. Now, we extract the fillets in the two large smooth regions with the algorithm presented in this
paper, see Fig. 11(b-c). This cloud is noisy and has no good point sampling, as illustrated in Fig. 10.

(a) (b)

Fig. 10: Two zooms of the mobile phone point cloud (11 034 points) illustrating bad point sampling.

(a) (b) (c)

Fig. 11: Mobile phone point cloud with the sharp edges (a) and with the extracted fillets visualized separately for the
two large smooth regions enclosed by sharp edges (b-c).

Computer-Aided Design & Applications, 5(5), 2008, 589-600

598

The point cloud used in Fig. 12 illustrates the advantage of our approach to treat each smooth region separately to
detect the fillets. The sharp edges are detected without smoothing, resulting in a correct extraction, as illustrated in
[4]. The smooth region of the two fillets is noisy and requires smoothing for a good extraction. Since this smooth
region contains no sharp edges anymore, smoothing can be performed more safely than when we should smooth the
entire point cloud.

(a) (b)

Fig. 12: Two different views of the fillets of the brick cloud (41 432 points). The boundaries are not considered.

The last model we will discuss is a large point cloud of 201 387 points, representing a sheet metal part (see Fig.
13(a)). The smooth edge extraction of this noise-free point cloud is shown in Fig. 13(b)., illustrating the accuracy of
our method for noise-free models. After adding Gaussian noise (σ = 10µm) in the direction of the normal vectors,
the result in Fig. 13(c). is obtained. We note that, due to the noise, some lines are now missing.
When point clouds become larger and the complexity increases, typically more patches are present and the
histogram becomes less clear due to partial overlaps of histogram peaks. A multi-step approach is then appropriate:
after the first smooth edge extraction using an initially determined threshold (typically after the first and only large
peak), we apply the histogram approach to the various large clusters, which result from the growing approach based
on labels (see section 3). Further subdivision can be applied according to the user’s needs. For example, after an
initial extraction from the noisy sheet metal cloud, an additional fillet line (indicated by the arrow in Fig. 13(e).) has
been determined by applying the algorithm to a part of the point set. This extra fillet line is based on τ = 0.002,
which is not a visible valley in the histogram of the entire point cloud, see Fig. 13(d).

(a) (b) (c)

(d) (e)

Fig. 13: (a) Sheet metal model; (b) smooth edges of the noise-free model; (c) smooth edges of noisy model; (d)
histogram of entire noisy cloud; (e) additional fillet line extracted by considering a smaller part of the noisy point
cloud, i.e. one large cluster resulting from the grow step (based on labels).

Computer-Aided Design & Applications, 5(5), 2008, 589-600

599

5. CONCLUSION
We presented an algorithm to extract closed polygonal feature lines from point clouds. Sharp edges are extracted
using the algorithm described in [4]. For the extraction of the smooth edges, we introduced a multi-level threshold
selection method based on a curvature histogram to determine the curvature thresholds which separate the different
patches. The threshold selection is based on a multi-resolution approach to find a suitable resolution for a curvature
histogram. This multi-resolution approach makes the threshold selection method robust to noisy peaks in the
histogram and is very fast. Additional thresholds are also computed very fast using the same method acting on a part
of the histogram.
The feature line extraction algorithm is fast since we avoid the generation of a mesh, we use an efficient method to
set the curvature thresholds, we cluster the points before building a graph and we use efficient graph processing
algorithms. We obtained good results for real-world (noisy) data sets from industrial applications.
In the future we will consider a 2D-histogram of the mean and Gauss curvature, and the construction of a curve
network, which defines the relation between the different segments and boundary loops.

6. ACKNOWLEDGEMENTS
The used point clouds in this paper are courtesy of Metris.
We would like to thank Hendrik Speleers (K.U. Leuven) for the many useful discussions on the histogram approach.

7. REFERENCES
[1] Agathos, A.; Pratikakis, I.; Perantonis, S.; Sapidis, N.; Azariadis, P.: 3D mesh segmentation methodologies for

CAD applications, Computer-Aided Design and Applications, 4(6), 2007, 827-841.
[2] Benko, P.; Martin, R.; Varady, T.: Algorithms for reverse engineering boundary representation models,

Computer-Aided Design, 33, 2001, 839-851.
[3] Chang, C.-I.; Du, Y.; Wang, J.; Guo, S.-M.; Thouin, P. D.: Survey and comparative analysis of entropy and

relative entropy thresholding techniques, Vision, Image and Signal Processing, 153(6), 2006, 837-850.
[4] Demarsin, K.; Vanderstraeten, D.; Volodine, T.; Roose, D.: Detection of closed sharp edges in point clouds

using normal estimation and graph theory, Computer-Aided Design, 39(4), 2007, 276-283.
[5] Duda, R.; Hart, P.; Stork, D.: Pattern classification, John Wiley and Sons, 2000.
[6] Fan, T.-J.; Medioni, G.; Nevatia, R.: Segmented descriptions of 3-D surfaces, IEEE Journal of robotics and

automation, RA-3(6), 1987.
[7] Floater, M. S.; Reimers, M.: Meshless parameterization and surface reconstruction, Computer Aided

Geometric Design, 18(2), 2001, 77-92.
[8] Fu, K. S.; Mui, J. K.: A survey on image segmentation, Pattern Recognition, 13, 1981, 3-16.
[9] Gelfand, N.; Guibas, L. J.: Shape Segmentation Using Local Slippage Analysis, Eurographics Symposium on

Geometry Processing, 2004, 219-228.
[10] Gumhold, S.; Wang, X.; MacLeod, R.: Feature Extraction from Point Clouds, Proceedings of the 10th

International Meshing Roundtable, 2001, 293-305.
[11] Hildebrandt, K.; Polthier, K.; Wardetzky, M.: Smooth feature lines on surface meshes, Symposium on

Geometry Processing, 2005, 85-90.
[12] Lavoué, G.; Dupont, F.; Baskurt, A.: A new CAD mesh segmentation method based on curvature tensor

analysis, Computer-Aided Design, 37, 2005, 975-987.
[13] Meyer, A.; Marin, P.: Segmentation of 3D triangulated data points using edges constructed with a C1

discontinuous surface fitting, Computer-Aided Design, 36, 2004, 1327-1336.
[14] Ohtake, Y.; Belyaev, A.: Automatic Detection of Geodesic Ridges and Ravines on Polygonal Surfaces, The

Journal of Three Dimensional Images, 15(1), 2001, 127-132.
[15] Otsu, N.: A threshold selection method from grey-level histograms, SMC, 9(1), 1979, 62-66.
[16] Pal, N. R.; Pal, S. K.: A Review on image segmentation techniques, PR, 26(9), 1993, 1277-1294.
[17] Pauly, M.; Keiser, R.; Gross, M. H.: Multi-scale Feature Extraction on Point-sampled Surfaces, Computer

Graphics Forum, 22(3), 2003, 281-290.
[18] Petitjean, S.: A survey of methods for recovering quadrics in triangle meshes, ACM Computing Surveys,

34(2), 2002, 211-262.
[19] Ramesh, N.; Yoo, J.-H.; Sethi, I. K.: Thresholding based on histogram approximation. IEE Proceedings -

Vision, Image and Signal Processing, 142(5), 1995, 271-279.

Computer-Aided Design & Applications, 5(5), 2008, 589-600

600

[20] Sezgin, M.; Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation,
Journal of Electronic Imaging, 13(1), 2004, 146-165.

[21] Vanco, M.; Brunnett, G.: Direct Segmentation of Algebraic Models for Reverse Engineering, Computing,
72(1-2), 2004, 207-220.

[22] Várady, T.; Facello, M. A.; Terék, Z.: Automatic extraction of surface structures in digital shape
reconstruction, Computer-Aided Design, 39(5), 2007, 379-388.

[23] Watanabe, K.; Belyaev, A. G.: Detection of Salient Curvature Features on Polygonal Surfaces, Computer
Graphics Forum, 20(3), 2001, 385-392.

[24] Yang, M.; Lee, E.: Segmentation of measured point data using a parametric quadric surface approximation,
Computer-Aided Design, 31, 1999, 449-457.

