

Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 795-806

795

A Semantic Blend Feature Definition

Paulos J. Nyirenda, Rafael Bidarra and Willem F. Bronsvoort

Delft University of Technology, [p.j.nyirenda/a.r.bidarra/w.f.bronsvoort]@tudelft.nl

ABSTRACT

In most current feature modelling systems, blends are modelled as a kind of features too. These
systems use a boundary representation (Brep) to describe the shape of a product. It is shown that
the practice of basing specification of blends on conventional Breps is ineffective.
A solution to this problem is introduced in which blends are described at a higher level. Blends are
defined in a feature class, and instances of such a class can be added to a feature model containing
relations between all features in the model. Such a semantic description of blends has several merits.
In particular, constraints can be defined on them to specify important functional properties, and
these properties can be maintained during the whole modelling process through validity
maintenance. A new method to determine the shape of a blend, based on its properties, is also
demonstrated.

Keywords: blends, feature modelling, feature classes, semantics, validity maintenance.

1. INTRODUCTION

Feature modelling has, in the past decade, become the most popular means of product modelling. Previously, a
product model contained only geometric information, but with the increasing use in different application areas, e.g.
design, manufacturing and assembly, the need for additional functional information became apparent. A feature is the
fundamental design component of feature modelling. Example features include ridge, hole, pocket and blend. A
feature model stores the different features and their associated information. It is imperative for a feature to have a well-
defined meaning, or semantics, for a particular lifecycle activity [1].
Feature technology still lacks in several ways. A particular shortcoming that this paper addresses relates to semantics
for the blend feature, or blend for short. A blend is a sheet or volume used to smooth an intersection between two
adjacent face boundaries of one or more features. The problem is that semantics for the blend feature are poorly
defined. This limits the capability of capturing design intent in the feature model.
A blend feature is attached as a transition between one or more feature faces in the feature model. During modelling,
features are modified and each change is associated with an evaluation of the model. A blend feature is always
evaluated when a feature it is attached to is modified. This evaluation requires a good ‘book-keeping’ facility by means
of which the semantics of the blend can be checked reliably whenever the feature model is going to change. Lack of
such a facility disallows the feature modelling system to maintain the validity of the model. This has led to unreliable
updates in blend features. In this paper, a new method to define blend features, in a way that facilitates specification of
semantics and validity maintenance, is developed and demonstrated. Tests have been performed on SPIFF, a
prototype feature modelling system developed at Delft University of Technology.
The object-oriented concept of a feature class will be used to define blends. A feature class is a parameterized
description of the shape and the properties of the feature, which should be satisfied by all instances of the class. All its
properties are described as constraints in the corresponding feature class. Parameters (e.g. radius) specify the shape of
the blend, and constraints are restraints declared on the shape, e.g. the maximum and minimum radius value
permitted. Methods in the feature class define the functionality of the blend, e.g. how the shape of a blend instance is
determined. The most popular method used to create blends is the classic rolling-ball technique, in which a notionally
rolling ball generates a surface envelope describing the blend [2, 3]. In this paper, a new approach to create a blend is
presented. The blend is determined from the information in the corresponding feature class.
The remainder of the paper is outlined as follows. In Section 2, fundamental concepts on blending are reviewed. A
blend as a feature is discussed in Section 3, and in Section 4 the new approach to modelling blends is introduced. In
Section 5, the definition of a blend feature class is presented, and in Section 6, the instantiation of blend features is
demonstrated with examples based on the rolling-ball technique. Section 7 demonstrates other types of blends, and
Section 8 concludes the paper.

Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 795-806

796

2. FUNDAMENTAL CONCEPTS

Most industrial products have blends. A blend is a softened sharp edge or vertex that instates a smooth transition
between faces to improve, for example, manufacturability, strength, and/or pleasing look. Different literature uses
various terms to describe blends. This section reviews common terms and concepts that we use in this paper.
Blends may be categorized by construction method, e.g. rolling-ball, spine-based or trimline-based. Fine surveys of
these blending techniques, including various mathematical forms, can be found in [2] and [3]. In this section, we
discuss the basic concepts of blends using the most widely used method of rolling-ball blends. Note that these concepts
are sufficiently general and may be applied to other types of blends.
An operation used to create a blend is known as blending. Blending may either remove or add material, depending on
the convexity of the model local to the blend. A blend on a convex edge removes material from the model to round off
the edge, whereas a blend on a concave edge adds material to the model. The former is known as a round whereas the
latter is a fillet – see Fig. 1a. Another blend type, a chamfer, is also popular. The key difference is that a chamfer is
planar, in contrast with curved faces used in fillets and rounds. In this paper, the term blend applies to any of these.
A blend can be either an edge blend or vertex blend. An edge blend replaces an edge by a face tangent to the two
faces adjoining the edge, except a chamfer in which the connection is non-tangential. A vertex blend replaces a vertex
by a face connecting the faces adjoining the vertex. This kind of blend is obtained from blended edges that meet at the
vertex to smoothly connect all neighbouring blends. Therefore, in this paper, the edge blend will be discussed in detail,
and the term blend will be used for this unless explicitly stated otherwise.
The geometry of an edge blend is determined using an imaginary rolling ball that maintains contact with the faces to be
blended [2]. The blend face is the envelope of this ball as it rolls along the edge. Blend geometry is associated with four
key elements: imaginary spine curve, support faces, spring (or rail) and terminating edges; see Fig. 1b. A spine curve
describes the locus of points traced by the rolling ball’s centre. Support faces are the side faces, supporting the rolling
ball, of the blend. Spring edges are the two edges of contact traced by the contact points between the rolling ball and
the support faces. A terminating edge is the shortest line on the extremes along the blend face that connects the two
support faces. This edge is a cross section of the blend face characterizing the shape of the blend. In addition, the blend
radius refers to the radius of the imaginary rolling ball; this radius can be constant or variable. The former defines so-
called constant radius blends, whereas the latter describes variable radius bends.
During blending, it is not uncommon that a single operation generates many blend faces connected smoothly to each
other to form the blend. A blend sheet is such a set of blend faces created in a single blending operation [4]; the set is
referred to as a chain. For example, in Fig. 1c, the round is described by a blend sheet defined by a chain of 3 blend
faces. Chains are usually generated when any of the adjoining support faces of the blend changes during blending [2],
e.g. when a convex blend is created following a concave blend, as in Fig. 1c. Edges between blend faces in the same
chain are known as cross edges. Note that a blend sheet can also have a single blend face. In this case, the blend sheet
has no cross edge.
Braid [3] summarizes the creation of blends, in current geometric modellers, into four stages. Firstly, blend attributes
containing blending details, such as blend radius, are attached to each blend edge(s). Secondly, new blend faces
needed for the blend sheet are created. When one examines a blend edge, one sees that the surfaces of the two
support faces and the blend radius, together determine the blend sheet geometry. Next, a Boolean operation is used to
find the intersection between the blend sheet and the original model being blended. This stage derives the extents of
the blend sheet, i.e. the spring and terminating edges bounding the blend face(s). Finally, the blend sheet is created.
Once a blend has been created, it is attached to the model at the specified location. Attaching the blend involves
trimming the original faces, and replacing portions of these faces with the blend sheet. In the model, a number of
blends may interact with each other to form a complex blend network. When a blend face is at the end of a blend
chain, terminating edges get created. If a blend terminates on a single face, a single terminating edge results; say,

Fig. 1: Blend geometry description.

(a) (c) (b)

Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 795-806

797

between the top face and the round in Fig. 1a. However, if it terminates on multiple faces, multiple terminating edges
are created, as in Fig. 1c. Braid [3] illustrates some of the many configurations that can occur with blends in a model.

3. BLENDS AS FEATURES

Most current commercial modelling systems are feature based. The user operates on features, and geometry is created
on the basis of these features. He specifies a feature model in an interactive way, typically via a graphical user
interface. Feature modelling permits users to associate functional with geometric information. A recent survey on
feature modelling can be found in [5].
A feature is defined using a feature class, which is a structured description of all the properties of a given feature type,
defining a template for all its instances. A feature class definition always includes a generic shape for the feature, and a
number of parameters and constraints that characterize this shape. Constraints capture design intent in the shape, e.g.
to fix the radius value range from 2.0 to 2.5 mm.
When values of parameters have been specified, an instance of the feature class is created. The feature is then attached
to one or more other features already in the model, i.e. one or more of the faces in the feature are coupled to one or
more faces in one or more other features. The involved faces are called attach faces.
Blends can be modelled as features too, but several problems are faced when doing this. Three major shortcomings are
discussed here.
Firstly, in most commercial systems, blends are specified on model boundary elements. In addition, most commercial
systems are based on geometry kernels, such as ACIS® and Parasolid®. These are, in fact, Brep modellers. Blends are
typically specified on a blend edge selected on the model (see Fig. 2a). Since the kernel modellers being used are Brep
modellers, blending changes the model boundary, and the blends, and other features, are no longer represented at the
parametric definition level.
Consequently, because the explicit feature model can no longer be referred to directly during regeneration after an
edit, current systems sometimes have to guess the matching element whenever ambiguity exists. If the guess is wrong,
the model can exhibit unexpected, often undesirable, behaviour. As an example, consider the model shown in Fig. 2a.
An edge was chosen for rounding; the result is shown in Fig. 2b. This model is now edited by altering the value of the
side length X1. In a particular commercial system, when some value X2 is attained, the blend is surprisingly
repositioned as shown in Fig. 2c. It seems reasonable to suspect that the system specifies the blend in terms of
boundary elements, e.g. that in Fig. 2b the blend is specified on the face F1 and the face of the freeform ridge feature.
By extending the face F2 in Fig. 2c, it becomes ambiguous where to place the blend now. The system’s guess
corresponds to the same face F1, which is now only on the opposite side of the ridge as F2, thereby repositioning the
blend as in Fig. 2c, even when the semantics is clearly different.
In fact, blends are a victim of the so-called persistent naming problem, the source of which is generally attributed to
deficiencies in the Brep. Hoffmann [6], Kripac [7], Middleditch and Reade [8] and Bidarra et al. [9] argue against
basing the representation of features on a conventional Brep. A discussion on the persistent naming problem is not
intended in this paper. Interested readers may consult [10] for a survey paper on the problem. Blends seem to suffer
even more from the persistent naming problem than other types of features, because of their complex shapes and
relations with other features.
The second major shortcoming is that most commercial systems poorly describe properties of the blend feature at the
parametric level, i.e. they are predominantly macros at the parametric definition level [5]. A macro is more advanced
than explicit geometry, but lacks sufficient information to concisely represent the blend feature. As a consequence, the
meaning of the blend feature is not well represented.
The final major shortcoming is that feature modelling systems poorly maintain semantics of blends, if any. Once added
to the product model, which is usually a Brep, the blend’s meaning is lost. This permits previous design intent to be
overruled in certain edit operations. For example, the vertex blend added in Fig. 1b has overruled the properties of the

Fig. 2: Problem with specifying blends on the Brep.

(a)

(b)

(c)

Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 795-806

798

previously created fillet in Fig. 1a. Such changes could also alter geometric properties, e.g. continuity between adjacent
faces, specified during instantiation of the blend feature. These uncertainties are due to the fact that features are just
considered as macro operations provided to the user to speed-up the traditional geometric modelling process. As a
consequence, the only information stored in the model that can be used for further operations is still and just the
geometric information.
The main problem with systems deploying blends as macros is the lack of facilities to specify validity conditions on the
blend feature. This limitation, and the use of a Brep, has retarded the development of tools to perform specific validity
checks during the modelling process [1].

4. THE NEW APPROACH

This section introduces the new approach to modelling blends. It is based on the concept of semantic feature modelling
[1]. In semantic feature modelling, an essential aspect of a feature is that it has a well-defined meaning, or semantics,
and this semantics is maintained during the whole modelling process. In this paper, the objective it to improve the
definition of current blend features along these lines in three major ways.
Firstly, properties of the blend are specified in a corresponding feature class. A new data structure is provided at a high
abstraction level, on which parameters and constraints describe the shape of the blend feature.
Secondly, a new, intuitive way to calculate the blend’s shape from the parameters and constraints is developed. The
shape is calculated by a method from the blend feature class, and explicitly stored in a blend feature shape,
independent of the kernel modeller data structure for the whole model.
Finally, the concept of validity maintenance is introduced for blending, so that design intent can be specified and
maintained by means of constraints on a blend feature.
A general distinction can be made between a feature class definition and a feature model; see Fig. 3. The feature class
declares all the generic information pertaining to the blend feature, whereas the feature model constitutes instances of
the blend as well as other features. In addition, the feature model is made up of the unevaluated feature model and the
evaluated model. The unevaluated feature model contains feature shapes (volumes) and a feature dependency graph,
whereas the evaluated model is the geometric representation for the overall boundary, consisting of portions of all
feature shapes. So, three levels of abstraction can be distinguished: a high-level blend feature class, an intermediate
level unevaluated feature model, and a low-level evaluated feature model, labelled, respectively, as (a), (b) and (c) in
Fig. 3.

4.1 The Blend Feature Class

One of the main intentions of introducing a blend class definition is to make the blend independent of the kernel data
structure. The blend feature class represents parameters, constraints and other generic entities as class member
variables and describes the generic shape using methods of the feature class (see Fig. 3a).
The parameters and constraints are used to specify the generic shape of the blend feature. Parameters are used to
define the shape and size, e.g. radius, of the blend feature. Parameters are presented in Section 5.1. A constraint is a
restraint imposed either on a parameter (parameter constraint) or shape (shape constraint). An example of a parameter
constraint is a value constraint that is used to limit the range of a parameter value; an example of a shape constraint is
a surface area constraint used to limit the value of the total surface area of all surfaces of a feature in the evaluated
feature model. Constraints will be detailed in Section 5.2.
The generic shape of the blend feature is defined in the blend feature class method. The geometry of the shape is
described using generic entities called feature entities. What is new, contrary to existing definitions, is that feature
entities are included in the blend class definition. This makes them explicit in the blend feature shape. A blend feature
class can have an arbitrary number of feature entities. The entities are important since they provide an interface to
parameterize the generic shape of the blend using the constraints. Two types of feature entities can be identified:
feature geometry and feature topology entities (described in Section 5.3). Furthermore, the feature class defines attach
and dependency relations for the blend feature; these are explained in Section 5.4.
As mentioned in Section 2, various types of blends are known from literature, e.g. rolling-ball, spine-based and
trimline-based. A blend can be classified according to its characteristics, e.g. properties of its shape. The blend class
depicted in Fig. 3a is a generic abstract class definition [11], which implies it cannot be directly instantiated by simply
assigning values to its parameters. Specific blend classes are derived from this abstract class definition in order to
specialize the definition according to the intended blend feature type, e.g. in an edge-blend class based on the rolling-
ball technique the method of the super-class (the generic blend class) is redefined to implement the rolling-ball
algorithm. This derived class is a generic specific blend feature class that can be instantiated, e.g. when parameter
values are specified.

Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 795-806

799

4.2 The Unevaluated Feature Model

Each blend feature has its own shape derived
from the generic shape in the corresponding class
definition, called a blend feature shape. This
shape is independent of the kernel geometry
representation of the whole model, and thus
provides an invariant structure for subsequent
modelling operations. The blend feature shape,
therefore, defines a concrete interface to the
blend; it can be intersected, its volume and
surface area (in the evaluated model) can be
precisely calculated, and so on, just like for other
features. It represents the complete geometry and
topology using feature entities. The determination
of the blend feature shape is detailed in Section
6.2. The blend feature shape and the other
feature shapes already in the feature model make
up the unevaluated feature model (see Fig. 3b).
Two essential properties can be identified with
feature entities. Firstly, unlike a Brep element in
the evaluated model, whose topology can change
(see Section 4.3), a feature entity cannot be
merged, split or deleted once instantiated, even if
its geometry representation is [1]. Consequently,
feature entities provide an invariant structure on
which to specify the parameters and constraints
for the blend feature shape. Secondly, a single
feature entity may correspond to one or more
geometry representations of the same dimension
in the Brep, e.g. a spring feature edge may
correspond to a chain of spring edges in the Brep.
This structure is achieved by encapsulating the
geometry representations, of the corresponding
feature entity, in dynamic lists in that feature
entity’s definition, in order to allow dynamic (de-
)allocation of its geometry representations without
otherwise changing the structure of the feature
entity itself. The use of such lists is crucial here,
because blending at the kernel level often causes
a single edge to get split up into a set of
connected edges (edge chain) or get merged to
create a single edge to meet certain levels of
continuity, e.g. 2nd order continuity.
In addition, the unevaluated feature model
maintains a feature dependency graph. This
graph is used to describe the relationships among
all feature instances in the model. Detailed
discussion on the use of the feature dependency
graph can be found in [1].

4.3 The Evaluated Feature Model

The evaluated feature model is depicted in Fig. 3c. Usually, in a geometric kernel, a Brep scheme is used to provide a
description of the faces, edges and vertices that make up the complete feature model’s boundary, including the entities’
adjacency information. When one compares the feature shapes against the feature model (see Fig. 3b respectively, 3c)
the feature model is a boundary description of the combination of all feature shapes. More advanced representations

Fig. 3: Levels of abstraction for a blend feature.

Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 795-806

800

than a conventional Brep, particularly a cellular model [12], can be used for the feature model to provide additional
functionality.

4.4 Instantiating a Blend Feature Class

A blend feature instance can be created from the feature class definition once attachment information and parameter
values are available. The required information is specified in the corresponding class definition, e.g. support feature
faces and blend radius. Part of the information is derived from other features already in the feature model, e.g. attach
feature faces; other information is directly input by the user, e.g. the value of the blend radius.

During instantiation, firstly the user is prompted for attach feature faces, in the feature model, used to define support
feature faces. For each parent feature, a dependency relation is defined between the parent and the blend. Also, the
attach feature faces define attach relations for each coupled face-pair.
Secondly, parameter values are requested. Depending on the blend type, different parameters may be required. Part of
the supplied information is subsequently used to determine the position of the feature geometry entities, e.g. spring
profiles, in the feature model from which the feature topology entities, e.g. spring feature edges, are instantiated.
Thirdly, a record for the blend feature is created. It includes the dependency and attach relations specified in the first
step. The same information is also fed into the feature dependency graph; see Fig. 3b.
Finally, the blend feature is inserted into the evaluated model, see Fig. 3c, and the feature model is updated. The link
between the feature entities and their corresponding representations is then created (see Section 5.3).
Geometric, functional as well as technological properties of a feature make up its validity conditions, expressing design
intent in the feature model. The technology to preserve these properties, in terms of conditions, is known as validity
maintenance. Also, validity checks can be performed at various stages during creation and modification of the blend
feature. Instantiation of a blend feature class is detailed in Section 6.

5. BLEND FEATURE CLASS DEFINITION

In this section, the blend feature class is described in more detail. In the class, parameters, constraints, relations and
references to feature entities are represented as class member variables. Feature entities are used to describe the
generic shape of the blend feature; the parameters, constraints and relations are specified on the feature entities.

5.1 Parameters

The types and number of parameters in a blend feature class depends on the type of blend. For example, one or
several radius parameters are required for a rolling-ball blend; a single radius for a constant-radius blend and multiple
radii for a variable-radius blend. The radius parameter specifies circular cross sections. In a variable-radius blend, every
radius is associated with an offset distance along the blend edge, e.g. ‘a’, ‘b’ and ‘c’ in Fig. 4. These offset distances,
called cross-offset parameters, define the distance between two consecutive cross profiles along a spring profile, such
that each cross profile has a corresponding point pair, one point on each spring profile.
Moreover, this approach allows the size of the blend feature to be specified. This is new to blends in existing
approaches where the extents are only implicitly derived from the attach faces. For instance, in most commercial
systems an edge blend always spans the whole blend edge; single or a sequence of them (a chain). However, in this
work, the blend shape can be specified to span only a portion of the blend edge. Powerful dimensioning techniques
can be used that do not force the user to dimension the blend feature using explicit coordinate values, e.g. up-to, up-
to-next, and so on, by referring to other feature entities, say, feature faces, or even to such references as datum planes.
Parameters can be different for other types of blend than the rolling-ball blend. For example, a blend using trimline-
based algorithm does not necessarily need the blend radius to be supplied, but instead the spring-offset and
thumbweight parameters are required. A spring-offset parameter defines the extent of trimming back of the support
faces along spring profiles, indicating how far each spring profile is locally from the blend profile. Fig. 5 indicates
spring-offset parameters, detailed as d1 and d2. Blends can have symmetric or asymmetric cross profiles; in the former

Fig. 4: Radius and cross-offset parameters.

Fig. 5: Cross profile properties.

Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 795-806

801

the values for spring-offset parameters are equal, whereas in the latter they are different. In addition, the shape of the
cross profiles can be controlled by adjusting the so-called thumbweight [2]; see Fig. 5. The thumbweight is a measure
of the closeness of a cross profile to the support regions: the higher the thumbweight is, the more closely the cross
profile follows the shape of the support regions. In addition, the shape can be controlled by independently changing
the continuity, between the blend and support feature faces, along the spring profiles.

5.2 Constraints

Constraints are part of the validity specification for the blend feature class. As earlier stated, a constraint can be either a
parameter or a shape constraint. Parameter constraints include value and algebraic constraints, and shape constraints
include surface area, volume, curvature and continuity.
A value constraint limits the range of a parameter’s value, e.g. a maximum allowed radius of 2.2 mm. An algebraic
constraint algebraically relates two parameter values, e.g. two spring-offset parameter values d1: d2, in Fig. 5 as 2.5:1.
A surface area, volume and curvature constraint can be specified to set the property’s allowed range in the blend
shape.
Continuity can be specified on the blend feature, depending on the blending technique used. In the rolling-ball
algorithm, G2 continuity can be achieved, although G1 is usual. In the other types of blends, continuities higher than G2
are possible.

5.3 The Blend Feature Shape

As mentioned in Section 4.1, the generic shape of the blend is described using feature entities. Feature entities are
generic entities used to define geometry and topology of the blend feature shape, namely feature geometry,
respectively, feature topology entities. Feature geometry entity types include point, profile and region and feature
topology entity types include feature vertex, feature edge and feature face, see Fig. 6. Feature geometry entities
describe the shape of the blend independent of the geometry representation in the kernel. Feature topology entities
describe the boundary of the resulting blend feature shape.
An instance of the blend feature has a concrete feature shape, see Fig. 3, that keeps reference to the generic shape in
the class definition. In the feature shape, the feature geometry entities, point, profile and region, abstract the geometric
point, curve and surface, respectively, in the kernel, as depicted in Fig. 6. For example, the spring profile pertains to the
spring curve in the kernel. Analogously, feature topology entities, feature vertex, feature edge and feature face, abstract
vertex, edge, face, respectively, in the kernel, e.g. a spring feature edge pertains to a spring edge in the kernel. At the
kernel level, every topology element is associated with a geometry element, e.g. the vertex-point {v2, p2} in Fig. 7.
As mentioned in Section 4.2, a feature entity never gets split, merged or deleted, even when the elements in the
corresponding representation in the kernel do. Thus, a correct mapping is needed to define the correspondence
between the feature topology entities, in the feature shape, and the topological elements in the underlying geometric
kernel. To this end, whenever a kernel element gets split, e.g. a spring edge into a spring edge chain (Fig. 7), the
corresponding feature geometry entity records the positions, as encapsulations of points in the feature shape, without
the feature entity itself splitting, e.g. {p2} encapsulated in {P2’} of the spring profile. To record the one-to-many

Fig. 6: Feature and kernel entities.

Fig. 7: Mapping between feature and kernel entities.

Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 795-806

802

correspondence between feature and kernel edges and faces, each feature edge and feature face can encapsulate one
or more topologic entities in the kernel through dynamic lists for the kernel entities included in its definition, see Fig. 6.
Similarly, when kernel topology entities merge, the removed kernel entities are de-referenced by removing them from
the lists in the definition. Thus, although the kernel’s data structure may change, the feature shape data structure
persists. This new facility is explained in Section 6.2 where determination of the blend feature shape is detailed.

5.4 Other Information

The feature blend class also defines dependency and attach relations. For example, in Fig. 3b, suppose feature faces
{f1, f2} are selected to be the support feature faces. The features owning the attach faces define dependency relations,
e.g. BLND-(BLK and RDG). Also, the attach faces specify attach relations for each coupled face-pair. For instance, A1,
in Fig. 3b, defines an attach relation between the support feature face, on the block feature (BLK), and the blend
feature shape (BLND). Furthermore, the nature of the feature, also specified in the corresponding feature class
definition, indicates whether the instances of the class definition represent material added to or removed from the
model: additive, respectively subtractive natures. For example, a fillet is additive, whereas rounding is subtractive.

6. BLEND FEATURE CLASS INSTANTIATION

This section details instantiation of a blend feature class definition. Instantiation of a blend is somewhat different from
other features since most of the information for instantiation is obtained from features already in the model. For clarity,
first, the well-known rolling-ball blend will be used to explain the new method. Note, however, that other types of
blends, based on the generic class definition, in Section 5, can be handled as well. The following steps describe the
instantiation process: specifying instantiation information, computing the shape of the blend, validating and attaching
the blend, and determining the evaluated model.

6.1 Specifying Instantiation Information

First, attach and dependency relations should be defined. The support feature faces the user selects also identify the
parent features for the blend, i.e. the features that own the support feature faces. For instance, the support feature faces
for the simple blend in Fig. 8a are the top and front feature faces on the block feature; the block defines the parent.
One unique aspect to note here is that instead of using Brep faces in the evaluated model to define the support faces,
feature faces in the feature shape are used because they refer to the generic shape definition in the feature class, they
are explicit and persistent at the parametric definition level (in the unevaluated feature model). Secondly, one or
several blend radius parameters are specified: a constant-radius blend (Figs. 8a, b) requires only one value, whereas in
a variable-radius blend (Fig. 4) several radii and the associated cross-offset parameters are required. Finally, the blend
extent can be defined by using our new approach (explained in Section 5), which allows the user to select one or
several other feature faces in the feature model, or even datum planes, e.g. a zx-parallel plane in Fig. 8b. This is the
information necessary to define the terminating regions for the blend volume.

6.2 Computing the Shape of the Blend

This section details the blend feature class method, wherein the blend feature shape is actually computed (created and
evaluated). In the method, an external geometric kernel, ACIS®, is used to perform geometric computations through a
selected set of Application Programming Interface (API) functions.

Fig. 8: Specifying a blend feature shape.

Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 795-806

803

Currently, the most attractive blending technique, from a modelling point of view, is the rolling-ball method, because it
automatically generates some of the required shape information, e.g. spring and cross curves. But a major shortcoming
with this technique is that the surface swept by the moving ball, the so-called canal surface, is of high algebraic degree,
even in relatively simple cases, which often makes resulting blends unstable. Also, due to computational considerations,
the representation of such surfaces in exact form is excluded, and generally approximate methods are used [2]. Hence,
we take a generic approach that exploits some of the merits of the rolling-ball technique and extends the algorithm to
allow other types of blends to be modelled. In this new approach, the shape is computed in four steps: determine
profile positions, skin the profiles to determine the blend volume, extract feature topology, and link the feature entities
with the kernel entities.

6.2.1 Positioning the Profiles

Using the instantiation information, particularly the blend feature edge, support feature faces, and blend radius (or radii
and the corresponding cross-offset parameters), the kernel is invoked to execute the rolling-ball blending procedure. As
noted earlier, this procedure provides information that is later used to determine the blend volume, e.g. information for
positioning spring profiles, which can be modified for other blend types. Basically, a preliminary rolling-ball geometric
blend is computed at Brep level only to provide specific information for positioning entities in the feature model.
The interrogated entities are: blend, spring, terminating and cross (in variable radius blends) curves (and edges). The
positions of the corresponding profiles for the feature shape are determined by interpolating the points on these curves,
in the kernel, using NURBS. The number of points on each profile does not need to equal the number of control points
on the NURBS, and in fact, the profiles do not interpolate control points but evaluated positions on the curves
themselves [11]. Additional geometric properties for the NURBS are determined using constraints, e.g. continuity
constraint, specified on the corresponding profile. If the extents of the blend were specified by the user using a datum
plane, as in Fig. 8b, the geometric domains for the spring, blend and/or cross profiles would be trimmed to the plane.
The terminating profiles would then be computed as the intersection curve between the canal surface and the plane.
The same steps would be taken if feature faces were selected instead of a plane. Finally, the positions of the feature
geometry entities, respectively blend, spring, terminating and cross profiles, are established.

6.2.2 Determining the Blend Volume and Feature Topology

With the feature geometry entities positioned, the blend volume is computed. The regions for the surfaces of the blend
volume are determined by skinning the profiles (Figs. 3b and 4). Skinning is a technique used to create a surface fitting
through a series of curves. The spring and terminating profiles are skinned to create the blend, respectively, terminating
feature regions. The blend feature region connects to the support surfaces with tangent continuity, see Fig. 8. Closure
regions are also created between each of the spring profiles and the blend profile, to complete the blend volume (Fig.
3b). These regions coincide with (part of) the support feature faces in each of the parent features (later used for
attaching the blend).
It should be noted that, in our approach, the blend shape is described differently from existing approaches. In
particular, the blend feature has its own volume, which is used to imprint the blend shape in the evaluated model (see
Fig. 8) as other standard features, e.g. slot and pocket do. On the contrary, current systems only describe blends in the
evaluated (geometric) model as surface patches. This difference is crucial because, in the new approach, a blend is
explicit in the unevaluated feature model, so that it can be selected, intersected, and so on.

6.2.3 Linking Feature and Kernel Entities

The feature shape is then mapped to the geometric kernel. The link is established through the feature entities, as
outlined in Section 5.3. This is accomplished by the dynamic lists, for kernel topology elements, in the corresponding
feature entity definitions, and labels are assigned to each of these elements as attributes. One feature edge may
correspond to several edges in the Brep. All such edges populate the list in the corresponding feature edge. For
example, an edge split in the Brep introduces new bounding vertices that, together with the split edges, create an edge
chain, e.g. the spring edge chain in Fig. 7. All point-vertex pairs on the edge chains, e.g. {p2, v2} in the spring edge
chain, are also determined by ACIS®. The positions, in the kernel, are recorded by the feature geometry entity (here,
the spring profile) as encapsulations in points on the profile, without splitting the feature entity. They can become
particularly important if the points are later used to further manipulate the blend or to specify other blend types, as will
shortly become clear. Finally, the Brep topology elements are added to (e.g. after splitting) or removed from (e.g. after
merging) the list in the feature topology entities for which they are representations.
In this approach, we avoid the persistent naming problem by specifying the blend on the feature entities of other
features instead of specifying it on Brep elements in the Brep as most current systems do [9]. The blend feature shape,
like the other feature shapes [1], is therefore independent of the Brep data structure.

Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 795-806

804

6.3 Validating and Attaching the Blend

The blend feature shape is validated when it is added to the feature model or when it is edited. The properties specified
on the feature are verified at two levels: during feature class instantiation and shape computation. During instantiation,
constraints are enforced, e.g. on the radius and spring-offset. Other constraints are verified during shape computation,
e.g. a curvature constraint when generating the blend region. In case of violation, a validity recovery loop is entered to
allow the user to interactively correct the problem. As an example, the fillet feature in Fig. 9 has a volume constraint of
maximum and minimum values, respectively, 46.2 and 55.8 mm3. When the blend is edited such that the constraint is
violated, the system notifies about that particular violation. Importantly, the blend is excluded from the evaluated
model, see Fig. 10, until the problem is resolved. The concept of validity recovery for freeform feature modelling is
detailed in [13].

6.4 Determining the Evaluated Model

In the unevaluated feature model, the blend feature has an explicit volume, represented by its feature shape. All feature
shapes in the unevaluated feature model, the dependency information and the nature of each shape are input to the
boundary evaluator. For example, if the blend is subtractive, e.g. the round in Fig. 9, its geometry is computed by a
Boolean difference operation with its parent(s).

7. OTHER TYPES OF BLENDS
As mentioned in Section 4.2, other types of blends can be created from definitions derived from the abstract generic
blend feature class (Fig. 3a). To implement other blend types, only the method in the abstract class, i.e.
‘determine_shape()’ in Fig. 3a, should be overridden. Specifically, only one change is made: instead of executing the
rolling-ball procedure in Section 6.2.1, other procedures, e.g. spine-based and trimline-based procedures, are used.
The instantiation information will depend on the blend type (see Section 5).
A completely new blend type has also been developed. It exploits some of the merits in existing techniques. For
instance, in the rolling-ball technique only minimal information, viz. support feature faces and radius (or radii and
cross-offset parameters), is sufficient to instantiate the blend. This readily provides information to position the blend
feature in the feature model.
The method for the new type of blend therefore starts with the rolling-ball procedure for, mainly, positioning the blend
in the model. In a rolling-ball blend, cross curves are always circular arcs (symmetric), as in Figs. 8a, b. The blend so
determined can only be modified by changing the radius parameter. In our approach, the user is provided with
additional parameters to manipulate the blend in the model, e.g. the thumbweight, spring-offset and cross-offset
parameters and size (extents). Fig. 8 demonstrates how the three parameters have been used, in our prototype system,
to modify the blend feature within the feature model, from Fig. 8a to Figs. 8b and c. Furthermore, in the manipulation
from Fig. 8b to Fig. 8c, the originally circular cross profile has intentionally been edited to asymmetric. This is possible
because the geometry for a profile is a NURBS surface, which provides additional degrees of modelling freedom.
Importantly, the resulting blend still maintains the tangency condition with its support faces in the feature model (Fig.
8c).
In addition, the spring profiles can also be manipulated to create even more complex blends. To demonstrate the idea,
we present complex blend shapes in Fig. 11. In these examples, the profiles can be interactively manipulated by means

Fig. 9: Blends in a feature model.

Fig. 10: Validity maintenance facilities.

Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 795-806

805

of the points in their definition, either directly or indirectly. Direct manipulation is achieved by using the explicit points
in the spring profiles. The user can slide the points within each support feature face, such as ‘b’ in Fig. 11a has been
used to reduce the spring offset ‘a’ from Fig. 11a to Fig. 11b. This facility also allows making straight spring profiles,
e.g. in Fig. 8a, to have arbitrary shapes as in Fig 11. The profiles can as well be manipulated indirectly through
parameters. For instance, in Fig. 11b, different thumbweight parameters have been used to add smooth depressions in
the same way sculptors use the thumb to mould clay. In addition, the figure demonstrates the new facility to specify the
extents (size) of the complex blend even after it has already been created in Fig. 11a: here the blend is made to span
only a portion of the support feature faces. Current feature modelling systems do not offer the user this option. Finally,
observe that the tangency between the blend and the support feature faces is always maintained.

8. CONCLUSIONS

In this paper, a new approach to blending has been introduced and demonstrated. It includes three new concepts: the
blend feature class concept, a new method to determine the blend shape, and validity maintenance to blending. It
demonstrates how the new approach facilitates modelling blends as semantic features.
The feature class provides the basis for high-level definition of the blend. All parameters, constraints and other design
information are specified in the corresponding class. The methods of the class are used to determine the shape based
on the parameters, constraints and the new shape calculation technique. Validity conditions specified on the blend
feature are stored in feature models. This semantic information can be verified within the methods in the blend class
definition whenever an update of its shape is required. All the parametric information about the blend remains explicit
to design, thereby making modelling with blends more intuitive and high-level. Using this generic approach, more
complex blending is possible. The basic concept of a class and its methods can be easily extended to other types of
blends.

9. ACKNOWLEDGMENTS

We thank the Netherlands Organization for Scientific Research (STW) for supporting this work under project DIT.
6240.

10. REFERENCES

[1] Bidarra, R.; Bronsvoort, W. F.: Semantic feature modelling, Computer-Aided Design, 32(3), 2000, 201-225.
[2] Vida, J.; Martin, R. R.; Varady, T.: A survey of blending methods that use parametric surfaces, Computer-Aided

Design, 26(5), 1994, 341-365.
[3] Braid, I. C.: Non-local blending of boundary models, Computer-Aided Design, 29(2), 1997, 89-100.
[4] ACIS Technical Overview, ACIS Geometric Modeller, Version 12, January 2004, Spatial Technologies Inc.
[5] Bronsvoort, W. F.; Bidarra, R.; Nyirenda, P. J.: Developments in feature modeling, Computer-Aided Design

and Applications, 3(5), 2006, 655-664.
[6] Hoffmann, C. M.: On the semantics of generative geometry representations, advances in design automation, In:

Proceedings of the 19th ASME Design Automation Conference ’93, 2, 1993, 411-419.
[7] Kripac, J.: A mechanism for persistently naming topological entities in history-based parametric solid models,

Computer-Aided Design, 29(3), 1997, 113-122.
[8] Middleditch, A.; Reade, C.: A kernel for geometric features. In: Proceedings of the Fourth ACM Symposium on

Solid Modeling and Applications, Atlanta, Georgia, USA, Hoffmann, C.M. and Bronsvoort, W.F. (Eds.), 14-16
May 1997, 132-140.

[9] Bidarra, R.; Nyirenda, P. J.; Bronsvoort, W. F.: A feature-based solution to the persistent-naming problem,
Computer-Aided Design and Applications, 2(1-4), 2005, 517-526.

[10] Marcheix, D.; Pierra, G.: A survey of the persistent naming problem. In: Proceedings of Solid Modeling ‘02 –
Seventh Symposium on Solid Modeling and Applications, Saarbrücken, Germany, Lee, K. and Patrikalakis,
N.M. (Eds.), 17–21 June 2002, 13-22.

[11] Nyirenda, P. J.; Mulbagal, M.; Bronsvoort, W. F.: Definition of freeform surface feature classes. Computer-
Aided Design and Applications, 3(5), 2006, 665-674.

[12] Bidarra, R.; de Kraker, K. J.; Bronsvoort, W. F.: Representation and management of feature information in a
cellular model, Computer-Aided Design, 30(4), 1998, 301-313.

Computer-Aided Design & Applications, Vol. 4, No. 6, 2007, pp 795-806

806

[13] van den Berg, E.; Bronsvoort, W. F., Validity maintenance for freeform feature modelling, Submitted.

Fig. 11: Other types of blends.
(a) (b)

