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ABSTRACT 

 

Flank milling is a high efficiency machining method in 5-axis machining and is used in the 

machining of ruled surfaces. Li et al. [1, 2] developed methods to design double curved surfaces for 

flank milling. Those methods are restricted to cylindrical cutting tools. In this paper, Li’s method is 

generalized to tools of revolution. Based on polynomial composition [3], a method to model a 

grazing curve with NURBS on a surface of revolution tool is developed and is tested with cylindrical 

tools, conical tools and barrel tools. The NURBS grazing curves are combined to generate the flank 

millable surface. Examples are given to demonstrate the proposed flank millable surface design 

method.  

 

Keywords: curved surface design; flank milling; surface numerical analysis; surface error control.  

 

 

1. INTRODUCTION 

Flank milling is a 5-axis NC machining method. In flank milling, the side of cutter touches the surface, and the stock in 

front of the cutter is removed away. High material remove rate and good surface finish can be obtained by this 

machining technique. Today, flank milling is mainly used in aerospace and fluid flow application in mechanical 

engineering and focused on ruled surface machining. Different flank milling tool positioning methods have been 

developed [5-10], which attempt to reduce the deviation between the designed ruled surface and the generated 

machined surface. 

 

In general engineering applications, curved surfaces are used and must be machined. Applying flank milling 

techniques in curved surface machining to increase the efficiency of machining has been proposed. Elber and Fish 

[11] developed a piecewise ruled surface approach to machine freeform surfaces. In their method, the freeform surface 

is divided into conjunctive ruled surfaces. Each small surface (a ruled surface) is machined with one of the developed 

flank milling methods. A long tool path is needed for their method. Li et al. [1-2], [12] also developed curved surface 

flank milling methods that are used in machining surfaces like impellers and turbine blades. In these methods, a 

machined surface that is described by a grazing surface (or a swept surface) is used as the design surface. Because the 

grazing surface is composed of a bundle of discrete points and is hard to use in engineering applications, a NURBS 

surface has been developed to represent the grazing surface. This NURBS surface is called a flank millable surface. 

Using this surface, the machined surface can match the designed flank millabe surface accurately. Three different ways 

to build the flank millable surface were presented in their papers.  

 

Li et al.’s methods to generate the flank millable surfaces are based on cylindrical cutting tools and still need to be 

extended to conical tools, barrel tools and other tools of revolution. One such extension is probed in this paper, with 

polynomial composition [3] being used to generate the grazing curves in this study.  

 

The process to generate the approximate grazing curve (a contact curve between the tool and the design surface) in 

the new method uses polynomial composition, while in the earlier methods the approximating grazing curve is created 

by extending a circle in 3D. In our new method, the polynomial curve at each tool position exactly lies on the tool 

surface, while in the NURBS approximation to the grazing curve in the earlier methods might not lie on the tool 

surface. Our new method can be used with any tool of revolution described by a polynomial profile curve, while the 

earlier methods only work for cylindrical tools. 
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The organization of this paper is as follows: The mathematical background for this paper is given in the next section, 

focusing on the ideas of grazing point generation, Bézier curves, Bézier surfaces and polynomial composition. The 

method to design the flank millable surface is presented in section 3. Examples to demonstrate the proposed flank 

millable surface design method is given in section 4. Some discussion of the method and variations on the method are 

given in section 5, and the paper concludes in section 6. 

 

2. MATH BACKGROUND 

In this section, we review some background material about grazing point generation, Bézier curves, tensor-product 

Bézier surfaces, and polynomial composition. For more details on Bézier curves and tensor product surfaces, see [13]. 

 

2.1 Grazing Point Generation 

Grazing points are imprint points left on the machined surface when a cutting tool moves along the feed direction [10]. 

The net of evenly distributed grazing points on the machined surface can be used to describe the machined surface 

itself. In flank milling, the side of the cutter touches the surface and is rolled along guiding curve directions. The stock in 

front of the cutter is machined away. The effective contact between the cutter and the surface at each tool position is 

called a grazing curve and is composed of a sequence of grazing points. These grazing points are located not only on 

the machined surface, but also on the cutting tool surface. Based on this property, these grazing points can be easily 

computed at each tool position. The grazing points are the points on the cutting tool surface whose motion directions 

are perpendicular to the corresponding normals of the cutting tool surface.  

 

To calculate these points on a cylindrical surface, let the tool axis be designed with a vector axisT  and consider a point 

on the tool axis P . The velocity of tool at P  is V . The radius of the cutting tool is R . The grazing point 

corresponding to the point P  is G  and is given by 

                                                                                     
*

| * |
axis

axis

V T
G P R

V T
= + .                                                         (1) 

 

To compute grazing points on a general surface of revolution, see [18]. Different grazing points along the tool axis 

direction are calculated and composed of a grazing curve. Different grazing curves at each tool position are combined 

in sequence to build a grazing surface. This surface can be used to represent the machined surface closely.  

 

2.2 Bézier Curves 

A parametric Bézier curve is defined by 

0

( ) ( )
n

n
i i

i

B t PB t

=

=∑ , 

where the iP  are points in space known as control points, and ( ) ( )(1 )t n n i i

i iB t t t−= − are the Bernstein polynomials, 

which form a basis for degree n polynomials. The parameter t  is a real number in the domain; as we vary t  from 0 to 

1, we trace a curve starting at 0P  and ending at nP . An example of a cubic Bézier curve is shown in Fig.1(a). 
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Fig. 1: (a) A cubic Bézier curve. (b) de Casteljau evaluation of Bézier curve. 

 

An affine combination is a linear combination whose coefficients sum to 1; e.g., 0 1aP bP+  is an affine combination of 

0P  and 1P  if 1a b+ = . Note that the degree n  Bernstein polynomials sum to 1, so a Bézier curve is an affine 

combination of its control points. 
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We can evaluate a Bézier curve using repeated affine combinations via de Casteljau’s algorithm as follows. 

Let 0
i iP P= . Then to evaluate ( )B t  at t t= , we compute 1 0 0

1(1 )i i iP t P tP+= − +  for 0, , 1i n= −� . Repeating 

for 2, ,j n= � , we compute 

                                                                                 1 1
1(1 )j j j

i i iP t P tP− +
+= − +                                                           (2) 

for 0, ,i n j= −� . We then have 0( ) nB t P= . See Fig. 1 (b). 

 

The blossom of a degree n  polynomial curve B  is the unique n − variate function 1( , , )nb t t�  where 

• b  is symmetric: 

1 (1) ( )( , , ) ( , , )n nb t t b t t
σ σ

=� � , 

                 where σ  is any permutation of (1, , )n� ; 

• b  is multi-affine: 

1 1 1 1 1 1 1 1 1( , , , (1 ) , , , ) ( , , , , , , ) (1 ) ( , , , , , , )i i i i n i i i n i i i nb t t au a v t t ab t t u t t a b t t v t t− + − + − ++ − = + −� � � � � � , 

                 for all i. 

• b  agrees with B  on the diagonal: 

( , , ) ( )b t t B t=� . 

For Bézier curves, the control points have “nice” blossom value: 

�
(0, 0,1, ,1)i

n i i

P b
−

= � �
�������

. 

We can evaluate the blossom using a variation of the de Casteljau algorithm, where we use a different blossom 

argument at each level of the de Casteljau evaluation. I.e., to evaluation 1( , , )nb t t� , in place of (2) we use 

1 1
1(1 )j j j

i j i j iP t P t P− +
+= − + . 

 

2.3 Tensor-product Bézier Surfaces 

A tensor-product Bézier surface is defined by 

                                                                             ,

0 0

( , ) ( ) ( )
n m

n m
i j i j

i j

S u v P B u B v

= =

=∑∑ ,                                                  (3) 

where the ,i jP  are the control points for the surface and the ( )n
iB u  and ( )m

jB v  are Bernstein polynomials. As we vary 

u  and v  over the [0,1] [0,1]×  domain, a surface patch is traced out. An example of a bicubic tensor-product Bézier 

patch is shown in Fig. 2. 
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Fig. 2: A tensor-product Bézier patch. 

 

We can also blossom a tensor-product surface ( , )S u v , giving an n m+  variate function 1 1( , , ; , )n ms u u v v� �  where 

• s  is symmetric in the iu  and iv , but interchanging a iu  argument with a iv  will in general change the value 

of  s . 

• s is multi-affine in both the iu  and iv . 

• s agrees with S  on the diagonal: 

( , , ; , ) ( , )s u u v v S u v=� � . 
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2.4 Polynomial Composition 

Given a Bézier curveF  whose range is the domain of a tensor product Bézier surface G , we can compute the control 

points of ( ) ( ( ))H t G F t= . Various methods for efficient computing the control points of H  are available [4], [5]. Here 

we rederive the special case of a curve composed with a tensor-product surface. 

 

Theorem: Let 2:F R R→  be a degree n  Bézier curve and let 2 3:G R R→  be a degree l m×  tensor-product 

surface patch with blossom ( , )g u v . Here we are considering the range 2R  of F  to be the domain of G . Let iF  be 

the control points of F , with ( , )u v
i i iF F F=  giving the decomposition of F ’s control points into coordinates in the 

range.  Then the control points of ( ) ( ( ))H t G F t=  are 

                                              
1 1

( )
1 1 | | | |

, ,| | | |

( , , , , , ) ( ) ( , , ; , , )
l m

l m n u u v v
i l m i i j jI J

I J I J i

H C i i j j B t g F F F F+
+

+ =

= ∑ � � � � .                             (4) 

 

Proof: Our goal is to find the control points of  

                                                ( ) ( ) ( ( )) ( ( ); ( ))l m u n v n
i i i i i iH t H B t G F t G F B t F B t+= = =∑ ∑ ∑ .                               (5) 

Using the blossom of G , we find 

1 1 2 2 1 1 2 2
( ) ( ( ), ( ), , ( ); ( ), ( ), , ( ))

l l m m

u n u n u n v n v n v n
i i i i i i j j j j j jH t g F B t F B t F B t F B t F B t F B t= ∑ ∑ ∑ ∑ ∑ ∑� � . 

Since g  is multiaffine and since the Bernstein polynomials sum to 1, each of the sums can be brought to the outside:  

1 1 1 1

1 1, , , , ,

( ) ( ) ( ) ( ) ( ) ( , , ; , , )
l m l m

l m

n n n n u u v v
i i j j i i j j

i i j j

H t B t B t B t B t g F F F F= ∑
� �

� � � � . 

The product of Bernstein polynomials 
1
( ) ( )

k

n n
i iB t B t�  is equal to 1( , , ) ( )kn

kC i i B t� , where  

1 2
1

1( , , ) ( )( ) ( )/
k

n
k

jj

n n n
k i i i

k

i
C i i

=

  =    ∑
� � . 

Let 1( , , )lI i i= �  and | | kI i=∑  and let 1( , , )mJ j j= �  and | | kJ j=∑ . We can write 

                                              
1 1

( )
1 1 | | | |

,

( ) ( , , , , , ) ( ) ( , , ; , , )
l m

l m n u u v v
l m i i j jI J

I J

H t C i i j j B t g F F F F+
+=∑ � � � � .                                  (6) 

 

Since the Bernstein polynomials form a basis for degree n  polynomials, we can now find an expression for the control 

points of H  by equating the coefficients of the Bernstein polynomials in (6) with (5), giving us the desired result, (4), 

which concludes the proof. 

 

Rather than compute each control point of H  independently, because of the indexing it is easier to write code that 

computes all of the control points at once. Fig. 3 is pseudo-code for doing so. While this isn’t the most efficient way to 

compute the control points of H , it suffices for the purposes described in this paper. In this code, the two for loops are 

iterating over the sums in (6); the function TensorProductBlossom evaluates the blossom of a tensor-product surface, 

using the two arrays of values, u
IF  and v

JF , as the parameters to the blossom, where u
IF  is the array consisting of the 

u  values of the control points of F  indexed by the elements of the array I . Note that the values of ( , )C I J  are such 

that the resulting expressions for the iH  are affine combinations. 

 

function H = tpcompose ( l , m , G , n , F ) 

                                                               For 1( , , ) (0, , 0)lI i i= =� �  to ( , , )n n�  

                                                                       For  1( , , ) (0, , 0)mJ j j= =� �  to ( , , )n n�  

                                                                              R =  TensorProductBlossom (l , m , G , u
IF , v

JF ); 

                                                                             | | | | | | | | * ( , )I J I JH H R C I J+ += + ; 

                                                                        End 

                                                               End      

Fig. 3: Pseudo-code for computing the control points of the composition ( )H G F= . 
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3. GENERATION OF FLANK MILLABLE SURFACE 

The design of the flank millable surface starts from two guiding curves and a given cutting tool. Our method positions 

the tool at several locations along the guiding curves. Different tool positioning methods result in different machined 

surfaces. In this study, Bedi et al’s tool positioning method [10] is used to generate the tool path, and polynomial 

composition [3] is used to approximate each grazing curve with a B-Spline curve that lies on the tool surface. A few 

selected B-Spline curves are used to build the flank millable surface. The parametric error measurement method [14] is 

used to evaluate the error between the generated flank millable surface and the given grazing surface. The steps to 

achieve this flank millable surface with tool of revolution are given below.  

 

At each tool position, the tool axis can be sampled with discrete points iP  as Fig. 4 (Step 1) shows. The velocity, iV , 

of each point iP  can be calculated [10] and be used in surface design.  The following steps give our algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Grazing points and Bézier curve. 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Bézier curves and NURBS surface. 

 

Step 1: For a given tool position and for each iP  on the tool axis with velocity iV , use equation (1) to compute and      

            find its corresponding grazing point iG . (Equation (1) is for a cylinder; for general surface of revolution, see 

[18].)  

Step 2: For each iG , compute 1( , ) ( )i i iu v R G−= , where R  is the surface of  the revolution tool, and 1( )iR G−  

represents the inverse of iG  in the domain of the given tool of revolution. 

Step 3: Use least squares curve fitting to find a Bézier curve dC  to match points ( , )i iu v . 

Step 4: Using polynomial composition (section 2.4) to find a Bézier curve C  on the tool surface corresponding to the 

curve dC . 

Step 5:  Repeat steps 1~4 to compute 1N +  curves jC  at 1N +  tool positions. 

Step 6: Construct a tensor product B-Spline surface ( , )S u v  with ( , ) ( )j jS u v C v= , where /ju j N= . 

 

Although the surface of the revolution R  is exactly described by a rational tensor product surface, R  can still be 

approximated with a high order polynomial using a tensor product Bézier surface, with the control points in one 

parametric direction representing the curve being revolved, and the control points in the other parametric direction 
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forming a cubic approximation to a circle [17]. By using a poly approximate the surface of revolution R , we can use 

polynomial composition in step 4. 

  

Using the steps given above, the flank millable ( , )S u v  can be obtained.  

 

A few notes. N  is the number of tool positions that are used in flank millable surface generation. The selection of N  

is based on surface error checking. By using more tool positions, the surface error can be effectively controlled. 

 

Step 6 is the last step to build the flank millable surface. The details to apply this step to generate the flank millable 

surface are described in [1-2]. 

 

ju  is the parametric value assigned to each tool position along the guiding curve direction. In this paper, we equally 

spaced the ju . Other methods, like the chord length and the centripetal spacing [16], can also be used to compute ju .  

 

Although the proposed method is demonstrated with Bedi et al.’s tool positioning method, it can also be used with 

other tool positioning methods. 

 

4. EXAMPLES 

Examples are given in this section to test and demonstrate the proposed flank millable surface generation method. The 

design starts from two guiding curves and a cutting tool. The guiding curves used in this flank millable surface design 

are taken from Li et al.’s paper [1]. The control points of the guiding curves are listed in Table 1. The knot vector for 

both curves is [0,0,0,1,1,1] and the degree of the curves is 2. 

 

 

 T0 T1 T2 B0 B1 B2 

x  75 30 0 60 30 15 
y  15 30 60 0 30 75 

z  -5 -5 -5 -45 -45 -45 

w (weight) 1 1 1 1 1 1 

 

Tab. 1: Control points for guiding curves [mm]. 

 

Three types of cutting tools, a cylindrical tool, a conical tool and a barrel tool, are used to generate the flank millable 

surface for our tests. The geometries of these tools are given in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

          Fig. 6:  Geometries of cutting tools.  5R mm= , 50h mm= , 7tR mm= , 4bR mm= ,    

                        0 418.17R mm= .  a). a cylindrical tool.  b). a conical tool.  c). a barrel tool.   

 

For each cutting tool, Bedi et al.’s tool positioning method is used to determine the tool path and the method described 

in section 3 is used to construct the flank millable surface. Three grazing curves ( 2N = ) located at 0u = , 0.5u =  

and 1u =  along the guiding curve directions are selected to build the surface. For each grazing curve, the domain of 
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each grazing point, ( , )i iu v , is calculated (Step 2). A quadratic 2D Bézier curve is fit to these discrete points (Step 3, 

dC ). In Step 4, a Bézier curve with 9 control points results for the cylindrical tool and the conical tool, and 13 control 

points for the barrel tool (curve C ). This Bézier curve is used to approximate its corresponding grazing curve. By the 

same procedure, the remaining Bézier curves can be constructed (Step 5). For the estimates, three Bézier curves have 

been obtained after Step 5. With these Bézier curves, Step 6 creates a tensor product B-Spline surface with 9 by 3 

control points (degree 8 by 2) for the cylindrical and conical tools, and 13 by 3 control points (degree is 12 by 2) for 

the barrel tool. This surface is used to approximate the grazing surface (or the machined surface). The deviation 

between the B-Spline surface and the grazing surface is evaluated with the parametrical error measurement method 

[16], and the evaluation results for different cutting tools are plotted in Fig. 7. 

 

From Fig. 7, it is seen that the maximum surface error for the cylindrical tool is around 0.0235mm, for the conical tool 

is around 0.0244mm and for the barrel tool is around 0.024mm. These errors satisfy most of engineering applications. 

If any of the maximum errors exceeds the tolerance specified by the user, more control points can be added to the 

grazing curve direction and/or additional grazing curves can be used in the feed direction to reduce the surface error.  

 

 

 

                                a                                                                   b                                                                     c          

Fig. 7:  Surface error for different cutting tools.  a). a cylindrical cutter. b). a conical cutter. c). a barrel cutter. 

 

We can also compare the solution of the cylindrical tool to the solution with the same surface and cutter obtained from 

Li’s paper [1]. The maximum surface errors of the both method are similar (around 0.022mm in Li’s paper), but the 

proposed method needs more control points (9 by 3 vs. 3 by 3) and higher degree (8 by 2 vs. 2 by 2) to generate the 

surface. However, the proposed method can be applied to any tool of revolution, broadening the application of flank 

millable surfaces.  

 

5. DISSCUSSION AND VARIATIONS 

In step 3, to find the curve dC  to match points ( , )i iu v , a Bézier curve is used to describe dC . Under some situations, 

a B-Spline curve is is needed to more accurately approximate the given points. If a B-Spline curve is used in this step, 

we need initially to decompose the piecewise polynomial B-Spline curve into a sequence of Bézier curves using knot 

insertion [15], and each Bézier curve can then be used in step 4 to get its corresponding 3D Bézier curve. After all the 

3D Bézier curves are obtained, knot removal is used to convert this curve sequence into a single B-Spline curve. This 

B-Spline curve is used in the following flank millable surface design. 

 

We use a polynomial approximation to the surface of revolution. While this approximation should be more than 

sufficient for most engineering applications, if an exact representation of the surface of revolution is desired, then a 

rational tensor product surface could be used instead. One advantage of using a rational tensor product representation 

of the circles is that degree 2 curves could be used instead of the degree 3 polynomials curves we used.  However, use 

of rationals would require finding settings of the weights, which is a non-trivial problem. 
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One of the key benefits of using polynomial composition in our method is that the approximations to the grazing 

curves lie exactly on our representation of the tool (i.e., the surface of revolution, R). The downside of using 

polynomial composition is that it leads to high degree representations of the grazing surfaces. Whether having the 

approximations to the grazing curves lying exactly on the tool is worth the high degree result is unclear; alternative 

methods of constructing approximations to the grazing surface may give better results. 

 

6. CONCLUSIONS 

In this paper, a method to generate the flank millable surfaces with polynomial composition was developed. The main 

feature of note in our method is that it can generate flank millabe surfaces for any tool of revolution. The examples 

show that the composed surface closely matches the true grazing surface. 
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