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ABSTRACT 

 

Virtual Reality (VR) Systems allow immersive inspection of very complex environments, with direct 

interaction with the objects in the virtual scene. Low cost and affordable VR systems are becoming 

essential in application areas like Industrial Design, Medical Applications and Cultural Heritage and 

require sophisticated techniques for model inspection and interaction. Discrete geometric models 

can be very useful for some involved geometry processing algorithms like model repair, occlusion 

culling and multi-resolution and level of detail. The interest of these techniques and their potential 

in present and future VR applications will be discussed. This paper addresses the interest of discrete 

geometric models in volume-based geometric simplification, the use of discrete tiles for impostor-

based extreme simplification, topology-preserving model repair techniques based on discrete 

membranes and specific algorithms for recovering polygonal shapes from discrete volume models. 

The use of out-of-core octrees for interactive navigation in very complex geometric assemblies is 

also presented and discussed. 

 

Keywords: Virtual Reality, discrete geometric models, volume-based simplification, model repair, 

out-of-core interactive navigation. 

 

 

1. INTRODUCTION 

Virtual Reality (VR) Systems allow immersive inspection of very complex environments, with direct interaction with the 

objects in the virtual scene. Low cost and affordable VR systems are becoming essential in application areas like 

Industrial Design, Medical Applications and Cultural Heritage and require sophisticated techniques for model 

inspection and interaction. Discrete geometric models can be very useful for some involved geometry processing 

algorithms like model repair, occlusion culling and multi-resolution and level of detail. The interest of these techniques 

and their potential in present and future VR applications is obvious. 

 

This paper addresses the interest of discrete geometric models in volume-based geometric simplification, the use of 

discrete tiles for impostor-based extreme simplification, topology-preserving model repair techniques based on discrete 

membranes and specific algorithms for recovering polygonal shapes from discrete volume models. 

 

After presenting the discrete geometric models and the main concepts in the next Section, two different simplification 

algorithms based on intermediate volume representations are presented in Section 3. Section 4 is devoted to volume-

based model repair algorithms, while Section 5 presents a new algorithm for recovering shape and features from 

binary volume models. Finally, Section 7 discusses some issues on the interactive navigation problem through gigantic 

models. 

 

2. DISCRETE GEOMETRIC MODELS 

Let O be a solid object with one or more connected components. A discrete representation of O may be obtained by 

classifying, against O, a set of sample points distributed on the nodes of a regular, axis-aligned three-dimensional grid. 

Nodes lying inside O or on its boundary are labelled as black and nodes lying outside O are labelled as white. Such a 

lattice may be constructed in a variety of ways from a polyhedral or curved representation of O through a voxelization 

process. A similar lattice colour-coding may be produced by considering the values of a scalar field at each node. If the 
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value is larger than a prescribed threshold, the node is black; otherwise, it is white. In what follows, a stick s is a grid 

edge connecting a white grid point with a black one.  

 

When this volume model is built from a solid model, it may contain binary information (an in-out classification of every 

vertex in a grid), or it may consist of a sampling of a scalar field (at the same vertices), for example a signed distance 

field. More information can be stored, like Hermite data or exact intersection points but these are seldom effectively 

used in the literature. In the rest of this paper, we will only consider volume models with binary information. 

 

Isosurface extraction algorithms differ on how the discrete information in the grid is generated, on what information 

does the grid store and the properties of the output surface. Recent algorithms offer different solutions for the 

disambiguation problem and for controlling the final topology, [2]. Once a choice has been made for every ambiguous 

cell of the grid, the topology of the resulting isosurface is fixed. This isosurface (that will be named as the implicit 

isosurface of the volume model in the rest of the paper) stabs all sticks in the grid.  Iso-surfaces in Figure 1 correspond 

to several extraction algorithms and assume that the implicit isosurface stabs all sticks in their central point [8]. 

Algorithms using improved schemes that result on smoother iso-surfaces will be presented in the next Sections. Figure 

1 shows the final isosurface obtained with the alternating tetrahedrization, the tri-linear disambiguation in [9], the dual 

contouring algorithm in [6] and the topology optimization criteria in [2].  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Result of several iso-surface extraction algorithms. 

 

 

3. GEOMETRY AND TOPOLOGY SIMPLIFICATION 

Discrete volume models are a fundamental tool for geometry and topology simplification. The next two subsections 

present two different approaches that generate polygonal and impostor-based simplified representations. 

 

3.1 Discrete Geometric Models in Volume-based Geometric Simplification 

Simplification in scenes containing a large number of simple objects (Figure 2) can be performed using volume 

representations. The algorithm in [3] combines appearance preservation and topology reduction by converting 3D 

models to and from an intermediate octree representation. The input model is converted into an octree, and the final 

polygonal surface is then extracted from it. This last step involves a Discretized Marching Cubes reconstruction [8] and 

an iterative edge-collapse constrained to the sticks of the volume representation. The algorithm preserves the 
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appearance and involves an improved surface fitting. Some results are presented in Figure 2: the simplification starts 

from 4096 shells and 49659 triangles and generates a simplification (Figure 2 – right) with 3 shells and 6947 triangles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. An assembly with 4096 shells, and its simplification with three shells. 

 

3.2 The use of Discrete Tiles for Impostor-based Extreme Simplification  

The problem of finding the maximal planar region for a given geometric model is a very complex one, with many local 

maxima. Approximate and greedy solutions to this or similar problems can be found in previously published works. 

But the problem can be reformulated in a discrete way [1], as the problem of finding the plane (or tile)  R in a suitable 

parameterization of planes such that R stabs largest set of sticks. The method in [1] presents an efficient algorithm that 

computes and guarantees this optimum under a sampling frequency condition. Theoretical conditions on discrete 

plane parameterizations and the advantages and drawbacks of several plane representations are discussed, and a 

suitable plane representation with appropriate mathematical properties for this problem has been chosen. The 

algorithm in [1] uses a pre-computed look-up table (dictionary of planes) that quickly gives the set of planes that stab 

the neighbourhood of a given stick. The largest tile is found through a voting scheme during a stick traversal. As shown 

in Figure 3, a reduced number of tiles (14) is sufficient to represent a taxi model by projecting the surface details into 

textures in the planes of the tiles.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3. A taxi model and its 14 largest tiles. At right, these 14 tiles have been used for an impostor-based rendering. 

 

4. MODEL REPAIR 

Geometric models coming from scanner devices are in general not valid.  They are not closed and they contain a 

number of holes and cracks, see Figure 4 (left). To repair such a 3d model M we start by immersing it in a voxelization 

of a suitable resolution l. The voxels are labelled according to whether they have parts of the surface S of M inside 

them (hard voxels) or not (soft voxels). In the next step, a discrete closed membrane is obtained. A discrete membrane 

[5] is a closed set of 6-connected (face-connected) voxels that contain the surface S. This voxel set is formed by 6-

connected hard and soft voxels and divide the remaining voxels in inside and outside. The algorithm works by 

deforming the membrane like a discrete rubber band: it initially starts as the discrete membrane composed by the 
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voxels of the 6 exterior faces of the Voxelization Universe, and then this membrane is contracted at the locations where 

soft voxels exist [5], while hard voxels stop the shrinking process. When this membrane cannot be further contracted, 

the 6-connected discrete membrane has been found. In a final step (Figure [4]) a relaxation of the discrete membrane 

is performed to obtain a smoother surface. This works by perturbing soft voxels of the discrete membrane in order to 

reduce the local curvature, [5].  

 

The algorithm does not require to know the topological relations among the initial parts of S or other additional 

information. The obtained surface approximates and does not stab exactly the initial scanned points. The 

approximation error has a certain tolerance related to the voxelization size. By pushing the membrane by a shrinking 

plate of diminishing size [5], the algorithm allows to reconstruct surfaces from initial data points not having a uniform 

density. Surfaces with genus > 1 and/or surfaces with disconnected shells can be reconstructed due to the way of 

detecting the incursions in the interior of the surface. The algorithm is robust and efficient since it works only with 

discrete values (voxels).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. Repair results on the 3D scanned model of a column. 

 

5. RECOVERING SHAPE FROM BINARY VOLUME MODELS 

The Max Tiles algorithm presented in Section 3 can be extended to reconstruct surfaces and features from binary 

volume models. Previous algorithms were able to recover sharp features from volume models representing scalar fields 

(like the Extended Marching Cubes in [7]) or from volume models that include Hermite data (like the Dual Contouring 

algorithm in [6]). This new algorithm (named Pressing from now on) automatically recovers flat regions, curved regions 

and sharp edges from raw binary voxelizations when scalar field and Hermite data are not available. 

 

In Pressing, a Max Tiles segmentation for recovering flats is combined with a smoothing step on smooth transition 

surfaces. Pressing uses a new smoothing operator [4] which preserves the connectivity of the initial isosurface 

(implicitly defined by the binary voxelization, [2]) and optimizes smoothness under a set of stick constraints: the final 

isosurface is constrained to stab the initial sticks (Figure 5) and it is automatically segmented into flat and curved 

regions, which may facilitate shape identification, manufacturing and assembly planning 

 

The Pressing algorithm [4] works as follows: 

• Sticks are clustered into flat tiles that may be stabbed by a plane [1] (Figure 5-b). 

• Junction points are identified. Junction points are vertices between flat and  curved regions (Figure 5-b).  

• Non-flat regions are faired by an iterative process, which, at each step and for each fresh vertex combines 

arc-length re-sampling, bi-Laplacian smoothing and snapping. These three operations are performed 

independently on each X, Y, and Z slice. Their results are combined using a special filter at borders. 

• Sharp edges are recovered through the use of a modified Edge Sharpener algorithm  (Figure 5-c).  
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Figure 5: Left: the aliased isosurface was extracted from a 128 x 128 x 128 binary voxelization. Its vertices are at the stick midpoints. 

Middle: the flats were identified and colour-coded. The junction points along the boundaries between planar and non-planar regions 

are also identified and shown as orange dots. Note that a flat may be connected to other flats or to smooth faces through sharp edges 

and to smooth faces through smooth edges. Right: the resulting pressed isosurface. 

 

Results of the Pressing algorithm on a variety of models have been reported and discussed in [4]. Pressing achieves 

small reconstruction errors and successfully recovers flats and sharp features in a reasonable amount of time. Potential 

applications include shape recognition, simplification, compression and various reverse engineering and manufacturing 

problems. 

 

6. INTERACTIVE NAVIGATION 

Discrete volume models are also very useful for real-time navigation on gigantic scenes. A number of algorithms based 

on out-of-core octrees and similar data structures have been proposed. Octrees are well suited for multi-resolution 

models that must dynamically adapt the level of detail as a function of the camera movements.   

Combining an out-of-core octree representation of a gigantic scene with the efficient use of the GPU capabilities and 

the use of adaptive front algorithms that integrate temporal coherence is fundamental. Using these techniques in the 

optimal way for the interactive navigation in multi-object scenes is a current topic of research that will certainly lead to 

the new generation of VR inspection systems.  

 

7. CONCLUSIONS 

Discrete geometric models are useful for some geometry processing algorithms like model repair, occlusion culling, 

multi-resolution and level of detail.  

 

In this paper we have discussed the interest of some of these discrete techniques and their potential in interactive and 

VR applications. Some algorithms based on discrete geometric models have been presented for volume-based 

geometric simplification, impostor-based extreme simplification, topology-preserving model repair techniques, 

recovering polygonal shapes from discrete volume models and for interactive navigation in very complex geometric 

assemblies. 
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