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ABSTRACT 

 
This paper presents an Assembly Design (AsD) ontology that explicitly represents AsD constraints 
and infers any remaining implicit ones. By relating concepts through ontology technology rather 
than just defining data syntax, assembly and joining concepts can be captured in their entirety or 
extended as necessary. Ontologies allow assembly and joining constraints to be represented in a 
standard manner regardless of geometry file formats.  Such representation will significantly improve 
service-oriented design collaboration. The developed AsD ontology is tested using a realistic 
mechanical assembly and it is shown how the ontology can be used to capture design rationale 
and analyze the design intents. In conclusion, the significance of ontology for realizing lean and 
selective assembly design information sharing is discussed. 
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1. INTRODUCTION 

Discrete product manufacturers are under pressure from customers to move away from the traditional make-to-stock 
production model to a build-to-demand model. The impact of Internet technologies has accelerated the pace of 
product development and product aftermarket service. Industries now realize that the best way to reduce life cycle costs 
is to evolve a more effective product development paradigm using the Internet and web-based technologies [1]. Yet, 
there remains a gap between these current market demands and current product development paradigms. One 
possible approach to fill this gap is to seamlessly integrate product development processes into a collaborative 
environment. To realize such integration, it is necessary to realize an assembly design (AsD) model that includes self-
descriptive, semantic information.   

Designers are no longer merely exchanging geometric data, but knowledge about design and the product 
development process, including specifications, design rules, constraints, and rationale. As design becomes increasingly 
knowledge-intensive and collaborative, the need for computational frameworks to enable engineering product 
development by effectively supporting the formal representation, capture, retrieval, and reuse of product knowledge, 
becomes more critical [2][3]. 

To generate a robust assembly model, an understanding of assembly geometry and its physical effects is 
prerequisite. However, current solid modelers and simulation software are not advantageous drivers of robust assembly 
models since they provide incomplete product definitions and are not able to act according to the semantic content of 
the models.  The reason for this is that, traditionally, the geometric model was in the center of product models. Of 
course, geometry is of importance during assembly design, but the morphological characteristics are consequences of 
the principle physical processes and the design intentions (e.g., joint intent) [4][5].   

This paper presents an AsD ontology that plays a formal, explicit specification of a shared conceptualization of 
assembly design modeling. By utilizing ontology technology, clear relations among assembly components and form 
features are established and assembly knowledge is systemized in product, feature, manufacturing, and spatial 
relationship classes. In this paper, implicit assembly constraints are explicitly represented using SWRL (Semantic Web 
Rule Language) and OWL (Web Ontology Language). A meta-model called the assembly relationship model (ARM) 
[6], which was originally developed to capture assembly engineering relations, is enhanced using ontology technology 
to satisfy collaborative engineering needs. The implicit constraints of assembly engineering relations, spatial 
relationships (SR), and joining are represented by using OWL triples and SWRL rules. The AsD ontology also captures 
design rationale including joint intent and SR. This work can be used to query AsD information selectively as well as 
transparently. The AsD ontology is tested using a realistic mechanical assembly and shows how the ontology can be 
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used to capture design rationale and analyze design intent. In conclusion, the significance of the ontology for realizing 
semantic assembly design information sharing, called Semantic Assembly Design Modeling (SADM) environment is 
discussed.  
 
2. BACKGROUND 

2.1 Ontologies 

Ontologies are explicit formal specifications of the terms in the domain and relations among them [7]; a formal, explicit 
specification of a shared conceptualization.  “Conceptualization” refers to an abstract model of some phenomenon in 
the world, which identifies the relevant concepts of that phenomenon. “Formal” refers to the fact that the ontology 
should be machine-readable [8].  Mizoguchi [9] presented the roles of ontologies as a common vocabulary, common 
data structure, explication of what is left implicit, semantic interoperability, explication of design rationale, 
systemization of knowledge, meta-model function, and theory of content.  

Ontologies have been developed for a variety of domains. The broadest of ontologies, are the upper-level 
ontologies such as CYC, developed by Cycorp [10], that describe common sense-level knowledge.  Narrower in scope 
than upper-level ontologies, enterprise-level ontologies attempt to formalize the practices and processes that occur 
within an organization.  Examples of such ontologies include Enterprise Ontology [11] and TOVE [12].  The narrowest 
ontologies have been developed to represent conceptual and functional engineering information [13] as well as design 
features [4]. 

Of the ontologies reviewed, many of them have been developed and applied to broader business applications, 
which do not have the detail required at the engineering mechanical design level.  Although some research has been 
applied to design, it has limitations on representing mechanical assemblies. 

 
2.2 Service-oriented Design Collaboration 

Integrated product engineering requires collaboration of various engineering tools from various disciplines such as 
mechanical design, electrical design, materials, manufacturing, quality, marketing, maintenance, and regulations. This 
integrated collaboration can be realized in a service-oriented collaboration environment through the Internet [6][14]. 
Instead of looking at various engineering tools from a traditional computation viewpoint, service-oriented design 
focuses on the engineering implication of design tools at an abstract level. This approach assures openness of 
collaborative engineering systems. From this perspective, the Internet is no longer a simple network of computers, 
rather it is a network of potential services.  

To utilize service-oriented architecture (SOA) in design collaboration, services should be specified from the 
functional aspect of service providers. To make an existing tool available online or to build a new tool for such a 
system, associated services should be defined explicitly. The service transaction among service providers, service 
consumers, and the service manager within service-oriented design is illustrated in Fig. 1. Assembly design systems in 
this architecture should be able to produce assembly information that can be propagated and shared with various other 
service stakeholders and tools. Thus, this new assembly design paradigm that integrates assembly design and other 
product development activities requires assembly models that use self-descriptive modeling semantics.  

 

Service Consumer Service Provider

Service Manager

1. Service Publication2. Service Lookup

3. Service

 
 

Fig. 1. Service triangular relationship. 

 

2.3 Existing Assembly Design Formalism 

Related to assembly design formalisms, Deneux [15] discussed the necessity of assembly features in the design of 
complex assemblies. Holland and Bronsvoort [16] proposed the concepts of a single-part feature model and an 
assembly feature model for assembly modeling. However, their assembly feature concepts, which considered only 
assemblies with mechanical fastening, cannot be employed to assembly modeling requiring various other joining 
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processes. Whitney, et al. [17] proposed a formalism for assembly design and focused on only fully constrained 
assemblies and subassemblies. Even though they presented a general methodology for assembly design, many SRs in 
actual mechanical assemblies, e.g., between two cylindrical surfaces and between spherical surface and other surfaces 
were not addressed. Also, the effects on SR from joining processes were not discussed.  

Kim et al. [6] has developed AsD formalism based on SRs [18][20] and features. SRs are described briefly in the 
next sub-section. The formalism represents assembly and joining relations and generates a meta-model called ARM 
(assembly relation model) to explicitly represent the relations in XML format.  However, their formalism still has implicit 
constraints and relationships, which cannot be interpreted by a computer in the Semantic Web and service-oriented 
design environments.  These implicit relationships and constraints are necessary for various downstream design 
activities, including transparent assembly and joining analysis in a collaborative assembly modeling environment. Thus, 
this work will enhance the AsD formalism using ontology technology. The AsD ontology developed will explicitly 
represent AsD design constraints and the computer will be able to infer any remaining implicit ones. By relating 
concepts through ontology technology rather than just defining data syntax, assembly and joining concepts can be 
captured in their entirety or extended as necessary.  Furthermore, the higher semantic richness of ontologies allows 
computers to infer additional assembly/joining knowledge and make that knowledge available to decision makers.  In 
this paper, the three types of assembly relationships (i.e., belongTo, inter-featureAssociation, and assembly/joining 
relations), SRs, and the joining relations are represented in an ontology and are used as a core model in semantic 
assembly design modeling.  
 
2.3.1 Spatial Relationship (SR) 

SRs were first proposed by Ambler and Popplestone [18] in 1975 to describe the relative positions of parts in their 
final state by specifying feature relationships among them. SRs include against, coplanar, fits, parax, lin, rot, and fix. In 
the work of Ambler and Popplestone, SRs are concentrated on the configuration of a part. Liu and Nnaji [20] focused 
on the mechanical assembly specifications as well as the configuration of a product, so that SRs can be applied to 
general assemblies and are capable of accepting the design specifications. They defined design with SRs not only for 
inferring the assembly positions, but also to capture designer’s intentions. Each SR constrains the degrees of freedom 
(DOF) of motion between the mating entities. For example, two faces are said to be against if the two faces are 
touching at some point and normal vectors of those faces are in opposition where they touch. Any combination of two 
features can possess this property.  

The types of DOF are classified as follows; lin_n: linear translation along n axis, where, n contains a fixed point and 
a vector; rot_n: rotation about n axis, where, n contains a fixed point and a vector; cir_n: translating along a circle with 
n axis, where, the fixed point of n is the center of the circle and vector of n is perpendicular to the circle; plane_n, 
cyl_n, and sph: translating along a planar, cylindrical, spherical surface. The DOF of a part are expressed as {DOF of 
moving within the coordinate system of the relative moving part :: DOF of moving within its own coordinate system}, 
with respect to the other mating parts of the assembly [20]. For a plane_za DOF, a body may move on a planar surface 
along two lin. When a new plane_zb is introduced, the remaining DOF are derived by intersecting these two planes. 
The intersection of surface DOF is available only when a plane is involved; circle_n is the result of intersecting plane_za 
with cyl_n (or sph_n) together. In the intersection of two rotational DOF, say rot_za and rot_zb, if they share the same 
rotational axis then rot_za or rot_zb remains; if not they cancel each other. Liu and Nnaji [20] presented some general 
reduction rules for DOF.   
 

3. ASSEMBLY DESIGN ONTOLOGY 

3.1 Notes on Implementation 

For this research, the Semantic Web Rule Language (SWRL) is used. This language is based on a combination of the 
OWL DL and OWL Lite sublanguages of the Web Ontology Language (OWL) with the Unary/Binary Datalog RuleML 
sublanguages of the Rule Markup Language. SWRL is intended to be the rule language of the Semantic Web. It 
includes a high-level abstract syntax for Horn-like rules in both the OWL DL and OWL Lite sublanguages of OWL. The 
World Wide Web Consortium (W3C) has acknowledged receipt of a Member Submission from the National Research 
Council of Canada, Network Inference, and Stanford University. The submission has been made in association with 
the Joint US/EU ad hoc Agent Markup Language Committee. The SWRL submission package contains three 
components in addition to the principal prose document: (1) an RDF Schema partially describing the RDF Concrete 
Syntax of SWRL; (2) an OWL ontology partially describing the RDF Concrete Syntax of SWRL; (3) an XML Schema 
for the SWRL XML Concrete Syntax [21]. OWL, which is a recommendation for Semantic Web technology by the 
World Wide Web Consortium (W3C) [22], was investigated; however, the constraint representation capability of OWL 
alone was not adequate to implement an AsD ontology that can be fully utilized in the SADM environment. In this 



 

Computer-Aided Design & Applications, Vol. 3, No. 5, 2006, pp 603-613 

 

606 

research, SWRL is used to define AsD terms and their relationships. Also, SWRL rules have been implemented so that 
the rules can be reasoned to accommodate potential semantic queries/information request in the SADM environment. 
To generate the AsD ontology and rules, the SWRL editor in Protégé was used for this work. 
 
3.2 Components of the Assembly Design Ontology 

The definitions, possible terms, and concept representation of assembly were investigated thoroughly. Based on this 
investigation, the terms of the AsD ontology were carefully defined. Fig. 2 illustrates the hierarchy of AsD ontology 
classes. Within the hierarchy, a class is a subclass of another class. 
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Fig. 2. AsD ontology class hierarchy. 

 
An OWL ontology consists of classes, properties, and instances of classes. A class defines a concept.  Individuals 

are instances of classes and are linked to classes via properties (e.g., material). Properties can be used to state 
relationships between individuals or between individuals and data values. Classes such as JointFeatureCharacteristics 
are introduced in this work to represent relations in assembly models. With these supplementary classes, properties, 
and SWRL rules illustrated in the next section, the assembly design relationships and constraints are developed.  This 
paper focuses especially on the realization of semantic query that can provide appropriate assembly design information 
by SWRL reasoning for service-oriented design.  

 

3.3 AsD Constraint Representations in SWRL 

 
3.3.1 Relationships in Assembly Design 
The first core constraints in the AsD ontology are assembly relationships form feature to form feature and form feature 
to part. The assembly constraints are represented explicitly using OWL triples and SWRL rules. In this section, three 
assembly relations are described to illustrate how the assembly relationships can be represented in the AsD ontology. 
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The basic assumptions of these definitions are 1) part (P) is a member of assembly (Θ) (i.e., P ∈ Θ) and 2) form feature 

(FF) is a member of part (P) (i.e., FF ∈ P) 
 
1) belongTo relations: A belongTo relation defines relations between a part and a form feature. Assembly relations 
between features as well as between features and parts are defined below. The belongTo relations infer two constraints 
(C1-1 and C1-2). The inferred constraints can be transformed into two asserted conditions. For C1-1, an asserted 

condition, “∃ FormFeature belongTo SubPart” is used and an asserted condition, “belongTo = 1” is used to represent 
C1-2. This OWL cardinality condition means the property belongTo has exactly one value. 
 

Implied Constraints 

• C1-1: Every form feature (FormFeature) must belong to a part (SubPart) 

• C1-2: A form feature (FormFeature) must not belong to two parts (SubPart) 

 
2) inter-featureAssociation relations: The inter-featureAssociation relation represents the relations among form features. 
The relational constraint (RCpq) stands for the relationship between two form features in the form feature hierarchy.  
For example, a block (FFjq) may have a blind hole (FFjp) at a certain location of assembly (Aj). The distance between 
the coordinates of the block and the blind hole is a dimensional constraint. Since the block form feature contains the 
hole form feature (the block is a parent feature of the hole in the feature decomposition hierarchy), their relational 
constraint (RCpq) is 0. If FFjp has some form feature (FFjq), RCpq is 1. When two form features (FFjp and FFjq) do not 
belong to each other (e.g., two holes in a block), RCpq is 2. The inter-featureAssociation implies three constraints (C2-1 
to C2-3). 
 

Implied constraints 

• C2-1: The associated form features must not be identical (non-equivalent)  

• C2-2: The associated form features must belong to same part  

• C2-3: The relational constraint must be represented (included) 

 
SWRL rules 

• FormFeature(?x) ∧   FormFeature(?y)  ∧   Part(?z)  ∧   differentFrom(?x, ?y)  ∧   belongTo(?x, ?z)  ∧   

belongTo(?y, ?z) ∧   RelationalConstraint(?a) ∧   sameAs(?a, 0)   ∧   inter-featureAssociation(?x, ?y) 

• FormFeature(?x) ∧   FormFeature(?y)  ∧   Part(?z)  ∧   differentFrom(?x, ?y)  ∧   belongTo(?x, ?z)  ∧   

belongTo(?y, ?z) ∧  RelationalConstraint(?a) ∧   sameAs(?a, 1)  ∧   inter-featureAssociation(?y, ?x) 

• FormFeature(?x) ∧   FormFeature(?y)  ∧   Part(?z)  ∧   differentFrom(?x, ?y)  ∧   belongTo(?x, ?z)  ∧   

belongTo(?y, ?z) ∧   RelationalConstraint(?a) ∧   sameAs(?a, 2)   ∧   inter-featureAssociation(?x, ?y) 

• FormFeature(?x) ∧   FormFeature(?y)  ∧   Part(?z)  ∧   differentFrom(?x, ?y)  ∧   belongTo(?x, ?z)  ∧   

belongTo(?y, ?z) ∧   RelationalConstraint(?a) ∧  sameAs(?a, 2)   ∧   straddleRelation (?x, ?y) 

  
To represent the implied constraints, SWRL rules are used as shown above. Based on the relational constraint 

(RelationalConstraint), the inter-featureAssociation is defined. The sequence of variables in the inter-featureAssociation 
represents the feature relations. When the two form features do not belong to each other (i.e., when the relational 
constraint is 2), a new property (i.e., straddleRelation) is needed. The name of property is based a mereo-topological 
term.  
 
3) Assembly/joining Relations: The assembly/joining relations represent the relations between form features that belong 
to different parts. They imply two constraints (C3-1 and C3-2) and the implied constraints are represented by SWRL 
rules. 
 

Implied constraints 

• C3-1: The associated form features must belong to two non-equivalent parts 

• C3-2: The associated form features must be a joining pair 

  
SWRL rule 

• FormFeature(?x) ∧  FormFeature(?y) ∧  Part(?z) ∧  Part(?a) ∧  belongTo(?x, ?z) ∧  belongTo(?y, ?a) ∧   

differentFrom(?z, ?a)  ∧   isJointPair(?x, ?y)  →  assemblyJoiningRelationship(?x, ?y) 
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3.3.2 Constraints in Spatial Relationships and Joining 
The implied constraints associated to SRs, DOF, and joining operations have been investigated in this paper. The 
examples of implied constraints and associated SWRL rules are listed in Tab. 1. These rules are utilized in this paper to 
understand design intents and joining implications. 
 

4. ASSEMBLY DESIGN INTENT ANALYSIS 

In assembly design, SRs can be assigned to achieve intended DOF. These designed SRs should be realized and 
maintained in assembly design and eventually in the physical assembly by joining. However, the designed DOF often 
are not maintained persistently during distributed collaborative design processes. This paper shows how the designed 
DOF are persistently maintained by the developed AsD ontology and that the information can be used to compare the 
original assembly design intent with DOF implied by specific joining methods.  
 

Domain Example of implied constraints Example of SWRL rules 

SR and DOF � Two parts, which have against SR 
between planar surfaces along the z-
direction, have DOF of {Plan_Z::Rot_Z} 
(e.g., plane (plan) DOF along the z-
direction of the coordinate of the 
reference part and rotational (rot) DOF 
within its own coordinate system (z-
direction)). 

 
 
 
 
 
 
� Two parts, which have aligned SR 
between collinear lines along the x-
direction, have DOF of {Lin_X::Rot_X} 
(e.g., linear (lin) DOF along the x-
direction the coordinate of the reference 
part and rotational (rot) DOF within its 
own coordinate system (x-direction)) 

MatingFeature(?x)  ∧   FormFeature(?y)  ∧   Part(?z)  ∧   

belongTo(?y, ?z)  ∧   hasMatingComponent(?x, ?y)  ∧   

Against(?a)  ∧   hasSpatialRelationship(?x, ?a)  ∧   Plane_Z(?b)  

∧   hasContactShape(?x, ?b)  ∧   Z-Direction(?d)  ∧   

ReferenceDirection(?x, ?d)  ∧   Plan_Z(?c)  →  hasDOF(?z, ?c) 

MatingFeature(?x)  ∧   FormFeature(?y)  ∧   Part(?z)  ∧   

belongTo(?y, ?z)  ∧   hasMatingComponent(?x, ?y)  ∧   

Against(?a)  ∧   hasSpatialRelationship(?x, ?a)  ∧   Plane_Z(?b)  

∧   hasContactShape(?x, ?b)  ∧   Z-Direction(?d)  ∧   

ReferenceDirection(?x, ?d)∧Rot_Z(?c)  →  hasOwnDOF(?z, ?c) 

MatingFeature(?x)  ∧   FormFeature(?y)  ∧   Part(?z)  ∧   

belongTo(?y, ?z)  ∧   hasMatingComponent(?x, ?y)  ∧   

Aligned(?a)  ∧   hasSpatialRelationship(?x, ?a)  ∧   

Collinear(?b)  ∧   hasContactShape(?x, ?b)  ∧   X-Direction(?d)  

∧  ReferenceDirection(?x, ?d)  ∧   Lin_X(?c)  →  hasDOF(?z, ?c) 

MatingFeature(?x)  ∧   FormFeature(?y)  ∧   Part(?z)  ∧   

belongTo(?y, ?z)  ∧   hasMatingComponent(?x, ?y)  ∧   

Aligned(?a)  ∧   hasSpatialRelationship(?x, ?a)  ∧   Colinear(?b)  

∧   hasContactShape(?x, ?b)  ∧   X-Direction(?d)  ∧   

ReferenceDirection(?x, ?d)  ∧   Rot_X(?c)  →  

hasOwnDOF(?z, ?c) 

Designed DOF � A part, which has a rotational DOF (rot) 
and two linear DOF (lin), has fixed 
designed DOF 

Part(?x)  ∧   Rot_Z(?y)  ∧   Lin_X(?z)  ∧   Lin_Y(?a)  ∧   

hasDOF(?x, ?y)  ∧   hasDOF(?x, ?z)  ∧   hasDOF(?x, ?a)  ∧   

Fixed(?b)  →  hasDesignedDOF(?x, ?b) 

DOF inferred 
by a joining 
method 

� A part joined by welding has fixed DOF, 
which is inferred by welding 

 
 
 
� A part joined by more than one rivet has 
fixed DOF, which is inferred by the rivets 

 

Welding(?x)  ∧   JointFeature(?y)  ∧   FormFeature(?z)  ∧   

Fixed(?a)  ∧   Part(?b)  ∧   isJoiningMethod(?y, ?x)  ∧   

hasJoiningComponents(?y, ?z)  ∧   belongTo(?z, ?b)  →  

hasJoiningInferredDOF(?b, ?a) 

Riveting(?x)  ∧   JointFeature(?y)  ∧   FormFeature(?z)  ∧   

Fixed(?a)  ∧   Part(?b)  ∧   isJoiningMethod(?y, ?x)  ∧   

hasJoiningComponents(?y, ?z)  ∧   belongTo(?z, ?b)  ∧   

RivetingCondition(?c)  ∧   hasJoiningConstraint(?y, ?c)  ∧   

NumberOfRivet(?c, ?d)  ∧   swrlb:greaterThanOrEqual(?d, 2)  

→  hasJoiningInferredDOF(?b, ?a) 

 

Tab. 1. Constraint representation for SRs, DOF, and joining operations. 
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SRs are specified /imposed during the assembly design process. As described in the previous sections, each SR can 
be interpreted as a constraint imposed on the DOF between relative mating or interacting features. Given a set of SRs, 
the resultant DOF can be inferred. In other words, any allowable motion of parts must follow a path along the 
directions specified by the DOF in order to maintain their SRs. Fig. 3 illustrates how SRs implied by joint design can be 
used for a designer’s intent analysis. As shown in the figure, each joining method infers specific SRs and the 
corresponding DOF are implied by these SRs. The designer’s original intent imposed on assembly design can be 
analyzed by comparing the implied DOF and the designed DOF. For example, a designer wants to permanently join 
two plates and he/she assigns spatial relationships to fix those plates. If the designer considers a welded joint and 
specifies a welding operation as a joining method, then the DOF corresponding to the welding operation can be 
inferred and used to check whether this welding operation will satisfy the designer’s intent on the assembly. The 
welding operation causes 1) an against SR between the mating faces, 2) an aligned SR between joining entities on the 
weld seam, and 3) the two assembly components (two plates) to loose all DOF and become fixed. If the designed DOF 
is fixed by assigning series of SR, the specified joining method (welding) fully satisfies the designed DOF. Some joining 
methods may either under-constrain or over-constrain the DOF on an assembly. 

 

Assembly Design

Space

Designed S/R

Joint Design 

Space

Inferred S/R

Assembly Realization

Designed d.o.f. Implied d.o.f.

Assembly Design Intent 

Analysis  
 

Fig. 3. Assembly design intent analysis. 

 
5. DEMONSTRATION OF ASSEMBLY DESIGN ONTOLOGY 

5.1 Case Study 

As a case study, a connector assembly (Fig. 4) is used to demonstrate the knowledge capturing capability of the AsD 
ontology employed in an assembly design browser. In this example, plate_a and plate_b are joined by two button 
rivets. Top_surface of plate_a and bottom_surface of plate_b have against relationships. The rivets are aligned along 
centerline of holes at the location that designer specified. Plate_a and plate_c are joined with Gas Metal Arc Welding 
(GMAW) and their mating feature entities are top_surface of plate_a and bottom_surface of plate_c. Similarly, plate_b 
and plate_d are joined by using GMAW. Tab. 2 shows notations used for this case study. Datum planes in JC5 and JC8 
are reference planes that represent the designated tolerance limits of welding deformation. The datum planes are offset 
from the structure by the tolerance limits allowed. Fig. 5 shows feature hierarchy. 
 

Notation Description 

ei
jk 

P1
1 , P2

1
,  P3

1, and P4
1  

FF11  
FF21  

FF31  
FF41 
FF12  
FF22  

ith edge of FFjk (FFjk is Form Feature of Part (Pj
i) and Pj

i is a part of assembly (Ai)) 
plate_a, plate_b, plate_c, and plate_d 
block (length, width, height) = block (L11, W11, H11) = block (110, 40, 10) 
block (L21, W21, H21) = block (110, 40, 10)  

block (L31, W31, H31) = block (50, 40, 10) 
block (L41, W41, H41) = block (20, 40, 10) 
hole (diameter, depth) = hole (DM12, DT12) = hole (12.81, 10) 
hole (DM22, DT22) = hole (12.81, 10) 

 
Tab. 2. Notation for connector assembly. 
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Fig. 4. Connector assembly with two welded joints and one pin joint. 

 

ConnectorAssembly (A1) P11

P12

plate_a (FF11)

hole (FF12)

plate_b (FF21)

belongTo

e113

top_surface (s111)

Inter-featureAssociation

assemblyJoining

P13

P14

hole (FF22)

plate_c (FF31)

plate_d (FF41)

e114

e214

e215

bottom_surface (s121)

e312

e313

e412

e413

 
 

Fig. 5. Feature hierarchy and assembly relationships in the connector assembly. 

 

 Anticipated result  Result from reasoning 

Designed DOF � Part_12 has Fixed DOF 
 
� Part_13 has Fixed DOF 
 
� Part_14 has Fixed DOF 

 

� fact ns_0:Fact24442 is 
ns_2:hasDesignedDOF(ns_2:Part_12,ns_2:Fixed_1); 

� fact ns_0:Fact24440 is 
ns_2:hasDesignedDOF(ns_2:Part_13,ns_2:Fixed_1); 

� fact ns_0:Fact24441 is 
ns_2:hasDesignedDOF(ns_2:Part_14,ns_2:Fixed_1); 

DOF inferred by a 
welding method 

� DOF of Part_13 has been constrained 
as Fixed by welding (based on the 
reference part Part_11) 

� DOF of Part_14 has been constrained 
as Fixed by welding (based on the 
reference part Part_12) 

� fact ns_0:Fact30124 is 
ns_2:hasJoiningInferredDOF(ns_2:Part_13,ns_2:Fixed_1); 

 
� fact ns_0:Fact30123 is 

ns_2:hasJoiningInferredDOF(ns_2:Part_14,ns_2:Fixed_1); 
 

DOF inferred by a 
riveting method 

� DOF of Part_11 has been constrained 
as Fixed by two rivets  

� DOF of Part_12 has been constrained 
as Fixed by two rivets (based on the 
reference part Part_11) 

� fact ns_0:Fact37293 is 
ns_2:hasJoiningInferredDOF(ns_2:Part_11,ns_2:Fixed_1); 

� fact ns_0:Fact37294 is 
ns_2:hasJoiningInferredDOF(ns_2:Part_12,ns_2:Fixed_1); 

 
Tab. 3. Reasoning result of the AsD ontology for the connector assembly. 
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5.2 Assembly Design Ontology, SWRL Reasoning, and Design Intent Analysis 

In this paper, Bossam is used as a SWRL rule inference engine. Bossam is an extended forward-chaining rule engine 
developed by Korean Electronics and Telecommunications Research Institute (ETRI). Bossam supports OWL 
inferencing and is accompanied with a set of OWL Lite/DL inference rules. It also supports SWRL/OWLX, SWRL/RDF 
and RuleML. Tab. 3 shows examples of the anticipated and actual results of the AsD ontology reasoning, particularly 
for assembly intent analysis. The AsD ontology is reasoned with valid given conditions for a specific query. If a query 
doesn’t satisfy the conditions, the query is not reasoned. If the query has incorrect syntax, the SWRL editor checks the 
validity. When the query has the correct syntax, but does not satisfy the conditions, the query is just passed and the 
reasoned result is null.  

When a designer wants to permanently join two plates (P1
1 and P1

3) and he/she assigns SRs to fix those plates. As 
in the connector assembly, if the designer considers a welded joint and specifies a welding operation as a joining 
method, then the DOF corresponding to the welding operation can be inferred by SWRL reasoning and used to check 
whether this welding operation will satisfy the designer’s intent on the assembly. The welding operation causes fixed 
DOF. In the connector assembly, the specified joining method (welding) fully satisfies the designed DOF (Tab. 3)  

In other cases, some joining methods may either under-constrain or over-constrain the DOF on an assembly. As in 
the connector assembly, the two plates (P1

1 and P1
2) are intended to be joined and their DOF are fixed by assigning a 

series of SRs. The intended DOF can be reasoned as shown in Tab. 3. If a designer wants to join the two plates by 
applying one cylindrical rivet at a position, the intended DOF (fixed) is under-constrained. In a riveting operation, the 
end of the rivet shank is deformed after upsetting. However, after upsetting, the assembly can still have rotational DOF, 
if there is enough tangential (rotational) force applied to the two plates. When two rivets are used to join the assembly 
components, the DOF of components are fully constrained. Note that more than two rivets can increase structural 
rigidity, even though DOF of the assembly are over-constrained and joining cost and time are increased. The proper 
number of rivets should be determined by assembly operation analysis. 
 

 
 

Fig. 6. Semantic assembly design modeling framework. 
 

6. CONCLUSION AND FUTURE WORKS 

This paper presented an AsD ontology that plays as formal, explicit specification of a shared conceptualization of 
assembly design modeling. This paper enhanced the previously developed AsD formalism by using ontology 
technology. The AsD ontology developed explicitly represents AsD design constraints and the computer can infer 
remaining implicit constraints (e.g., assembly relationships, SRs, and joining relations). By relating concepts through 
ontology technology rather than just defining data syntax, assembly and joining concepts can be captured in their 
entirety or extended as necessary. Furthermore, the higher semantic richness of ontologies allows computers to infer 
additional assembly/joining knowledge and make that knowledge available to decision makers.  By using ontology 
technology, assembly and joining constraints can be represented in a standard manner regardless of geometry file 
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formats. Such representation significantly improves service-oriented design collaboration.  Lastly, given that knowledge 
is captured in a standard way through the use of an ontology, it also can be retrieved, shared, and reused during 
collaboration. 

To understand what kind of AsD information should be represented in ontology and shared in distributed design 
collaboration, a survey was conducted with product design and development engineers at automotive industries 
including Ford Motor Company and frequently asked questions were obtained and classified. Most notably, the survey 
clearly indicated that assembly relation and assembly method/operation are core information that should be shared in 
distributed design collaboration.  

In recognizing the fact that product development requires tremendous amounts of information and corresponding 
decisions, it is obvious that the reasoning behind every decision can hardly be transferred together with the 
information. Consequently, the need for feedback and communication among product development stakeholders 
increases, which may lead to extremely complex and uncontrollable flows of information in product development 
collaboration.  However, providing that product information generated by the different collaborators is attached to an 
overall and widely accessible model, this situation may change considerably. Instead of “pushing” information from 
one collaborator to another, participants can “pull” the information they require and are given access to. As shown in 
this paper, by utilizing ontology technology, clear relations among assembly components and form features are 
established and assembly knowledge can be systemized in product, feature, manufacturing, joining, and analysis 
classes. This semantically valid information provides a great foundation to realize a lean and selective assembly design 
information sharing environment. The authors are currently developing a new information sharing paradigm, called 
Semantic Assembly Design Modeling (SADM). Fig. 6 illustrates a framework for the SADM. Typically, product 
development collaboration requires a secured network and infrastructure. SADM has to be implemented in such a 
secure data network, which is developed through intensive research. In this framework, design collaborators and e-
tools (e.g., virtual assembly tool and assembly design decision support tool) at remote locations can request assembly 
information from the AsD ontology in service-oriented design collaboration. Since the AsD ontology systemizes 
assembly knowledge, the e-tools and collaborators can retrieve assembly information selectively and transparently via 
semantic query. 
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