

Computer-Aided Design & Applications, Vol. 3, No. 5, 2006, pp 603-613

603

Assembly Design Ontology for Service-Oriented Design Collaboration

Kyoung-Yun Kim1, Hyungjeong Yang2 and David G. Manley3

1Wayne State University, kykim@eng.wayne.edu

2Chonnam National University, hjyang@chonnam.ac.kr
3University of Pittsburgh, dgmst11@pitt.edu

ABSTRACT

This paper presents an Assembly Design (AsD) ontology that explicitly represents AsD constraints
and infers any remaining implicit ones. By relating concepts through ontology technology rather
than just defining data syntax, assembly and joining concepts can be captured in their entirety or
extended as necessary. Ontologies allow assembly and joining constraints to be represented in a
standard manner regardless of geometry file formats. Such representation will significantly improve
service-oriented design collaboration. The developed AsD ontology is tested using a realistic
mechanical assembly and it is shown how the ontology can be used to capture design rationale
and analyze the design intents. In conclusion, the significance of ontology for realizing lean and
selective assembly design information sharing is discussed.

Keywords: Assembly design ontology; Assembly relation model; Design collaboration.

1. INTRODUCTION

Discrete product manufacturers are under pressure from customers to move away from the traditional make-to-stock
production model to a build-to-demand model. The impact of Internet technologies has accelerated the pace of
product development and product aftermarket service. Industries now realize that the best way to reduce life cycle costs
is to evolve a more effective product development paradigm using the Internet and web-based technologies [1]. Yet,
there remains a gap between these current market demands and current product development paradigms. One
possible approach to fill this gap is to seamlessly integrate product development processes into a collaborative
environment. To realize such integration, it is necessary to realize an assembly design (AsD) model that includes self-
descriptive, semantic information.

Designers are no longer merely exchanging geometric data, but knowledge about design and the product
development process, including specifications, design rules, constraints, and rationale. As design becomes increasingly
knowledge-intensive and collaborative, the need for computational frameworks to enable engineering product
development by effectively supporting the formal representation, capture, retrieval, and reuse of product knowledge,
becomes more critical [2][3].

To generate a robust assembly model, an understanding of assembly geometry and its physical effects is
prerequisite. However, current solid modelers and simulation software are not advantageous drivers of robust assembly
models since they provide incomplete product definitions and are not able to act according to the semantic content of
the models. The reason for this is that, traditionally, the geometric model was in the center of product models. Of
course, geometry is of importance during assembly design, but the morphological characteristics are consequences of
the principle physical processes and the design intentions (e.g., joint intent) [4][5].

This paper presents an AsD ontology that plays a formal, explicit specification of a shared conceptualization of
assembly design modeling. By utilizing ontology technology, clear relations among assembly components and form
features are established and assembly knowledge is systemized in product, feature, manufacturing, and spatial
relationship classes. In this paper, implicit assembly constraints are explicitly represented using SWRL (Semantic Web
Rule Language) and OWL (Web Ontology Language). A meta-model called the assembly relationship model (ARM)
[6], which was originally developed to capture assembly engineering relations, is enhanced using ontology technology
to satisfy collaborative engineering needs. The implicit constraints of assembly engineering relations, spatial
relationships (SR), and joining are represented by using OWL triples and SWRL rules. The AsD ontology also captures
design rationale including joint intent and SR. This work can be used to query AsD information selectively as well as
transparently. The AsD ontology is tested using a realistic mechanical assembly and shows how the ontology can be

Computer-Aided Design & Applications, Vol. 3, No. 5, 2006, pp 603-613

604

used to capture design rationale and analyze design intent. In conclusion, the significance of the ontology for realizing
semantic assembly design information sharing, called Semantic Assembly Design Modeling (SADM) environment is
discussed.

2. BACKGROUND

2.1 Ontologies

Ontologies are explicit formal specifications of the terms in the domain and relations among them [7]; a formal, explicit
specification of a shared conceptualization. “Conceptualization” refers to an abstract model of some phenomenon in
the world, which identifies the relevant concepts of that phenomenon. “Formal” refers to the fact that the ontology
should be machine-readable [8]. Mizoguchi [9] presented the roles of ontologies as a common vocabulary, common
data structure, explication of what is left implicit, semantic interoperability, explication of design rationale,
systemization of knowledge, meta-model function, and theory of content.

Ontologies have been developed for a variety of domains. The broadest of ontologies, are the upper-level
ontologies such as CYC, developed by Cycorp [10], that describe common sense-level knowledge. Narrower in scope
than upper-level ontologies, enterprise-level ontologies attempt to formalize the practices and processes that occur
within an organization. Examples of such ontologies include Enterprise Ontology [11] and TOVE [12]. The narrowest
ontologies have been developed to represent conceptual and functional engineering information [13] as well as design
features [4].

Of the ontologies reviewed, many of them have been developed and applied to broader business applications,
which do not have the detail required at the engineering mechanical design level. Although some research has been
applied to design, it has limitations on representing mechanical assemblies.

2.2 Service-oriented Design Collaboration

Integrated product engineering requires collaboration of various engineering tools from various disciplines such as
mechanical design, electrical design, materials, manufacturing, quality, marketing, maintenance, and regulations. This
integrated collaboration can be realized in a service-oriented collaboration environment through the Internet [6][14].
Instead of looking at various engineering tools from a traditional computation viewpoint, service-oriented design
focuses on the engineering implication of design tools at an abstract level. This approach assures openness of
collaborative engineering systems. From this perspective, the Internet is no longer a simple network of computers,
rather it is a network of potential services.

To utilize service-oriented architecture (SOA) in design collaboration, services should be specified from the
functional aspect of service providers. To make an existing tool available online or to build a new tool for such a
system, associated services should be defined explicitly. The service transaction among service providers, service
consumers, and the service manager within service-oriented design is illustrated in Fig. 1. Assembly design systems in
this architecture should be able to produce assembly information that can be propagated and shared with various other
service stakeholders and tools. Thus, this new assembly design paradigm that integrates assembly design and other
product development activities requires assembly models that use self-descriptive modeling semantics.

Service Consumer Service Provider

Service Manager

1. Service Publication2. Service Lookup

3. Service

Fig. 1. Service triangular relationship.

2.3 Existing Assembly Design Formalism

Related to assembly design formalisms, Deneux [15] discussed the necessity of assembly features in the design of
complex assemblies. Holland and Bronsvoort [16] proposed the concepts of a single-part feature model and an
assembly feature model for assembly modeling. However, their assembly feature concepts, which considered only
assemblies with mechanical fastening, cannot be employed to assembly modeling requiring various other joining

Computer-Aided Design & Applications, Vol. 3, No. 5, 2006, pp 603-613

605

processes. Whitney, et al. [17] proposed a formalism for assembly design and focused on only fully constrained
assemblies and subassemblies. Even though they presented a general methodology for assembly design, many SRs in
actual mechanical assemblies, e.g., between two cylindrical surfaces and between spherical surface and other surfaces
were not addressed. Also, the effects on SR from joining processes were not discussed.

Kim et al. [6] has developed AsD formalism based on SRs [18][20] and features. SRs are described briefly in the
next sub-section. The formalism represents assembly and joining relations and generates a meta-model called ARM
(assembly relation model) to explicitly represent the relations in XML format. However, their formalism still has implicit
constraints and relationships, which cannot be interpreted by a computer in the Semantic Web and service-oriented
design environments. These implicit relationships and constraints are necessary for various downstream design
activities, including transparent assembly and joining analysis in a collaborative assembly modeling environment. Thus,
this work will enhance the AsD formalism using ontology technology. The AsD ontology developed will explicitly
represent AsD design constraints and the computer will be able to infer any remaining implicit ones. By relating
concepts through ontology technology rather than just defining data syntax, assembly and joining concepts can be
captured in their entirety or extended as necessary. Furthermore, the higher semantic richness of ontologies allows
computers to infer additional assembly/joining knowledge and make that knowledge available to decision makers. In
this paper, the three types of assembly relationships (i.e., belongTo, inter-featureAssociation, and assembly/joining
relations), SRs, and the joining relations are represented in an ontology and are used as a core model in semantic
assembly design modeling.

2.3.1 Spatial Relationship (SR)

SRs were first proposed by Ambler and Popplestone [18] in 1975 to describe the relative positions of parts in their
final state by specifying feature relationships among them. SRs include against, coplanar, fits, parax, lin, rot, and fix. In
the work of Ambler and Popplestone, SRs are concentrated on the configuration of a part. Liu and Nnaji [20] focused
on the mechanical assembly specifications as well as the configuration of a product, so that SRs can be applied to
general assemblies and are capable of accepting the design specifications. They defined design with SRs not only for
inferring the assembly positions, but also to capture designer’s intentions. Each SR constrains the degrees of freedom
(DOF) of motion between the mating entities. For example, two faces are said to be against if the two faces are
touching at some point and normal vectors of those faces are in opposition where they touch. Any combination of two
features can possess this property.

The types of DOF are classified as follows; lin_n: linear translation along n axis, where, n contains a fixed point and
a vector; rot_n: rotation about n axis, where, n contains a fixed point and a vector; cir_n: translating along a circle with
n axis, where, the fixed point of n is the center of the circle and vector of n is perpendicular to the circle; plane_n,
cyl_n, and sph: translating along a planar, cylindrical, spherical surface. The DOF of a part are expressed as {DOF of
moving within the coordinate system of the relative moving part :: DOF of moving within its own coordinate system},
with respect to the other mating parts of the assembly [20]. For a plane_za DOF, a body may move on a planar surface
along two lin. When a new plane_zb is introduced, the remaining DOF are derived by intersecting these two planes.
The intersection of surface DOF is available only when a plane is involved; circle_n is the result of intersecting plane_za
with cyl_n (or sph_n) together. In the intersection of two rotational DOF, say rot_za and rot_zb, if they share the same
rotational axis then rot_za or rot_zb remains; if not they cancel each other. Liu and Nnaji [20] presented some general
reduction rules for DOF.

3. ASSEMBLY DESIGN ONTOLOGY

3.1 Notes on Implementation

For this research, the Semantic Web Rule Language (SWRL) is used. This language is based on a combination of the
OWL DL and OWL Lite sublanguages of the Web Ontology Language (OWL) with the Unary/Binary Datalog RuleML
sublanguages of the Rule Markup Language. SWRL is intended to be the rule language of the Semantic Web. It
includes a high-level abstract syntax for Horn-like rules in both the OWL DL and OWL Lite sublanguages of OWL. The
World Wide Web Consortium (W3C) has acknowledged receipt of a Member Submission from the National Research
Council of Canada, Network Inference, and Stanford University. The submission has been made in association with
the Joint US/EU ad hoc Agent Markup Language Committee. The SWRL submission package contains three
components in addition to the principal prose document: (1) an RDF Schema partially describing the RDF Concrete
Syntax of SWRL; (2) an OWL ontology partially describing the RDF Concrete Syntax of SWRL; (3) an XML Schema
for the SWRL XML Concrete Syntax [21]. OWL, which is a recommendation for Semantic Web technology by the
World Wide Web Consortium (W3C) [22], was investigated; however, the constraint representation capability of OWL
alone was not adequate to implement an AsD ontology that can be fully utilized in the SADM environment. In this

Computer-Aided Design & Applications, Vol. 3, No. 5, 2006, pp 603-613

606

research, SWRL is used to define AsD terms and their relationships. Also, SWRL rules have been implemented so that
the rules can be reasoned to accommodate potential semantic queries/information request in the SADM environment.
To generate the AsD ontology and rules, the SWRL editor in Protégé was used for this work.

3.2 Components of the Assembly Design Ontology

The definitions, possible terms, and concept representation of assembly were investigated thoroughly. Based on this
investigation, the terms of the AsD ontology were carefully defined. Fig. 2 illustrates the hierarchy of AsD ontology
classes. Within the hierarchy, a class is a subclass of another class.

owl:Thing

Product

Assembly

Material

Part

Feature

JointFeature

JointFeatureCharacteristics

MatingFeature

MatingBond

FeatureForPart

JoiningConstraint

JoiningTolerance

JointShape

WeldingCondition

RivetingCondition

AdhesiveBondingConditio

nFixtureLocation

WeldShape

RivetJointShape

AdhesiveBondJointShape

FormFeature

GeometricFeature

ContactShape Colinear

Cylindrical

Plane

Spherical

Manufacturing

JoiningProcess

ManufacturingProcess

Welding

Riveting

AdhesiveBonding

SpatialRelationship

Against

Aligned

InclineOffset

IncludeAngle

ParallelOffset

ParaxOffset

SRDirection

DegreesOfFreedom

Lin

Plan

Rot

AssemblyFeature

Fixed

FeatureForAssembly

JointConfiguration

WeldConfiguration

RivetJointConfiguration

AdhesiveBondConfiguratio

n

ButtJoint

ConerJoint

TJoint

LapJoint

FillerMetal

Gas

ElectricalSpecation

GMAW

GTAW

FCAW

SMAW

PAW

Fig. 2. AsD ontology class hierarchy.

An OWL ontology consists of classes, properties, and instances of classes. A class defines a concept. Individuals

are instances of classes and are linked to classes via properties (e.g., material). Properties can be used to state
relationships between individuals or between individuals and data values. Classes such as JointFeatureCharacteristics
are introduced in this work to represent relations in assembly models. With these supplementary classes, properties,
and SWRL rules illustrated in the next section, the assembly design relationships and constraints are developed. This
paper focuses especially on the realization of semantic query that can provide appropriate assembly design information
by SWRL reasoning for service-oriented design.

3.3 AsD Constraint Representations in SWRL

3.3.1 Relationships in Assembly Design
The first core constraints in the AsD ontology are assembly relationships form feature to form feature and form feature
to part. The assembly constraints are represented explicitly using OWL triples and SWRL rules. In this section, three
assembly relations are described to illustrate how the assembly relationships can be represented in the AsD ontology.

Computer-Aided Design & Applications, Vol. 3, No. 5, 2006, pp 603-613

607

The basic assumptions of these definitions are 1) part (P) is a member of assembly (Θ) (i.e., P ∈ Θ) and 2) form feature

(FF) is a member of part (P) (i.e., FF ∈ P)

1) belongTo relations: A belongTo relation defines relations between a part and a form feature. Assembly relations
between features as well as between features and parts are defined below. The belongTo relations infer two constraints
(C1-1 and C1-2). The inferred constraints can be transformed into two asserted conditions. For C1-1, an asserted

condition, “∃ FormFeature belongTo SubPart” is used and an asserted condition, “belongTo = 1” is used to represent
C1-2. This OWL cardinality condition means the property belongTo has exactly one value.

Implied Constraints

• C1-1: Every form feature (FormFeature) must belong to a part (SubPart)

• C1-2: A form feature (FormFeature) must not belong to two parts (SubPart)

2) inter-featureAssociation relations: The inter-featureAssociation relation represents the relations among form features.
The relational constraint (RCpq) stands for the relationship between two form features in the form feature hierarchy.
For example, a block (FFjq) may have a blind hole (FFjp) at a certain location of assembly (Aj). The distance between
the coordinates of the block and the blind hole is a dimensional constraint. Since the block form feature contains the
hole form feature (the block is a parent feature of the hole in the feature decomposition hierarchy), their relational
constraint (RCpq) is 0. If FFjp has some form feature (FFjq), RCpq is 1. When two form features (FFjp and FFjq) do not
belong to each other (e.g., two holes in a block), RCpq is 2. The inter-featureAssociation implies three constraints (C2-1
to C2-3).

Implied constraints

• C2-1: The associated form features must not be identical (non-equivalent)

• C2-2: The associated form features must belong to same part

• C2-3: The relational constraint must be represented (included)

SWRL rules

• FormFeature(?x) ∧ FormFeature(?y) ∧ Part(?z) ∧ differentFrom(?x, ?y) ∧ belongTo(?x, ?z) ∧

belongTo(?y, ?z) ∧ RelationalConstraint(?a) ∧ sameAs(?a, 0) ∧ inter-featureAssociation(?x, ?y)

• FormFeature(?x) ∧ FormFeature(?y) ∧ Part(?z) ∧ differentFrom(?x, ?y) ∧ belongTo(?x, ?z) ∧

belongTo(?y, ?z) ∧ RelationalConstraint(?a) ∧ sameAs(?a, 1) ∧ inter-featureAssociation(?y, ?x)

• FormFeature(?x) ∧ FormFeature(?y) ∧ Part(?z) ∧ differentFrom(?x, ?y) ∧ belongTo(?x, ?z) ∧

belongTo(?y, ?z) ∧ RelationalConstraint(?a) ∧ sameAs(?a, 2) ∧ inter-featureAssociation(?x, ?y)

• FormFeature(?x) ∧ FormFeature(?y) ∧ Part(?z) ∧ differentFrom(?x, ?y) ∧ belongTo(?x, ?z) ∧

belongTo(?y, ?z) ∧ RelationalConstraint(?a) ∧ sameAs(?a, 2) ∧ straddleRelation (?x, ?y)

To represent the implied constraints, SWRL rules are used as shown above. Based on the relational constraint

(RelationalConstraint), the inter-featureAssociation is defined. The sequence of variables in the inter-featureAssociation
represents the feature relations. When the two form features do not belong to each other (i.e., when the relational
constraint is 2), a new property (i.e., straddleRelation) is needed. The name of property is based a mereo-topological
term.

3) Assembly/joining Relations: The assembly/joining relations represent the relations between form features that belong
to different parts. They imply two constraints (C3-1 and C3-2) and the implied constraints are represented by SWRL
rules.

Implied constraints

• C3-1: The associated form features must belong to two non-equivalent parts

• C3-2: The associated form features must be a joining pair

SWRL rule

• FormFeature(?x) ∧ FormFeature(?y) ∧ Part(?z) ∧ Part(?a) ∧ belongTo(?x, ?z) ∧ belongTo(?y, ?a) ∧

differentFrom(?z, ?a) ∧ isJointPair(?x, ?y) → assemblyJoiningRelationship(?x, ?y)

Computer-Aided Design & Applications, Vol. 3, No. 5, 2006, pp 603-613

608

3.3.2 Constraints in Spatial Relationships and Joining
The implied constraints associated to SRs, DOF, and joining operations have been investigated in this paper. The
examples of implied constraints and associated SWRL rules are listed in Tab. 1. These rules are utilized in this paper to
understand design intents and joining implications.

4. ASSEMBLY DESIGN INTENT ANALYSIS

In assembly design, SRs can be assigned to achieve intended DOF. These designed SRs should be realized and
maintained in assembly design and eventually in the physical assembly by joining. However, the designed DOF often
are not maintained persistently during distributed collaborative design processes. This paper shows how the designed
DOF are persistently maintained by the developed AsD ontology and that the information can be used to compare the
original assembly design intent with DOF implied by specific joining methods.

Domain Example of implied constraints Example of SWRL rules

SR and DOF � Two parts, which have against SR
between planar surfaces along the z-
direction, have DOF of {Plan_Z::Rot_Z}
(e.g., plane (plan) DOF along the z-
direction of the coordinate of the
reference part and rotational (rot) DOF
within its own coordinate system (z-
direction)).

� Two parts, which have aligned SR
between collinear lines along the x-
direction, have DOF of {Lin_X::Rot_X}
(e.g., linear (lin) DOF along the x-
direction the coordinate of the reference
part and rotational (rot) DOF within its
own coordinate system (x-direction))

MatingFeature(?x) ∧ FormFeature(?y) ∧ Part(?z) ∧

belongTo(?y, ?z) ∧ hasMatingComponent(?x, ?y) ∧

Against(?a) ∧ hasSpatialRelationship(?x, ?a) ∧ Plane_Z(?b)

∧ hasContactShape(?x, ?b) ∧ Z-Direction(?d) ∧

ReferenceDirection(?x, ?d) ∧ Plan_Z(?c) → hasDOF(?z, ?c)

MatingFeature(?x) ∧ FormFeature(?y) ∧ Part(?z) ∧

belongTo(?y, ?z) ∧ hasMatingComponent(?x, ?y) ∧

Against(?a) ∧ hasSpatialRelationship(?x, ?a) ∧ Plane_Z(?b)

∧ hasContactShape(?x, ?b) ∧ Z-Direction(?d) ∧

ReferenceDirection(?x, ?d)∧Rot_Z(?c) → hasOwnDOF(?z, ?c)

MatingFeature(?x) ∧ FormFeature(?y) ∧ Part(?z) ∧

belongTo(?y, ?z) ∧ hasMatingComponent(?x, ?y) ∧

Aligned(?a) ∧ hasSpatialRelationship(?x, ?a) ∧

Collinear(?b) ∧ hasContactShape(?x, ?b) ∧ X-Direction(?d)

∧ ReferenceDirection(?x, ?d) ∧ Lin_X(?c) → hasDOF(?z, ?c)

MatingFeature(?x) ∧ FormFeature(?y) ∧ Part(?z) ∧

belongTo(?y, ?z) ∧ hasMatingComponent(?x, ?y) ∧

Aligned(?a) ∧ hasSpatialRelationship(?x, ?a) ∧ Colinear(?b)

∧ hasContactShape(?x, ?b) ∧ X-Direction(?d) ∧

ReferenceDirection(?x, ?d) ∧ Rot_X(?c) →

hasOwnDOF(?z, ?c)

Designed DOF � A part, which has a rotational DOF (rot)
and two linear DOF (lin), has fixed
designed DOF

Part(?x) ∧ Rot_Z(?y) ∧ Lin_X(?z) ∧ Lin_Y(?a) ∧

hasDOF(?x, ?y) ∧ hasDOF(?x, ?z) ∧ hasDOF(?x, ?a) ∧

Fixed(?b) → hasDesignedDOF(?x, ?b)

DOF inferred
by a joining
method

� A part joined by welding has fixed DOF,
which is inferred by welding

� A part joined by more than one rivet has
fixed DOF, which is inferred by the rivets

Welding(?x) ∧ JointFeature(?y) ∧ FormFeature(?z) ∧

Fixed(?a) ∧ Part(?b) ∧ isJoiningMethod(?y, ?x) ∧

hasJoiningComponents(?y, ?z) ∧ belongTo(?z, ?b) →

hasJoiningInferredDOF(?b, ?a)

Riveting(?x) ∧ JointFeature(?y) ∧ FormFeature(?z) ∧

Fixed(?a) ∧ Part(?b) ∧ isJoiningMethod(?y, ?x) ∧

hasJoiningComponents(?y, ?z) ∧ belongTo(?z, ?b) ∧

RivetingCondition(?c) ∧ hasJoiningConstraint(?y, ?c) ∧

NumberOfRivet(?c, ?d) ∧ swrlb:greaterThanOrEqual(?d, 2)

→ hasJoiningInferredDOF(?b, ?a)

Tab. 1. Constraint representation for SRs, DOF, and joining operations.

Computer-Aided Design & Applications, Vol. 3, No. 5, 2006, pp 603-613

609

SRs are specified /imposed during the assembly design process. As described in the previous sections, each SR can
be interpreted as a constraint imposed on the DOF between relative mating or interacting features. Given a set of SRs,
the resultant DOF can be inferred. In other words, any allowable motion of parts must follow a path along the
directions specified by the DOF in order to maintain their SRs. Fig. 3 illustrates how SRs implied by joint design can be
used for a designer’s intent analysis. As shown in the figure, each joining method infers specific SRs and the
corresponding DOF are implied by these SRs. The designer’s original intent imposed on assembly design can be
analyzed by comparing the implied DOF and the designed DOF. For example, a designer wants to permanently join
two plates and he/she assigns spatial relationships to fix those plates. If the designer considers a welded joint and
specifies a welding operation as a joining method, then the DOF corresponding to the welding operation can be
inferred and used to check whether this welding operation will satisfy the designer’s intent on the assembly. The
welding operation causes 1) an against SR between the mating faces, 2) an aligned SR between joining entities on the
weld seam, and 3) the two assembly components (two plates) to loose all DOF and become fixed. If the designed DOF
is fixed by assigning series of SR, the specified joining method (welding) fully satisfies the designed DOF. Some joining
methods may either under-constrain or over-constrain the DOF on an assembly.

Assembly Design

Space

Designed S/R

Joint Design

Space

Inferred S/R

Assembly Realization

Designed d.o.f. Implied d.o.f.

Assembly Design Intent

Analysis

Fig. 3. Assembly design intent analysis.

5. DEMONSTRATION OF ASSEMBLY DESIGN ONTOLOGY

5.1 Case Study

As a case study, a connector assembly (Fig. 4) is used to demonstrate the knowledge capturing capability of the AsD
ontology employed in an assembly design browser. In this example, plate_a and plate_b are joined by two button
rivets. Top_surface of plate_a and bottom_surface of plate_b have against relationships. The rivets are aligned along
centerline of holes at the location that designer specified. Plate_a and plate_c are joined with Gas Metal Arc Welding
(GMAW) and their mating feature entities are top_surface of plate_a and bottom_surface of plate_c. Similarly, plate_b
and plate_d are joined by using GMAW. Tab. 2 shows notations used for this case study. Datum planes in JC5 and JC8
are reference planes that represent the designated tolerance limits of welding deformation. The datum planes are offset
from the structure by the tolerance limits allowed. Fig. 5 shows feature hierarchy.

Notation Description

ei
jk

P1
1 , P2

1
, P3

1, and P4
1

FF11
FF21

FF31
FF41
FF12
FF22

ith edge of FFjk (FFjk is Form Feature of Part (Pj
i) and Pj

i is a part of assembly (Ai))
plate_a, plate_b, plate_c, and plate_d
block (length, width, height) = block (L11, W11, H11) = block (110, 40, 10)
block (L21, W21, H21) = block (110, 40, 10)

block (L31, W31, H31) = block (50, 40, 10)
block (L41, W41, H41) = block (20, 40, 10)
hole (diameter, depth) = hole (DM12, DT12) = hole (12.81, 10)
hole (DM22, DT22) = hole (12.81, 10)

Tab. 2. Notation for connector assembly.

Computer-Aided Design & Applications, Vol. 3, No. 5, 2006, pp 603-613

610

Fig. 4. Connector assembly with two welded joints and one pin joint.

ConnectorAssembly (A1) P11

P12

plate_a (FF11)

hole (FF12)

plate_b (FF21)

belongTo

e113

top_surface (s111)

Inter-featureAssociation

assemblyJoining

P13

P14

hole (FF22)

plate_c (FF31)

plate_d (FF41)

e114

e214

e215

bottom_surface (s121)

e312

e313

e412

e413

Fig. 5. Feature hierarchy and assembly relationships in the connector assembly.

 Anticipated result Result from reasoning

Designed DOF � Part_12 has Fixed DOF

� Part_13 has Fixed DOF

� Part_14 has Fixed DOF

� fact ns_0:Fact24442 is
ns_2:hasDesignedDOF(ns_2:Part_12,ns_2:Fixed_1);

� fact ns_0:Fact24440 is
ns_2:hasDesignedDOF(ns_2:Part_13,ns_2:Fixed_1);

� fact ns_0:Fact24441 is
ns_2:hasDesignedDOF(ns_2:Part_14,ns_2:Fixed_1);

DOF inferred by a
welding method

� DOF of Part_13 has been constrained
as Fixed by welding (based on the
reference part Part_11)

� DOF of Part_14 has been constrained
as Fixed by welding (based on the
reference part Part_12)

� fact ns_0:Fact30124 is
ns_2:hasJoiningInferredDOF(ns_2:Part_13,ns_2:Fixed_1);

� fact ns_0:Fact30123 is

ns_2:hasJoiningInferredDOF(ns_2:Part_14,ns_2:Fixed_1);

DOF inferred by a
riveting method

� DOF of Part_11 has been constrained
as Fixed by two rivets

� DOF of Part_12 has been constrained
as Fixed by two rivets (based on the
reference part Part_11)

� fact ns_0:Fact37293 is
ns_2:hasJoiningInferredDOF(ns_2:Part_11,ns_2:Fixed_1);

� fact ns_0:Fact37294 is
ns_2:hasJoiningInferredDOF(ns_2:Part_12,ns_2:Fixed_1);

Tab. 3. Reasoning result of the AsD ontology for the connector assembly.

P1
1
 (Reference Part)

P2
1

P3
1

P4
1

FF11

FF21

FF12

FF22

FF31

FF41

e4
11

e5
21

e2
21

e1
31

e2
31

e1
11

e1
21

e1
41

e2
41

e2
11

e3
21

e3
11

e4
21

e3
31

e3
41

z

x
y

Computer-Aided Design & Applications, Vol. 3, No. 5, 2006, pp 603-613

611

5.2 Assembly Design Ontology, SWRL Reasoning, and Design Intent Analysis

In this paper, Bossam is used as a SWRL rule inference engine. Bossam is an extended forward-chaining rule engine
developed by Korean Electronics and Telecommunications Research Institute (ETRI). Bossam supports OWL
inferencing and is accompanied with a set of OWL Lite/DL inference rules. It also supports SWRL/OWLX, SWRL/RDF
and RuleML. Tab. 3 shows examples of the anticipated and actual results of the AsD ontology reasoning, particularly
for assembly intent analysis. The AsD ontology is reasoned with valid given conditions for a specific query. If a query
doesn’t satisfy the conditions, the query is not reasoned. If the query has incorrect syntax, the SWRL editor checks the
validity. When the query has the correct syntax, but does not satisfy the conditions, the query is just passed and the
reasoned result is null.

When a designer wants to permanently join two plates (P1
1 and P1

3) and he/she assigns SRs to fix those plates. As
in the connector assembly, if the designer considers a welded joint and specifies a welding operation as a joining
method, then the DOF corresponding to the welding operation can be inferred by SWRL reasoning and used to check
whether this welding operation will satisfy the designer’s intent on the assembly. The welding operation causes fixed
DOF. In the connector assembly, the specified joining method (welding) fully satisfies the designed DOF (Tab. 3)

In other cases, some joining methods may either under-constrain or over-constrain the DOF on an assembly. As in
the connector assembly, the two plates (P1

1 and P1
2) are intended to be joined and their DOF are fixed by assigning a

series of SRs. The intended DOF can be reasoned as shown in Tab. 3. If a designer wants to join the two plates by
applying one cylindrical rivet at a position, the intended DOF (fixed) is under-constrained. In a riveting operation, the
end of the rivet shank is deformed after upsetting. However, after upsetting, the assembly can still have rotational DOF,
if there is enough tangential (rotational) force applied to the two plates. When two rivets are used to join the assembly
components, the DOF of components are fully constrained. Note that more than two rivets can increase structural
rigidity, even though DOF of the assembly are over-constrained and joining cost and time are increased. The proper
number of rivets should be determined by assembly operation analysis.

Fig. 6. Semantic assembly design modeling framework.

6. CONCLUSION AND FUTURE WORKS

This paper presented an AsD ontology that plays as formal, explicit specification of a shared conceptualization of
assembly design modeling. This paper enhanced the previously developed AsD formalism by using ontology
technology. The AsD ontology developed explicitly represents AsD design constraints and the computer can infer
remaining implicit constraints (e.g., assembly relationships, SRs, and joining relations). By relating concepts through
ontology technology rather than just defining data syntax, assembly and joining concepts can be captured in their
entirety or extended as necessary. Furthermore, the higher semantic richness of ontologies allows computers to infer
additional assembly/joining knowledge and make that knowledge available to decision makers. By using ontology
technology, assembly and joining constraints can be represented in a standard manner regardless of geometry file

Computer-Aided Design & Applications, Vol. 3, No. 5, 2006, pp 603-613

612

formats. Such representation significantly improves service-oriented design collaboration. Lastly, given that knowledge
is captured in a standard way through the use of an ontology, it also can be retrieved, shared, and reused during
collaboration.

To understand what kind of AsD information should be represented in ontology and shared in distributed design
collaboration, a survey was conducted with product design and development engineers at automotive industries
including Ford Motor Company and frequently asked questions were obtained and classified. Most notably, the survey
clearly indicated that assembly relation and assembly method/operation are core information that should be shared in
distributed design collaboration.

In recognizing the fact that product development requires tremendous amounts of information and corresponding
decisions, it is obvious that the reasoning behind every decision can hardly be transferred together with the
information. Consequently, the need for feedback and communication among product development stakeholders
increases, which may lead to extremely complex and uncontrollable flows of information in product development
collaboration. However, providing that product information generated by the different collaborators is attached to an
overall and widely accessible model, this situation may change considerably. Instead of “pushing” information from
one collaborator to another, participants can “pull” the information they require and are given access to. As shown in
this paper, by utilizing ontology technology, clear relations among assembly components and form features are
established and assembly knowledge can be systemized in product, feature, manufacturing, joining, and analysis
classes. This semantically valid information provides a great foundation to realize a lean and selective assembly design
information sharing environment. The authors are currently developing a new information sharing paradigm, called
Semantic Assembly Design Modeling (SADM). Fig. 6 illustrates a framework for the SADM. Typically, product
development collaboration requires a secured network and infrastructure. SADM has to be implemented in such a
secure data network, which is developed through intensive research. In this framework, design collaborators and e-
tools (e.g., virtual assembly tool and assembly design decision support tool) at remote locations can request assembly
information from the AsD ontology in service-oriented design collaboration. Since the AsD ontology systemizes
assembly knowledge, the e-tools and collaborators can retrieve assembly information selectively and transparently via
semantic query.

7. REFERENCES

[1] 2005 Engineous International Symposium & Workshop, Novi, MI. USA, October 10-12, 2005
[2] Lutters D, Streppel AH, Kals HJJ. The role of information structures in design and engineering processes. 3rd

Workshop on Product Structuring 1997.
[3] Szykman, S., Sriram, R. D. and Regli, W. C., The role of knowledge in next-generation product development

systems, J Computing and Information Sc in Engr, Vol. 1, 2001, pp 3-11.
[4] Horváth, I., Pulles, J. P. W., Bremer, A. P. and Vergeest, J. S. M., Towards an Ontology-based Definition of

Design Features, SIAM Workshop on Mathematical Foundations for Features in Computer Aided Design,
Engineering, and Manufacturing, 1998.

[5] Kurland, R., NX systems engineering powers the product lifecycle, TechniCom Inc technical article, 2003.
[6] Kim, K. Y., Wang, Y., Muogboh, O. S. and Nnaji, B. O., Design Formalism For Collaborative Assembly Design

Environment, Computer-Aided Design, Vol. 36 No. 9, 2004, pp 849-71.
[7] Gruber, T. R., A Translation Approach to Portable Ontology Specification, Knowledge Acquisition, Vol. 5, No.

2, 1993, pp 199-220.
[8] Fensel, D., Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce, Springer-Verlag

Berlin Heidelberg, 2001.
[9] Mizoguchi, R. Tutorial on Ontological Engineering Part 1: Introduction to Ontological Engineering, New

Generation Computing, Ohm-Sha & Springer, Vol. 21, No. 4, 2003, pp 365-84.
[10] Cycorp, Inc., http://www.cyc.com/cyc
[11] Uschold, M., King, M., Moralee, S., and Zorgios, Y., The Enterprise Ontology, The Knowledge Engineering

Review, Vol. 13, Special Issue on Putting Ontologies to Use, 1998.
[12] Fox, M. S., and Gruninger, M., Enterprise Modelling, AI Magazine, AAAI Press, Fall 1998, pp 109-21.
[13] Kitamura, Y., Kashiwase, M., Masayoshi, F. and Mizoguchi, R., Deployment of an Ontological Framework of

Function Design Knowledge, Unpublished manuscript for Advanced Engineering Informatics, 2004.
[14] Nnaji, B. O., Wang, Y. and Kim, K. Y., Service-oriented architecture for integrated e-design and realization of

engineered products, International Forum on Design for Manufacture and Assembly, Providence, RI. USA, June
22-23, 2004.

Computer-Aided Design & Applications, Vol. 3, No. 5, 2006, pp 603-613

613

[15] Deneux, D., Introduction to assembly features: an illustrated synthesis methodology, J Intelligent Manufacturing,
Vol. 10, 1999, pp 29-39.

[16] van Holland, W. and Bronsvoort, W. F., Assembly features in modeling and planning, Robotics and Computer
Integrated Manufacturing, Vol. 16, 2000, pp 277-94.

[17] Whitney, D. E., Mantripragada, R., Adams, J. E. and Rhee, S. J., Toward a theory for design of kinematically
constrained mechanical assemblies, Int J Robotics Research, Vol. 18, No. 12, 1999, pp 1235-48.

[18] Ambler, A. P. and Popplestone, R. J., Inferring the positions of bodies from specified spatial relationships,
Artificial Intelligence, Vol. 6, No. 2, 1975.

[19] Liu, T. L., A coordinated constraint-based modeling and design advisory system for mechanical components
and assemblies, Ph. D. dissertation, University of Massachusetts Amherst, 1997.

[20] Liu, H. C. and Nnaji, B. O., Design with spatial relationships, Jr. of Manufacturing Systems, Vol. 10, 1991.
[21] http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/
[22] World Wide Web Consortium, OWL web ontology language guide, http://www.w3c.org/TR/owl-guide.

