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ABSTRACT 

 

In this paper, we present a new approach for smooth approximation of surface meshes with 

arbitrary topology and geometry. The approach is based on the well-known radial basis functions 

(RBFs) for local shape approximation combined with a blending operator and a family of 

normalized weight functions for global surface construction. Our method first defines a local 

approximation using locally supported RBF for every vertex of the input mesh. A single global 

smooth surface is then constructed by blending the local approximations using weight functions 

associated with mesh vertices. A projection procedure is employed for visualizing the global surface 

using the local parameterization defined by barycentric coordinates for each facet of the input 

mesh. The approach provides a robust and efficient solution for smooth surface construction from 

various 3D mesh models. 

 

Keywords: surface reconstruction, RBF approximation, blending, domain decomposition. 

 

 

1. INTRODUCTION 

Polygonal meshes are widely used in the CG (computer graphics) and CAGD (computer aided geometric design) 

communities for the representation of 3D shapes due to their simplicity of data structure and flexibility in representing 

various shapes with arbitrary topology and geometry. Vertices of a mesh are in most cases sampled from a smooth 

surface of certain object and the mesh provides a discrete approximation of the original surface. In many applications, 

it is most important to have a smooth surface representation of the underlying object rather than just with a surface 

mesh and how to construct a smooth surface from a given mesh is thus a very important field of study in CG and 

CAGD.  

In general, there are two classes of techniques for the construction of a continuous surface or function from a given 3D 

mesh, i.e. parametric or implicit. The later uses implicit surfaces to approximate meshes by building a family of implicit 

real-valued scalar functions and the constructed surfaces are defined as its zero level-sets. In literature, one may find 

various related work in this area. Muraki[1] fitted an implicit surface from a given point-set using a linear combination 

of Gaussian blobs. Hoppe et al[2] used a distance function to represent approximation of a point-cloud. Lim et al[3] 

distributed a set of spheres in the scattered point set by employing a Delaunay partition and a process of non-linear 

optimization, and then used blended-union of the spheres to construct an implicit surface from the point set.  

The latest trend of implicit surface construction is related to RBF based techniques associated with moving least 

squares and level-set method interpolating or fitting large scattered point-sets. Carr et al[4] constructed cranium 

surface from CT data by RBF interpolating method. Yngve et al[5] focused their work on how to simplify the data-set 

and makes it manageable in calculation of surface construction. Wendland[6] combined compactly supported RBF 

interpolation with partition of unity for constructing surfaces from large scale point-sets. Morse et al[7] gave a process 

in using the Wendland's method to construct a surface from a larger data set. In recent studies of surface reconstruction 

of unorganized point-set, researchers focused their attention on a so-called domain decomposition method[8]. The 

method first divides the data-set into several tractable segments and then handles them respectively. Ohtake et al[9] 

used the partition of unity approach, a special domain decomposition, and presents an algorithm to construct surface 

models from large sets of points. Tobor et al[10] presented another approach similar to Ohake's, but they used RBFs 

as basis functions in local approximating. At the same time, they used different blending weight functions for 

constructing a global surface. In [11], Ohtake et al further proposed a hierarchical approach to 3D scattered data 

interpolation and fitting with compactly supported RBF.  
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In this paper, we represent an RBF-based method that is capable of constructing a globally smooth approximating 

implicit surface from a given surface mesh. The method is built upon the idea of domain decomposition and makes 

use of the connectivity of the input mesh. It first constructs a local RBF approximation for each vertex of the initial 

mesh, and then blends the local approximations to yield a smooth global surface. A parameterization-based process is 

employed to visualize the final surface. In the rest of the paper, Sec. 2 provides a theoretical background of our 

method. In Sec. 3, we present the basic idea and steps of the proposed algorithm and discuss the visualization of the 

constructed surface. Sec. 4 gives some experimental results produced with our method followed by conclusions of our 

work in Sec. 5.  

 

2. RBF-BASED SURFACE RECONSTRUCTION 

An implicit surface is defined as the underlying surface that satisfies the governing equation 0)( =vf , for 
3R∈v , 

where f  is a continuous implicit function defined in 
3R . Implicit surface 0)( =vf  partitions the space into two 

halves, i.e. 0)( >vf  and 0)( <vf . For a given mesh M , suppose its vertices 
N

iiii 0i)}z,y,x({V === v  sampled from a 

smooth surface S . The objective of surface construction from M  is to find an implicit function f  such as its zero 

level-set 0)( =vf  approximates S  in a reasonable manner with  

min)(
0

2 →∑ =

N

i if v .             (1) 

The RBF approach has proven to be very useful in shape modeling. It is built on strict mathematical theory and the 

resulting surface is a generalized thin-plate spline interpolating the scattered data[7]. For a data-set V  acquired by a 
3D range scanning device, the points in V  should be equipped with unit normals that indicate the surface orientation 

in order to perform RBF calculation. Otherwise, these normals can be estimated either from the initial scans during the 

shape acquisition phase or through local least-square fitting to V . For a given mesh M , they can be directly 

evaluated from the connectivity of M . 

In order to avoid trivial solution with which the constant function 0)( ≡vf  is achieved in the entire space of 
3R , some 

off-surface points 
M

Njj 1}{ +=v , named offset points, should be added when RBF method is used. At the same time, 

value of f  at each offset point jv , denoted by jd , should also be estimated. In this case, the problem of 

approximating point-set described in Equ. (1) becomes a problem in finding a smooth implicit function f , such as 
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The smoothness of f  above can be measured by minimizing the following energy function [7, 12]: 
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The problem of minimizing energy in Equ. (2) can be solved by RBF method, its analytic solution can be represented 

as [12] 

∑
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jj Pwf
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)()()( vvvv φ             (4) 

where, jw  are real value weights and φ  is a RBF function )[0,: ∞→Rφ , )(vP  is a polynomial of degree one to 

represent linear and constant parts of f , which ensures that the resulting surface is affine invariable with respect to 

the input data-set. In Equ. (4), the unknown weights jw  and coefficients kp  of )(vP  can be uniquely determined by 

the following interpolating conditions [12] 
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and the following orthogonal conditions [12] 
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Let ||)(|| jij vv−=φφ , zpypxpp)(P 3210 +++=v  and ( )ii ff v= , for Mi ,,1,0 �= , then it is easy to derive the 

following linear system from  Equ. (5) and Equ. (6): 
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where, MMij ×=Φ )(φ , ( )
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Since the coefficient matrix of Equ. (7) is symmetric and semi-positive, the system has unique solution and can be 

solved using LU-decomposition. Depending on types of application, we can select the RBF function as thin-plate 

spline )log()( 2 ddd =φ , Gaussian function[4] )exp(-)( 2cdd =φ , multi-quadric function 
22)( cdd +=φ [12], tri-

harmonic 
3||)( dd =φ , or Wendland's compactly support RBF function [6] )14()1()( 4 +−= + dddφ , and so on. 

 

3. PRACTICAL ALGORITHMS FOR SMOOTH SURFACE APPROXIMATION 

In this section, we discuss how to construct RBF implicit approximation from a triangle mesh with arbitrary topology. 

Since an arbitrary polygonal mesh can be transformed into a triangle mesh through local triangulation of the facets, 

the algorithm discussed here has also been applied to general polygonal meshes. The main algorithm consists of two 

steps: a) constructing a local interpolation at each vertex of the input mesh; and b) blending local interpolations to a 

global smooth surface using locally-supported weight functions. The main difference between our algorithm and other 

RBF based surface reconstruction from point-set data is twofolds. Our method makes use of the connectivity 

information of a mesh and eliminates an expensive process of computing octree-based partition of space commonly 

used for the construction of global implicit surface [9]. In addition, we employ a parameterization-based projection 

procedure to visualize the global surface.  

 

3.1 Construction of Local RBF Approximations 

Let 0v  be an arbitrary vertex of a given triangle mesh M , K
ii 1}{ =v  be the set of vertices incident to 0v , and K

iiF 1}{ =  

be the set of facets incident to 0v .  An umbrella structure, denoted by )( 0vU , is defined as }{}{}{ 0 ii F∪∪ vv  (see Fig. 

1), and 0v  is called the  center of the umbrella. 

 

 
Fig. 1. An umbrella structure centered at 0v  for local approximation. 

 
For an umbrella )( 0vU  centered at 0v , the normal vector at vertex 0v  can be estimated as: 
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where, )( iFA  and )( iFN  are area and normal of facet iF , respectively.  As a result, we can obtain unit normal of 

every vertex iv  in mesh M  by formula ||||/
iii

NN
vvv

n = . 
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In order to evaluate offset points necessary for local RBF approximation, the longest and shortest lengths of edges 

incident to a vertex, say 0v , can be respectively expressed by maxlen( 0v ) and minlen( 0v )  as: 
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The offset points of 0v  can then be defined as  
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The functional value corresponding to the offset points are defined as 0.1)minlen()( 00 ×±=± vv
aux

f . Here, in order to 

ensure that the offset points is sufficiently close to 0v  while maintaining proper functionality of the auxiliary points 

and robustness of local approximation, we position the auxiliary points on the surface normal 
0v

n  of 0v  and away 

from the surface with a distance of one-tenth of the shortest edge length )minlen( 0v  of 0v . In addition, two 

symmetric offset points 
aux
±0v  are selected at each side of the underlying surface at 0v , which is reasonable if the 

underlying field defined by the implicit function in 3D space is smooth and continuous. The selection of a different 

functional value would certainly affect the orthogonal gradient distribution of the underlying field. However, as two 

symmetric auxiliary points are used with respect to the underlying surface, the selection would not be so sensitive to 

the final constructed implicit surface. As we are only interested in the underlying surface, but not the field itself, the 

proposed auxiliary points should be appropriate. 

For an umbrella centered at 0v , we select discrete point-set to construct its local approximation as 

} , , ,{},,,{ 1010
aux
K

auxaux
K ±±± vvvvvv �∪� . Here, we notice Kif i ,,0,0)( �==v . According to Equ. (7), the coefficients 

of local RBF implicit approximation can be worked out easily and we denote the local surface by 0)(f:
00

=v
vv

L . 

For a triangle mesh, the valence of an inner vertex is at least 3. In this case, there are at least 12 points used to 

construct a local surface. For most vertices of the mesh, the average valence should approximately be 6, i.e. there are 

about 21 points used to construct the local approximation of the umbrella. This guarantees the stability of local 

construction.  In this paper, we select the tri-harmonic, 
3||)( dd =φ , as RBF function in local surface approximation 

and Fig. 2 shows an example for local approximation of an umbrella. 

 

 
Fig. 2. Local RBF approximation (right, green) of an umbrella in a cube mesh (left).  

 

3.2 Blending for Global Surface Construction  

We develop a blending operator, which is similar to that of [13] for other functions, to integrate local approximations 

into a global surface. The basic requirements are shape local control and smooth blending. At the neighborhood of 

0v , the shape of the global surface should basically be determined by the positions of vertices in )( 0vU . 

Furthermore, the further a vertex in the mesh away from the center of )( 0vU , the weaker it affects the shape of the 

approximation of the umbrella. When the distance from a vertex to center of )( 0vU is larger than certain threshold, 

the vertex won't bring any effect on the shape at all.  
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Let us consider a bounded domain Ω  in 
3R  and a set of local non-negative compactly supported weight functions 

},,0|)({ Niwi �=v  with )supp( ii w∪⊆Ω . These weight functions can always be normalized such that the sum of 

all weights equals to 1 at all positions of Ω , i.e., the partition of unity property commonly required for acting as basis 

functions[13]. Let }{ iϕ  denote the normalized weight functions of )}({ viw  defined on sub-domains of Ω , we have 
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Moreover, let us consider the case that the supported center of iw  is located at vertex iv  in the initial mesh. The 

normalized weight functions { iϕ } will be used as the blending function for defining a global approximation from local 

approximations associated to individual vertices of the initial control mesh. The global approximation on Ω  can be 

defined as follows [9]: 

∑= )()()( vvv
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ff iϕ .           (13) 

In the paper, for approximation purposes, we use locally supported weight functions on sphere domain in 
3R  as 

blending weights, which are defined by quadratic B-spline )(tB :  
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If an interpolation is required, we can use the inverse-distance singular weights: 
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Fig. 3. Blending of local RBF approximations: A surface patch corresponding to the shaded facet on global approximation is defined 

as a blending surface of a set of local RBF approximations 

 

As mentioned above, for each vertex 0v  of mesh M , its support function is defined in the form of Equ.(14) with the 

center and radius of the supported domain being 0v  and maxlen( 0v ), respectively. In this case, the union of all 
supported domains of vertices of M  is exactly Ω  that covers the entire mesh. 

As an example, we discuss the representation of Equ. (13) in the vicinity of an arbitrary facet 210 vvvΔ  of mesh M . 

Let us first consider the representation at arbitrary vertex v  nearby 210 vvvΔ . We note that, only those local 

approximations, whose support domain covers the vertex, can affect the value of )(vf . In other words, if and only if 

the distance from the center of an local approximation 
k

L
v

 to v  is less than the control radius of 
k

L
v

, i.e., 

maxlen( kv ), the approximation can bring an effect on )(vf .  So, Equ. (13) becomes 
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where, the weight function iϕ  can be calculated by Equ. (14) and Equ. (12). On the other hand, on a global surface 

generated by blending local approximations, each facet of M  has a corresponding patch on the global surface and 

the complete global approximation is just a union of all individual patches corresponding to the parametric domain of 

individual facets of M . Based on Equ. (17), we can find all local approximations for defining each patch. In Fig. 3, 

triangle 210 vvvΔ  is a facet of M  and its corresponding surface patch on global approximation is determined by the 

local approximations of 
0v

L ,
1v

L ,
2v

L ,
3v

L ,
4v

L , and so on. These local approximations can be found by the 

connectivity of M  or an optimized kd-tree research strategy . 

 

3.3 Global Surface Visualization  

Global approximation of the input mesh is an implicit surface represented by a single and complex implicit function. At 

present, there are two types of algorithms to render implicit surfaces. Ray-tracing based method is only applicable to 

off-line rendering because it involved heavy computation, whereas, polygonization method implements rapid 

visualization of implicit surfaces by converting them into polygonal meshes. Among various methods reported so far, 

the optimized Marching Cubes (MC) based algorithms can provide rapid and efficient polygonization and Marching 

Triangles based method can give high quality of triangulation. Velho [14] presented a simple and efficient algorithm 

through a physical process of simulating particle movement. Jin et al [15] combines subdivision and physical 

simulation process to render the so-called subdivision interpolating implicit surfaces. 

Based on Velho's and Jin's work, we propose a piecewise rendering method of the global approximation. For a 

triangular facet 210 vvvΔ  of mesh M , we first partition the planar domain 210 vvvΔ  into 
2n  sub-triangles as 

illustrated in Fig.4 by uniformly subdividing the edges into n  segments. For each vertex of the sub-triangles, the 

corresponding vertex on the underlying implicit surface are then computed using a mapping or projection procedure. 

A refined surface mesh of the constructed implicit surface is finally produced using the newly computed vertices on the 

underlying implicit surface with the same topological connection as that of the sub-triangles for final visualization. In 

this paper, the vertices of sub-triangles are named subdivision-points and all the sub-triangles form a subdivision net. 

In [14] and [15], the projection or mapping of the subdivision-points onto the underlying surface were driven by 

simulating particles' free movement along gradient descending direction of the surface function. In the paper, however, 

we use the normals attached to each vertex of the input mesh to find the projected points of the subdivision-points 

onto the global approximation surface. This approach avoids an expensive procedure for computing the gradients of 

implicit surfaces. 

 

 
Fig. 4. Patch-wise rendering of implicit surface: 1) a facet of the input mesh after domain partition with corner surface normals and 

estimated surface normal at an interior point (left); 2) the parametric domain with corresponding surface patch on the underlying 

surface for visualization (right). 

 

For any subdivision point v  of facet 210 vvvΔ , it is easy to evaluate its barycenter coordinates, ),,( 210 ccc , about 

points 0v , 1v  and 2v , the vertices of the facet. We define the normal associated to v  as 

210
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vvv

vvv
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nnn
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ccc

ccc

++

++
= .          (18) 

Following Sec. 3.1, we know that 
v
n  points outwards of the surface. If a point v  is not on the surface, we can find a 

point, at which the sign of the implicit function is opposite to that of v , along either the positive or negative direction 
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of 
v
n . Once two points at different sides of the surface are found, an intersect point, named 

p
n , of the line segment 

connecting the two points and the implicit surface can be obtained using a bisection search method. The intersect 
p
n  

will be taken as the projected point of v  on the surface for visualization. 

Obviously, the resolution of polygonization of the global approximation can be adjusted by increasing or decreasing 

the number of subdivisions on edges of the facet. As the normals of a mesh are predefined, the normal vector at each 

subdivision-point is also uniquely defined. The position of the intersect point on the surface can then be represented 

by a single pure scalar, which is the distance from v  to the intersection point. The distance is positive when the 

direction from v  to intersection point is coincident to the direction of the normal of v , otherwise negative. 

One should notice that, two neighboring facets, 210 vvvΔ  and 310 vvvΔ , have common global function along their 

shared edge 10vv , which is the blended sum of the same local approximations weighted by the same weight 

functions, so that global surface is continuous along the shared edge. In addition, because the normals of subdivision 

points on a common edge have identical direction in 210 vvvΔ  and 310 vvvΔ  respectively (subdivision points on 

10vv  have the same barycenter coordinates in 210 vvvΔ  and 310 vvvΔ ), their projected points should also be the 

same. Hence, there should be no crack left on the global surface. 

It should also be noted that domain subdivision discussed in this section and the estimation of local surface normal 

using equation Equ. (18) would only affect the visualization of the underlying surface. The underlying implicit surface, 

however, remains the same. The underlying implicit surface is uniquely defined by the local RBF approximations and 

the blending functions used for construction the global approximation. 

 

4. IMPLEMENTATION, RESULTS AND DISCUSSIONS 

We have implemented the algorithm presented in the previous section using C++ on an Intel Celeron PC with 

1.4GHz CPU and 512M memory under the WinXP operating system. The algorithm consists of two parts as following: 

1) Construction of local approximations: 

• For every vertex iv  of the input mesh, compute its 
iv

n , maxlen( iv ) and minlen( iv ); 

• Define two offset points for iv  using 
iv

n  and minlen( iv ); 

• Construct the local approximating surface for iv  from vertices in )( iU v  and their offset points. 

2) Visualization of the global approximation by rendering the piecewise surface patch for each facet, 210 vvvΔ , of the 

input mesh: 

• Divide 210 vvvΔ  into 
2n  sub-triangles; 

• Evaluate: a) all the subdivision points, their barycenters and normals about the vertices 0v , 1v  and 2v ; and 

b) projected points of the subdivision points on the global surface; 

• Replace the vertices of subdivision net on the facet with the corresponding projected points and render the 

net. 

Fig. 5 to Fig. 7 illustrate some examples produced using the algorithms presented in this paper. Fig. 5 shows five 

simple examples. Illustrations of top row are meshes to be approximated and illustrations of the middle and bottom 

rows are flat shading with wire-frame and Phong shading renderings of their global surfaces, respectively. The initial 

control mesh of the first example (the first column on left hand side) is a cube, where the valance of the center vertex 

of each facet is 4 and its neighboring facets are coplanar. With the second example (the second column), the vertex at 

the intersection point of three planes has complex local geometry. In the third example (middle column), the initial 

control mesh is an open mesh consisting of a convex peak and a concave valley. The vertex between the peak and the 

valley vertices also has complex local structure. The surface meshes in two columns on right hand side take on 

complex topologies. The results show that all the above shapes can be handled with the presented algorithm. 
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Fig. 5. Illustrations of the constructed surfaces from five different input meshes (top row) with particular vertices or topology  and their 

approximating surfaces (middle and bottom rows). 

 

For a given mesh, because the highest valance of its vertices is a constant, the computing time needed for the 

construction of a local RBF approximation of one umbrella has its upper limit, which is independent of the number of 

vertices of the input mesh. Hence, the computing time for the construction of local approximations has linear 

complexity, )(NO , with respect to number N  of vertices of the input mesh. 

In the step of visualization, the time used for rendering a single patch corresponding to a particular facet is )( 2nO , 

where n  is the number of subdivisions for each edge, which is again independent to the number N  of the vertices of 
the input mesh. As a result, the total time complexity for the visualization of the global approximation is )()( 2nONO × . 

When n  is decided, which is usually not large, the time needed in the visualization is again linear to the number N  of 

vertices of the input mesh. 

Fig. 6 and Fig. 7 present two examples, respectively, constructed using the proposed method. The initial meshes of 

former are created by MC based sampling procedure from existing smooth surfaces and the control meshes of later are 

built by mesh simplifier from the dense cat and horse models, which are commonly used in the CG and CAGD 

communities. These examples demonstrate the capability of the developed algorithms. Tab. 1 summarizes some 

parameters of the initial control meshes shown in the figures and it also provides the computing time used to construct 

the local RBF approximations with respect to meshes of different resolution scales. Tab. 2 shows time needed on the 

second phase for the visualization of the global approximation of various meshes, where “ N -segs” indicates the 

number of subdivisions for each edge for visualization. From the tables, one can find that it is very fast for constructing 

the local RBF approximations for the vertices of the input meshes and the main computing time of our algorithm is 

spent on visualization of the resulting surface. The time costs are proportional to the resolution scale of the final 

meshes in the scale of )( 2nO , at the same time, it is linearly proportional to the number N  of vertices of the initial 

input mesh. 
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           (a) Jack-1                  (b) Jack-2                (c) Jack-3                   (c) Didymous-1            (c) Didymous-2            (c) Didymous-3 

Fig. 6. Surface construction of two practical examples  generated using various resolution control meshes. The initial meshes (top row)  

are generated using MC method from smooth surfaces. 

 

     

    
     (a) Cat-1                 (b) Cat-2             (c) Cat-3                    (d) Horse-1                          (e) Horse-2                            (f) Horse-3  

Fig. 7. Surface construction of two practical examples commonly used in the CAGD and graphics communities, the control meshes 

(top row) are obtained from initial dense meshes through mesh simplification. 

 

Mesh Jack-1 Jack-2 Jack-3 Didymous-1 Didymous-2 Didymous-3 

V/T 89/174 155/306 333/662 206/416 297/598 497/998 

Time 8.37 14.90 30.23 19.13 27.43 45.07 

Mesh Cat-1 Cat-2 Cat-3 Horse-1 Horse-2 Horse-3 

V/T 51/90 145/270 65/898 196/388  244/484 487/970 

Time  4.70  13.03  42.33 18.03   44.80  176.33 

 

Tab. 1.  Parameters of the  meshes shown in Fig. 6 and Fig. 7 and time consumed in constructing their local RBF approximations  

(V/T: vertices/triangles; Time: ms). 

 

Mesh Didymous-1 Didymous-2 Didymous-3 Horse-1 Horse-2 Horse-3 

3-segs 487 521 814 427 1210 4020 

4-segs 824 907 1469 715 1999 6626 

5-segs 1206 1405 2278 1035 2987 9929 

6-segs 1686 1959 3221 1434 4176 13894 

 

Tab. 2. Computing time in visualization phase of the algorithm (Time unit: ms). 
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5. CONCLUSION  

In this paper, we propose an algorithm for constructing an approximating surface from a triangle mesh with arbitrary 

topology and geometry using compactly supported radial basis functions. Our algorithm first constructs a local RBF 

approximation for each umbrella structure centered at an individual vertex of the input mesh. The local 

approximations are then blended to form a global approximation of the underlying geometry using locally defined 

weight functions. The visualization makes use of the correspondence, a kind of parameterization, between facets of a 

mesh and their corresponding patches on the resulting surface. Results show that our algorithm can cope with open or 

closed mesh with arbitrary topology in the same way. Both the construction process and the visualization procedure 

are pretty fast. Compared with existed algorithms for constructing approximating surface from meshes, our algorithm 

has linear time complexity to the number of vertices of the input meshes. 
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