
31

Computer-Aided Design & Applications, 21(S8), 2024, 31-43
© 2024 U-turn Press LLC, http://www.cad-journal.net

A Quantum Algorithm for Deciding Graph 2-Coloring Problem in

Embedded Systems

Jinfeng He1* , Yao Zhang2 and Shanxian Lin3

1,2,3 School of Information Science and Technology, Nantong University, Nantong 226000, China

1hjf89@ntu.edu.cn,22565649106@qq.com,31369362184@qq.com

Correspondence author: Jinfeng He, hjf89@ntu.edu.cn

Abstract.The K-coloring of a graph is to assign K colors to each vertex so that the
adjacent vertices have different colors. When K ≥ 3, the K-coloring problem is NP-

complete. 2-coloring is considered in the paper. We propose a classical method for
any number n, it outputs a quantum circuit that for any graph with n vertices and a

coloring strategy, deciding whether the coloring strategy is correct. The method can
automatically generate the corresponding quantum circuits according to the scale of
the problem, and can be easily extended to K-coloring for K ≥ 3 . The resulting

quantum circuit provides a candidate for the oracle of the Grover algorithm that
solves the coloring problem.

Key words: graph coloring; quantum circuit; reversible logic circuit
DOI: https://doi.org/10.14733/cadaps.2024.S8.31-43

1 INTRODUCTION

1.1 Graph Coloring Problem

The coloring problem of graphs originates from the famous "four-color conjecture" problem, which
has been proved in[2],[8]. Four-color conjecture problem is also known as the four-color theorem.
It is a famous mathematical theorem. Its content is that "any map with only four colors can dye

countries with common boundaries with different colors." That is to say, any map on a plane (or
sphere) can only use four colors to dye so that neighboring countries will not have the same color.
In mathematical language, the plane is arbitrarily subdivided into non-overlapping areas. Each area

can always be marked with one of the four numbers 1, 2, 3, and 4 without making the adjacent two

http://www.cad-journal.net/
mailto:hjf89@ntu.edu.cn
mailto:hjf89@ntu.edu.cn
https://orcid.org/0009-0006-4641-2248
https://orcid.org/0009-0005-2147-2132
https://orcid.org/0009-0003-1595-9492

32

Computer-Aided Design & Applications, 21(S8), 2024, 31-43
© 2024 U-turn Press LLC, http://www.cad-journal.net

areas get the same number. The adjacency here means that there is a whole section of boundary

between two areas that is common.

On this basis, the coloring problem of a graph abstracts each region in the plane into a point.
Connecting two points indicates that the two points are adjacent. If they are not adjacent, they will

not be connected. Now, given an undirected graph and K colors, where V is the vertex set and E is
the edge set, we need to find a possible coloring strategy to use K colors to color the vertices of the
graph, so that any two adjacent vertices do not have the same color. If it can be found, then it is

said that the undirected graph can be colored by K colors. In other words, the graph coloring problem
is to divide the vertex set V into K groups, each group corresponds to the same color, forming an

independent set[14], that is, there are no adjacent vertices. The optimization problem of graph
coloring is to obtain the minimum K value.In all these applications, finding the minimum number of
colors (K value) required to color the graph optimally is often the goal. This corresponds to

minimizing the usage of resources, such as channels, time slots, processors, or registers, which is
crucial in the context of resource-constrained Embedded Systems.

The graph coloring problem has a lot of applications. Here, taking the formulation of the exam

schedule as an example, the problem can be abstracted into a graph coloring problem, and an
undirected graph G = (V, E) is established. The exam subjects are regarded as vertices, and there is

an edge between the two exam subjects if and only if one student needs to take the two exams, and
the subjects of the same exam at the same time are regarded as a color, Then, the problem of the
test schedule can be transformed into the following: make the undirected graph G = (V, E) point

coloring number minimum under the condition that the test time does not conflict[17],[22]. In
addition, there are frequency allocation, mobile radio frequency distribution, Sudoku, bipartite

graphs, Work scheduling[1], etc.

1.2 Classical Algorithms

When K ≥ 3 , the graph coloring problem is an NP-complete problem. The traditional classical

algorithms[5],[15],[3] are as follows.

1.Brute force algorithm

This method can generate all possible color combinations(KV combinations), where K is the number

of colors and V is the number of vertices[9]. After color generation, we use the recursive function to

check whether any two adjacent vertices have the same color to determine whether the color
combination meets the requirements. In this algorithm, we generate a total of KV color

combinations. Therefore, it requires exponential time, and the time complexity is O(KV).

2.Backtracking algorithm

It is a search algorithm that systematically searches for the solution to the problem[13]. This method

can assign colors to each vertex one by one. The coloring will only start from the first index, but
before assigning any color, we will first use the recursive function to check whether it meets the
constraint that no two adjacent vertices have the same color. If the current color assignment meets

the conditions, it will be added to the solution; otherwise, it will be backtracked. Similar to the brute
force algorithm, this algorithm also generates a total of KV color combinations. Therefore, it also

requires exponential time, and the time complexity is O(KV).

3.Greedy algorithm

http://www.cad-journal.net/

33

Computer-Aided Design & Applications, 21(S8), 2024, 31-43
© 2024 U-turn Press LLC, http://www.cad-journal.net

It always makes the best choice in the current view when solving problems. According to Brooks

theorem[11],[27], for any graph G, there is X(G) ≤ d + 1, where d represents the maximum degree

of graph G, X(G) represents the chromatic number of graph G,and the chromatic number is the
minimum color number required for graph coloring. If the maximum degree of vertices in a given

graph is d, the greedy method to solve the graph coloring problem can use at most d + 1 colors. This

method cannot guarantee the minimum number of colors but can guarantee the upper limit of the

number of colors. We will color the current vertex with the lowest-numbered color. After that, we
will check whether the currently assigned minimum color is used for any adjacent vertices of the
current vertex. If it is not used, we can continue to process the next vertex, otherwise, we will assign

the next color. In this algorithm, we greedily assign a color to each vertex of the graph and check
whether the assigned color meets the constraint conditions[24],[19], that is, no two adjacent

vertices have the same color.

The calculation time complexity of the above traditional methods is too large to solve the problem
in the effective time. Here we open up another method - quantum circuit. This algorithm uses the

natural parallel processing ability of the quantum computer to solve the coloring problem of the
graph with the quantum algorithm[20],[23],[25],[6],[4],[7]. This algorithm takes the 2-coloring
problem of the graph as an application example.

The structure of this paper is as follows. In Section 2, we give the basic definitions and notations
of quantum circuits. In Section 3, we give the method that the reversible logic circuits for deciding

2-coloring, and decompose them into equivalent Clifford+T circuits. In Section 4, we summarize and
conclude the paper.

2 PRELIMINARIES

The quantum circuit[18] model is the most widely used quantum computing model. It provides a
basic framework for the construction of quantum algorithms and the physical implementation of
quantum computers. Using the basic ideas of measurement calculus and distributed quantum

computing, a measurement quantum circuit model is proposed. It is composed of quantum bits,
lines representing the evolution of quantum bits (timelines), and various quantum logic gates acting

on quantum bits. In essence, it is an execution sequence of quantum logic gates. It is executed
sequentially from left to right. Finally, the quantum measurement is often required to read the
results. Unlike traditional circuits, which are connected by metal wires to transmit voltage signals or

current signals, in quantum circuits, the circuit is connected by time, that is, the state of quantum
bits evolves naturally with time, and is operated according to the instructions of Hamiltonian
operators until it meets a logic gate. Since every quantum logic gate that constitutes a quantum

circuit is a unitary operator, the whole quantum circuit is also a large unitary operator.

The basic content of quantum computing includes two categories: quantum bits and quantum

logic gates. Quantum bits include single quantum, double quantum, and multiple quantum bits. The
two basic particles |0⟩and |1⟩are used to represent the basic state of quantum bits. In this paper,

we use quantum circuits to consider the 2-coloring problem of graphs. So we can use these two

states to represent two colors. At the same time, the main logic gates used are as follows.

1.Pauli-X gate

The Pauli-X gate acts on a single quantum bit, which is quantum equivalent to the NOT gate of a
classical computer, and is used to flip the quantum state: |0⟩becomes |1⟩,|1⟩becomes |0⟩[21]. In

quantum circuits, we use "X" to express (as shown in Figure 1a). Its matrix form is as follows.

http://www.cad-journal.net/

34

Computer-Aided Design & Applications, 21(S8), 2024, 31-43
© 2024 U-turn Press LLC, http://www.cad-journal.net









=

01

10
X

2.CNOT (controlled-NOT) gate

The CNOT gate is a two-qubit gate, which is used to flip and modify the target bit according to the
control bit state. Its matrix form is as follows.



















=

0100

1000

0010

0001

CNOT

In the quantum circuit, we use two lines to represent two qubits (as shown in Fig1b). Among them,
the upper line (containing a black circle) is the control qubit, the lower line (containing a cross circle)
is the target qubit, and the possible states of the two qubits are |0⟩or |1⟩. Its truth table is shown in

Table 1.

Input Output

Control bit Target bit Control bit Target bit

c t c t

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

Table 1: The Truth Table of the CNOT Gate.

It can be seen from the table that the meaning of the CNOT gate is that when the control bit is in

the |0⟩state, the target bit does not change; When the control bit is in the |1⟩state, the Pauli-X gate

(quantum non-gate) operation is performed on the target bit, that is, |0⟩becomes |1⟩, and

|1⟩becomes |0⟩. It is particularly important to note that the positions of control bits and target bits

cannot be exchanged.

3.Toffoli gate

The Toffoli gate is a three-input, three-output reversible logic gate[10],[26]. It has the same usage
and principle as the CNOT gate and also changes the target bit according to the control bit status.

http://www.cad-journal.net/

35

Computer-Aided Design & Applications, 21(S8), 2024, 31-43
© 2024 U-turn Press LLC, http://www.cad-journal.net

The difference is that it acts on three qubits, of which there are two control bits and one target bit.

Its matrix form is as follows.

































=

01000000

10000000

00100000

00010000

00001000

00000100

00000010

00000001

Toffoli

In the quantum circuit, we use three lines to represent three qubits (as shown in Fig1c). Among

them, the upper two lines (containing black circles) are control qubits, and the lowest line (containing
cross circles) is target qubits. Its truth table is shown in Table 2.

Input Output

Control bit Target bit Control bit Target bit

 c1 c2 t c1 c2 t

0 0 0 0 0 0

0 0 1 0 0 1

0 1 0 0 1 0

0 1 1 0 1 1

1 0 0 1 0 0

1 0 1 1 0 1

1 1 0 1 1 1

1 1 1 1 1 0

Table 2:Truth Table of the Toffoli Gate.

It can be seen from the table that the Toffoli gate means that only when the two control bits are in
the |1⟩state, the Pauli-X gate (quantum non-gate) operation is performed on the target bit, that is,

|0⟩becomes |1⟩, |1⟩becomes |0⟩, and the target bit does not change in other states. It is also

important to note that the positions of control bits and target bits cannot be exchanged.

http://www.cad-journal.net/

36

Computer-Aided Design & Applications, 21(S8), 2024, 31-43
© 2024 U-turn Press LLC, http://www.cad-journal.net

4.MCT gate

The multiple-control Toffoli (MCT) gate has a target line and several control lines[16]. It continues
to increase the number of control qubits based on the CNOT gate and the Toffoli gate, with the same
principle. Its matrix form is as follows.

































=

0100000

1000000

0010000

0001000

0000100

0000010

0000001

















MCT

In quantum circuits, we can use n lines to represent n qubits (as shown in Fig1d). Among them, the
top n-1 line (containing black circles) are control qubits, and the bottom line (containing a cross

circle) is the target qubit. Its truth table is shown in Table 3.

Input Output

Control bit Target bit Control bit Target bit

 c1 c2

 cn t c1 c2

cn t

0 0

0 0 0 0

0 0

0 0

0 1 0 0

0 1

0 0

1 0 0 0

1 0

0 0

1 1 0 0

1 1

1 1

0 1 1 1

0 1

1 1

1 0 1 1

1 1

1 1

1 1 1 1

1 0

Table 3: The Truth Table of the MCT Gate.

It can be seen from the table that the meaning of the MCT gate is that only when n-1 control bits

are in the |1⟩state, the Pauli-X gate (quantum non-gate) operation is performed on the target bit,

that is, |0⟩becomes |1⟩, |1⟩becomes |0⟩, and the target bit does not change in other states[16].

5.Measurement gate

On a real quantum computer, the information on the final state of the quantum system can only be
obtained by measuring the final state. The measurement uses the quantum bit register to measure

 

 

 

 

 

         

 

 

 

http://www.cad-journal.net/

37

Computer-Aided Design & Applications, 21(S8), 2024, 31-43
© 2024 U-turn Press LLC, http://www.cad-journal.net

it and then outputs the result in the form of classical information. The measurement result is mapped

to the classical register that can be effectively represented. The measurement operation is
represented by the measurement symbol. It always treats the input as a qubit register (represented
as a solid line) and the output as classical information (represented as a double line).

Figure 1: The Illustration of four Kinds of Quantum Gates. (a)The X Gate, (b)The CNOT Gate, (c)The
Toffoli Gate, (d)The MCT Gate.

The quantum circuit algorithm uses these logic gates to determine whether the colors of adjacent
vertices are equal. Here, only the coloring of two colors are considered, which are represented by

|0⟩ and |1⟩ respectively, and satisfy the possible state of quantum circuit bits. In the algorithm, the

Qiskit library is used to generate circuits, and the Pillow library (sometimes called the PIL library) is
used for image processing. Qiskit is an open-source SDK for quantum computing developed by

IBM[12] and has an extremely perfect ecosystem. The Qiskit quantum software development kit
accelerates the development of quantum applications by providing a complete set of tools required

to interact with quantum systems and simulators, and realizes the simulation analysis of quantum
image processing algorithms. The Pillow library is the basic library for Python image processing,
which can easily store, display and process images in various formats.

3 2-COLORING PROBLEM

In this section, we propose a classical method for any number n, it outputs a quantum circuit that
for any graph with n vertices and a coloring strategy, deciding whether the coloring strategy is

correct.

3.1 Quantum Circuit Construction

Algorithm 1 Generate reversible circuits for 2-coloring

Input: The number n of the vertices in the graph.
Output: A reversible circuit to decide the 2-coloring for the graphs with n vertices.

1. function gen(n)

2. var v_num, e_num, add_num, x_num: integer

3. v_num <- n

4. e_num <- n * (n - 1) / 2

5. add_num <- 1

6. x_num <- e_num

7. begin

http://www.cad-journal.net/

38

Computer-Aided Design & Applications, 21(S8), 2024, 31-43
© 2024 U-turn Press LLC, http://www.cad-journal.net

8. edges = QuantumRegister(e_num, 'e')

9. vertexes = QuantumRegister(v_num, 'v')

10. aids1 = AncillaRegister(e_num, 'a1')

11. aids2 = AncillaRegister(e_num, 'a2')

12. out = QuantumRegister(1, 'o')

13. c = ClassicalRegister(1, 'c')

14. circuit = QuantumCircuit(edges, vertexes, aids1, aids2, out, c)

15. circuit.x(aids2)

16. for i : = 0 to v_num

17. for j : = i + 1 to v_num

18. circuit.ccx(vertexes[i], vertexes[j], aids1[k]

19. circuit.x(vertexes[i])

20. circuit.x(vertexes[j])

21. circuit.ccx(vertexes[i], vertexes[j], aids1[k])

22. circuit.x(vertexes[i])

23. circuit.x(vertexes[j])

24. circuit.ccx(edges[k], aids1[k], aids2[k])

25. circuit.barrier()

26. x_num += 4

27. add_num += 3

28. gate = MCXGate(e_num)

29. ct = list(range(e_num * 2 + v_num, e_num * 3 + v_num + 1))

30. circuit.append(gate, ct)

31. circuit.measure(out, c)

32. end

33. end gen

The complexity of the algorithm is T(n) = n ∗ (n + 1)/2 + 27, O(n) = n2.

In the algorithm, we count the number of Toffoli gates and Pauli-X gates corresponding to different
vertex points. Table 4 shows the number of different gates for several kinds of graphs.

Number of vertices
Number of gates

Depth Number of qubits
X CNOT Toffoli MCT

3 15 0 9 1 30 14

4 30 0 18 1 57 24
5 50 0 30 1 93 37
6 75 0 45 1 138 53

7 105 0 63 1 192 72

Table 4: The Number of Quantum Gates.

The quantum circuit generation is as follows.

http://www.cad-journal.net/

39

Computer-Aided Design & Applications, 21(S8), 2024, 31-43
© 2024 U-turn Press LLC, http://www.cad-journal.net

Figure 2: The Quantum Circuit Generated When the Number of Vertices is 3.

Figure 3: The Quantum Circuit Generated When the Number of Vertices is 4.

Figure 4:The Quantum Circuit Generated When the Number of Vertices is 5.

http://www.cad-journal.net/

40

Computer-Aided Design & Applications, 21(S8), 2024, 31-43
© 2024 U-turn Press LLC, http://www.cad-journal.net

Take 2-coloring of three vertices as an example to illustrate the algorithm. Three vertices have a

maximum of three edges. e0, e1, and e2 are side registers. v0, v1, and v2 are vertex registers. a10,
a11, a12 and a20, a21 and a22 are auxiliary bit registers. o is the output register. c is a classical
bit, and the initial value is |0⟩.

Through the first Toffoli gate, because the control bits v0 and v1 are both |0⟩, the target bit a10

remains unchanged at |0⟩; v0 is transformed from |0⟩to |1⟩through the NOT gate, v1 is transformed

from |0⟩to |1⟩through the NOT gate. Through the second Toffoli gate, because the control bits v0

and v1 are both |1⟩, the target bit a10 performs the Pauli-X gate (quantum non-gate) operation

from |0⟩to |1⟩. v0 is transformed from |1⟩to |0⟩through the NOT gate, and v1 is transformed from

|1⟩to |0⟩through the NOT gate. This part is used to determine whether the colors of the two vertices

v0 and v1 are the same. The output result of |1⟩indicates that the colors are equal, and the output

result of |0⟩indicates that the colors are not equal.

Through the third Toffoli gate, because the control bit e0 is |0⟩and a10 is |1⟩, the target bit a20

remains unchanged as |1⟩. This part is used to judge whether the two vertices just dyed meet the

dyeing requirements. Here, because the edge e0 input is |0⟩, it means that the two vertices v0 and

v1 are not adjacent. So the final output result is |1⟩, which means that v0 and v1 are feasible to dye

the same color.

Next, continue to judge other vertices according to the analysis just made. Through the fourth
Toffoli gate, because the control bits v0 and v2 are both |0⟩, the target bit a11 remains unchanged

at |0⟩; v0 is transformed from |0⟩to |1⟩through the NOT gate, v2 is transformed from |0⟩to

|1⟩through the NOT gate. Through the fifth Toffoli gate, because the control bits v0 and v2 are both

|1⟩, the target bit a11 performs the Pauli-X gate (quantum non-gate) operation from |0⟩to |1⟩. v0 is

transformed from |1⟩to |0⟩through the NOT gate, and v2 is transformed from |1⟩to |0⟩through the

NOT gate; Through the sixth Toffoli gate, because the control bit e1 is |0⟩and a11 is |1⟩, the target

bit a20 remains unchanged as |1⟩; Through the seventh Toffloi gate, because the control bits v1 and

v2 are both |0⟩, the target bit a12 remains unchanged at |0⟩; v1 is transformed from |0⟩to |1⟩through

the NOT gate, v2 is transformed from |0⟩to |1⟩through the NOT gate. Through the eighth Toffoli

gate, because the control bits v1 and v2 are both |1⟩, the target bit a12 performs the Pauli-X gate

(quantum non-gate) operation from |0⟩to |1⟩. v1 is transformed from |1⟩to |0⟩through the NOT gate,

and v2 is transformed from |1⟩to |0⟩through the NOT gate; Through the ninth Toffoli gate, because

the control bit e0 is |0⟩and a12 is |1⟩, the target bit a20 remains unchanged as |1⟩.

Through the tenth MCT gate, because the control bits a20, a21, and a22 are all |1⟩, the target

bit o performs the Pauli-X gate (quantum non-gate) operation from |0⟩to |1⟩. This part is used to

merge the dyeing results. If the dyeing conditions of any two vertices meet the requirements (that

is, the output result is |1⟩), then the final output result is |1⟩.

3.2 Quantum Circuit Decomposition

The output reversible circuit is a high-level description for the quantum algorithm of the graph
coloring problem. It cannot be implemented directly on the quantum devices. It is well known that
the Clifford + T gates constitutes a universal quantum gate set, and can be implemented by many

quantum computers. We decompose the reversible circuits into equivalent Clifford + T circuits.
Figure5 shows part of the decomposed quantum circuits for the graph with 3 vertices. Table 5 shows

the size and depth of the decomposed circuits for several reversible circuits in Table 4. We can see
that the size and depth of the decomposed circuits grows rapidly, so a circuit optimization algorithm
should be applied further.

http://www.cad-journal.net/

41

Computer-Aided Design & Applications, 21(S8), 2024, 31-43
© 2024 U-turn Press LLC, http://www.cad-journal.net

Number of vertices
Number of gates

Depth Number of qubits
X H T T’ CNOT

3 15 20 36 27 68 186 14
4 30 38 72 54 108 310 24

5 50 62 120 90 180 514 37
6 75 92 180 135 270 769 53
7 105 128 252 189 378 1075 72

Table 5:The Number of Quantum Qubits and Gates.

 Figure 5: Part of the Decomposed Quantum Circuit When the Number of Vertices is 3.

4 CONCLUSIONS

In this paper, we give a classical algorithm to generate the quantum circuits for the 2-coloring

problem of graphs. The algorithm can construct a high-level classical reversible circuit that check
whether a 2-coloring strategy is correct or not. The reversible circuit uses the X gate, the Toffoli
gate and MCT gates. Then we decompose the reversible circuits into equivalent Clifford +T circuits.

For the future research direction, we will use the quantum circuit optimization algorithm to reduce
the number of gates and depth for the resulting Clifford + T circuits.

Jinfeng He，https://orcid.org/0009-0006-4641-2248

Yao Zhang，https://orcid.org/0009-0005-2147-2132

Shanxian Lin, https://orcid.org/0009-0003-1595-9492

REFERENCES

[1] Ananda, R.; Indra, Z.; Nasution, H.: Application of Graph Coloring on Nurse Work Scheduling
at H. Adam Malik Hospital Medan Using the Tabu Search Algorithm, ZERO: Jurnal Sains,

Matematika dan Terapan, 2022. https://doi.org/10.30829/zero.v6i1.12451
[2] Appel, K.; Haken, W.: The Solution of the Four-Color-Map Problem, Scientific American, 237,

1977, 108–121. https://doi.org/10.1038/scientificamerican1077-108

[3] Aslan, M.; Baykan, N.A.: A Performance Comparison of Graph Coloring Algorithms,
International Journal of Intelligent Systems and Applications in Engineering, 4, 2016, 1–7.

https://doi.org/10.18201/ijisae.273053

http://www.cad-journal.net/
https://doi.org/10.30829/zero.v6i1.12451
https://doi.org/10.1038/scientificamerican1077-108
https://doi.org/10.18201/ijisae.273053

42

Computer-Aided Design & Applications, 21(S8), 2024, 31-43
© 2024 U-turn Press LLC, http://www.cad-journal.net

[4] Bravyi, S.; Kliesch, A.; Koenig, R.; Tang, E.: Hybrid Quantum-Classical Algorithms for

Approximate Graph Coloring, Quantum, 6, 2022, 678. https://doi.org/10.22331/q-2022-03-
30-678.

[5] Das, D.; Ahmad, S.A.; Kumar, V.: Deep Learning-Based Approximate Graph-Coloring

Algorithm for Register Allocation, 2020 IEEE/ACM 6th Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM-HPC) and Workshop on Hierarchical Parallelism for Exascale
Computing (HiPar), 23–32, 2020. https://doi.org/10.1109/LLVMHPCHiPar51896.2020.00008

[6] DHondt, E.: Quantum Approaches to Graph Colouring, Theoretical Computer Science , 410,
2009, 302–309. Computational Paradigms from Nature.

https://doi.org/10.1016/j.tcs.2008.09.055
[7] Fabrikant, A.; Hogg, T.: Graph Coloring with Quantum Heuristics, in Proceedings of the

AAAI/IAAI, 2002.

[8] Fritsch, R.; Fritsch, G.: The four-color theorem : History, Topological Foundations, and Idea of
Proof. Springer New York, NY, 1998. https://doi.org/10.1007/978-1-4612-1720-6

[9] Gardahadi.: Complexity Analysis of Basic Graph Coloring Algorithms. 2018.

[10] Goel, N.; Freericks, J.K.: Native Multiqubit Toffoli Gates on Ion Trap Quantum Computers,
Quantum Science & Technology, 2021, 6. https://doi.org/10.1088/2058-9565/ac1e02

[11] Hladký, J.; Král, D.; Schauz, U.: Brooks’ Theorem via the Alon-Tarsi Theorem, Discret. Math.,
310, 2010, 3426–3428. https://doi.org/10.1016/j.disc.2010.07.019

[12] Hu, W.; Yang, Y.; Xia, W.; Pi, J.; Huang, E.; Zhang, X.D.; Xu, H.: Performance of

Superconducting Quantum Computing chips under different architecture designs, Quantum
Information Processing, 2022, 21. https://doi.org/10.1007/s11128-022-03571-0.

[13] Kralev, V.S.; Kraleva, R.: An Analysis Between Different Algorithms for the Graph Vertex
Coloring Problem, International Journal of Electrical and Computer Engineering, 2023.
https://doi.org/10.11591/ijece.v13i3.pp2972-2980

[14] Langberg, M.; Chekuri, C.: Graph Coloring, In Proceedings of the Encyclopedia of Algorithms,
2008. https://doi.org/10.1007/978-0-387-30162-4_170

[15] Lewis, R.R.: A Guide to Graph Colouring: Algorithms and Applications, 1st ed.; Springer

Publishing Company, Incorporated, 2015.
[16] Li, Z.; Zhang, W.; Zhang, G.; Dai, J.; Hu, J.; Perkowski, M.A.; Song, X.: An Extended Approach

for Generating Unitary Matrices for Quantum Circuits, Cmc-computers Materials & Continua,
62, 2020, 1413–1421. https://doi.org/10.32604/cmc.2020.07483

[17] Malkawi, M.I.; Hassan, M.A.H.; Hassan, O.A.H.: A New Exam Scheduling Algorithm Using Graph

Coloring, Int. Arab J. Inf. Technol, 5, 2008, 80–86.
[18] Mitarai, K.; Negoro, M.; Kitagawa, M.; Fujii, K.: Quantum Circuit Learning, Physical Review A,

2018. https://doi.org/10.1103/PhysRevA.98.032309

[19] Ouerfelli, L.; Bouziri, H.: Greedy Algorithms for Dynamic Graph Coloring, 2011 International
Conference on Communications, Computing and Control Applications (CCCA), 2011, 1–5.

https://doi.org/10.1109/CCCA.2011.6031437
[20] Do, M.; Wang, Z.; O’Gorman, B.; Venturelli, D.; Rieffel, E.G.; Frank, J.: Planning for

Compilation of a Quantum Algorithm for Graph Coloring. In Proceedings of the ECAI 2020 -

24th European Conference on Artificial Intelligence, 29 August-8 September 2020, Santiago
de Compostela, Spain, August 29 - September 8, 2020 - Including 10th Conference on
Prestigious Applications of Artificial Intelligence (PAIS 2020); Giacomo, G.D.; Catalá, A.;

Dilkina, B.; Milano, M.; Barro, S.; Bugarín, A.; Lang, J., Eds. IOS Press, Frontiers in Artificial
Intelligence and Applications, 325, 2020, 2338–2345.

[21] Raychev, N.; Chuang, I.L.: Quantum computation and quantum information. 2010.
[22] Samarasekara, W. An Application of Graph Coloring Model to Course Timetabling Problem,

2019.

http://www.cad-journal.net/
https://doi.org/10.22331/q-2022-03-30-678.
https://doi.org/10.22331/q-2022-03-30-678.
https://doi.org/10.1109/LLVMHPCHiPar51896.2020.00008
https://doi.org/10.1016/j.tcs.2008.09.055
https://doi.org/10.1007/978-1-4612-1720-6
https://doi.org/10.1088/2058-9565/ac1e02
https://doi.org/10.1016/j.disc.2010.07.019
https://doi.org/10.1007/s11128-022-03571-0.
https://doi.org/10.11591/ijece.v13i3.pp2972-2980
https://doi.org/10.1007/978-0-387-30162-4_170
https://doi.org/10.32604/cmc.2020.07483
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1109/CCCA.2011.6031437

43

Computer-Aided Design & Applications, 21(S8), 2024, 31-43
© 2024 U-turn Press LLC, http://www.cad-journal.net

[23] Shimizu, K.; Mori, R.: Exponential-Time Quantum Algorithms for Graph Coloring Problem,

Algorithmica, 84, 2022, 36033621. https://doi.org/10.1007/s00453-022-00976-2
[24] Sipayung, T.N.; Suwilo, S.; Gultom, P.; Mardiningsih.: Implementation of the greedy algorithm

on graph coloring, Journal of Physics: Conference Series, 2022, 2157.

https://doi.org/10.1088/1742-6596/2157/1/012003
[25] Tabi, Z.; El-Safty, K.H.; Kallus, Z.; Hága, P.; Kozsik, T.; Glos, A.; Zimborás, Z. Quantum

Optimization for the Graph Coloring Problem with Space-Efficient Embedding, In Proceedings

of the 2020 IEEE International Conference on Quantum Computing and Engineering (QCE),
2020, 56–62. https://doi.org/10.1109/QCE49297.2020.00018.

[26] Thapliyal, H.; Muñoz-Coreas, E.: Design of Quantum Computing Circuits, IT Professional 21,
2019, 22–26. https://doi.org/10.1109/MITP.2019.2943134

[27] Zajkac, M.: A short proof of Brooks’ theorem. 2018.

http://www.cad-journal.net/
https://doi.org/10.1007/s00453-022-00976-2
https://doi.org/10.1088/1742-6596/2157/1/012003
https://doi.org/10.1109/QCE49297.2020.00018.
https://doi.org/10.1109/MITP.2019.2943134

