
 

 

Computer-Aided Design & Applications, 21(S25), 2024, 294-310 

© 2024 U-turn Press LLC, http://www.cad-journal.net 
 

294 

 

Multimodal Medical Image Registration Algorithm Based on DETR Model 

 

Jianfeng Han , Jingxuan Zhao , Renjie Li  and Yong Zhang   

 
School of Information Engineering, Tianjin University of Commerce, Tianjin 300134, China, 

hanjianfeng@toec-gdgs.com, 1667211650@qq.com, 18326653378@163.com, 
zhangyong@tjcu.edu.cn 

 

Corresponding author: Yong Zhang, zhangyong@tjcu.edu.cn 
 

Abstract. Aimed at the problems of feature extraction with lots of outliers, unevenly 

distributed feature vectors, low accurate registration, and long processing time 
caused by the ultra-high image resolution, repeated image textures, and different 

tissue deformations in the medical image registration, a multimodal medical image 
registration algorithm based on the DETR model was proposed in this article. 
Firstly, with the demands of image registration, the two images feature extraction 

network has to be constructed based on DETR model to complete the image pairs 
information interaction. In this way, the feature information is estimated to have a 

wider receptive field and then used as the input vectors for the predictor. Secondly, 
the prediction network of feature points’ coordinates is built, and these coordinates, 
as the basic information, should participate in the encoder-decoder of image 

features in the neural network so as to achieve the combination of these 
coordinates and the positional information of image blocks and to promote the 
estimation precision of key points’ positions. Finally, the simulation experiments on 

the proposed model were conducted on the ANHIR medical image dataset and the 
FIR retinal image dataset. As for the experimental results, this proposed model, 

which has good properties, can provide a feasible and effective solution to medical 
image registration. 
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1 INTRODUCTION 

At present, medical images can be formed by many methods, such as magnetic resonance imaging 

(MRI), X-rays, ultrasound, computed tomography (CT), etc., all of which provide extensive 
information related to the body structure, anatomy, and pathology from different perspectives 
[1,2]. During the medical diagnosis, it is often necessary to compare two images in different 

modes for monitoring diseases, analyzing lesions conditions, and evaluating the effects of 
operations. Due to the differences in instrument parameters and image processing algorithms in 
diverse imaging methods and the non-linear variations in the image collection of human tissues 
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during acquisition, there may be deviations in the spatial position of images. Medical images of 
different modalities usually do not correspond directly to each other in spatial position, making it 

difficult to directly compare images. To solve this problem, image registration is usually required. 

Image registration is a process based on similarities of images that seek spatial alternation by 

reflecting the reference image into the target image so that the two images can correspond in 
space [3,4]. With the correspondence, the multimodal images collected at diverse times, from 
different angles and by various sensors, can fuse into a new image. The new images have their 

own unique information from the original two images, which can provide great help for subsequent 
information processing and clinical diagnosis [5].  

Image registration can be divided into three stages, namely, feature detection, feature 

description and feature matching [6-8]. In the feature detection stage, it is necessary to find the 
points with obvious features on each image as points of interest, called key points or feature 

points; in the feature description stage, a unique feature descriptor should be generated according 
to each feature point; then in the feature matching stage, the mapping relation of two groups of 
feature points with descriptors has to be produced through a matching algorithm. Therefore, it is 

apparent that the key to image registration is to identify the correspondences of feature points by 
finding the points similar to feature descriptors. By finding feature points with similar feature 
descriptors, their correspondences can be determined, and the correspondences can be used for 

registration. The accuracy and effectiveness of image registration largely depend on the quality 
and quantity of keypoint matching. 

By now, image registration optimization methods can be divided into two categories: image 
registration based on traditional methods and image registration based on deep learning methods. 
The methods above both realize the three stages of registration and both need to find feature 

points as the matching criteria. The traditional image registration methods are generally based on 
local feature matching of detectors, such as Scale Invariant Feature Transform (SIFT) [9], 
Accelerated Robust Feature Transform (SURF) [10], and Radiation insensitive Feature Transform 

(RIFT) [11], which extract local features to achieve matching of image features such as points, 
lines, and surfaces. Usually, under the constraint of the objective function, feature matching is 

achieved by traversing image information, extracting feature points, and calculating the optimal 
spatial transformation. The advantage of this is that it has a small computational cost, which 
makes it easy and fast to detect image features, and there is no complex preprocessing process 

for the image. 

But here are also some disadvantages of traditional image registration algorithms. Firstly, they 

can only extract shallow features [12], making it difficult to extract deeper and more global 
features of the image. The selection of feature points focuses on the position of the image's 
appearance shape transformation, and cannot freely select the position of feature points, nor can 

they generate specified feature symbols that describe the key points of the image. When facing 
high-resolution images, the number of similar feature points increases, which affects registration 
accuracy. Secondly, the detector-based local feature matching method utilizes techniques such as 

a sum of squared differences, normalized cross-correlation, and mutual information [13] to 
transform the matching problem into an optimization problem, which is greatly influenced by the 

objective function. Most similarity measurement methods have many local minima and may not 
necessarily obtain the global optimal solution [14]. Thirdly, for the multimodal medical images, 
there may be some poor textures, pattern duplication, deformations, stretching, etc., and big 

differences in the collected images. The collected images have significant differences, and simple 
transformation estimation alone cannot describe the matching situation, which greatly affects the 
matching results and makes it difficult to achieve complex feature medical image matching. 

In response to some of the problems that have arisen in the traditional algorithms mentioned 
above, researchers have adopted deep learning methods to improve them, mainly through neural 

network training, learning image features, analyzing image data, and mining deep structures, in 
order to improve and optimize the image fusion effect and solve the complex feature extraction 
problems in traditional methods. The present deep learning method mainly using the dense 
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matching algorithm or optical flow analysis, holds the basic thought of finding more key points and 
more excellent matching algorithms. Among them, in references of [15,16], convolutional neural 

network (CNN) is used to learn better feature detectors and descriptors from data; in 
reference[17], FlowNet, a rapid registration network, is capable to use the end-to-end fully 

convolutional network (FCN) to predicate the optical flows of two input images in a direct manner; 
in reference [18], it constructs feature vectors in the dense space and mentions learning the 
comparison of descriptors of the pixel features and optimizing the feature matching with the 

nearest neighbor searching algorithm; in reference [19], NCNet builds all the possible matching 
situations and uses 4D convolution which saves calculation cost; in reference [20], it conforms to 
the thoughts of dense matching and also puts forward a method that is from coarse to fine to 

make the dense matching more precise; in reference [21], SuperGlue network adopts graph neural 
network (GNN), a wide model and a simple generalized linear assignment method with an 

approximate solution to accomplish the image registration; The LoFTR [22] network uses self- 
attention layer and cross attention layer to obtain feature descriptors based on two images, 
effectively utilizing attention mechanism, which is a method that balances efficiency and accuracy. 

The different methods above show good properties in the related image datasets, but medical 
images are different from natural images, optical images and scene images, and have their unique 
characteristics. Firstly, the resolution of medical images is usually higher than that of natural 

images, reaching 10k*10K or even higher, which means the computer needs more computing 
resources. Secondly, differing from optical images, medical images need to manifest the body 

tissues and structures through virtual staining. The relevant human tissue may exhibit mismatches 
in color tone, contrast, and brightness. Thirdly, medical images have more repetitive textures than 
scene images, which poses higher requirements for image registration. Therefore, based on the 

registration models above and combined with DETR model [23], this article proposes a new 
network model applied in the key points’ positioning of multimodal image registration by improving 
the self-attention and cross-attention layers of LoFTR, which is used to cope with the problems of 

inaccurate key points’ positioning and long-process matching of medical images. 

2 IMPROVED DETR MODEL ON KEY POINTS’ POSITIONING 

2.1 Basic DETR Model 

Detection Transformer (DETR), launched by Facebook, is an object detection model that 
demonstrates considerable accuracy and timeliness while also having the characteristic of being 

easy to generalize. As is illustrated in Figure 1, the whole framework of DETR is composed of three 
main components, namely, a CNN backbone network to extract the representation of image 

features, an encoder-decoder transformer structure, and a simple prediction network [24]. DETR 
uses a CNN backbone network to learn the feature information of the input images. The CNN 
divides images into uniform small blocks and embeds positional encoding information, which is 

then passed to the Transformer encoder. After encoding, the feature vector is passed to the 
Transformer decoder. The decoder takes a fixed number of object query vectors as input and 
extracts the encoder's output vector. Pass each output of the decoder to a shared feedforward 

network (FFN), which predicts the detection results. 

The core of DETR is the encoder-decoder structure, which is based on the attention mechanism 

[25]. Figure 2 shows that in the attention mechanism, query, key, and value vectors are all 
involved in operations. The attention mechanism selects related information by measuring the 
similarities between query elements and other key elements. The output vector is the sum of value 

vectors weighted by similarity scores. If the similarities are higher, more relevant information is 
extracted from the value vectors. 

Figure 2, Q  , K  , V  represents the query vector, key vector and value vector respectively. 

The weight of attention is calculated by the dot products of Q  and K  , and then retrieve 

information from V  according to the weight. During the training process, each feature vector will 
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use its own query vector to take calculations with all other features to renew its weight values and 
train its own vector globally every time attention is calculated. 

 

 

 
Figure 1: DETR network model structure. 

 

 

 
Figure 2: The computing process of attention mechanism. 

 

2.2 Construction of the Improved DETR Model 

After the comparison between the traditional registration method and the deep learning 

registration method, based on the encoder-decoder structure of the DETR model, combined with 
the optical flow analysis and self-attention and cross-attention methods, this paper proposes a new 
network structure to complete the specified key point localization task. In order to adapt to the 

key point-matching task, two improvements have been made to the DETR model. Firstly, a feature 
extraction network for two images has been added in the feature extraction section of the DETR 
architecture, and information exchange between image pairs is completed in the encoder section. 

Secondly, a prompt encoder module has been added to construct the desired location prediction 
network. Given a group of flexible key points as the query objects, the new model will prompt the 

location of network key points through the prompt information encoding module. Then after the 
new model infers the information of key points and the context of the whole image, it will directly 
output the final predicted positioning results of target key points in a parallel manner, achieving 

the end-to-end matching of key points. 
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2.2.1 Feature extraction and receptive field 

The image registration task requires feature extraction of two images, usually referred to as the 

source image and target image. The improved DETR must employ the CNN twice to extract the 
features of these two images respectively. However, using only Convolutional Neural Networks 

cannot accurately extract information because the receptive field of convolutional neural networks 
is very small. The receptive field in the neural network refers to the receptive range of differently 
positioned neurons on the source image. The larger the receptive field, the larger the range of the 

original image that the neuron can contact. In convolutional neural networks, the deeper neurons 
have wider receptive ranges. As is shown in Figure 3, passing one layer of 3 3 convolution, one 

position in layer 1 can receive 9 positions in layer 0. And with a bigger convolution kernel and a 
deeper network structure, there would be a wider receptive field. But using big-size kernels like 
5 5  or 7 7  ones, is often considered to lose some information about features. A deeper neural 

network structure leads to a heavier calculation complexity, and only stacking a certain number of 
network layers will result in poor performance. 

 

 

 

Figure 3: One element in layer 1 receives nine elements in layer 0 with 3×3 convolution. 

 

After the improved DETR extract features, the information is transmitted into the encoder and 

takes further encoding to secure a wider receptive field. The encoder based on the attention 
mechanism calculates the dot products through query vectors and the image’s own key vectors, 
which is called the self-attention mechanism; and then the process of calculating the dot products 

through query vectors and key vectors of another image is called the cross-attention mechanism. 
By alternately using the self-attention mechanism and cross-attention mechanism in the encoder, 
the vector of the current image block and the similarity relationship between different image 

blocks are calculated, thereby completing the feature extraction encoding of the image. 

2.2.2 Position coding network. 

The attention mechanism processes all information in a parallel way. If positional information is 
not provided to the model, the model cannot get the semantic grammar differences in the 
sequential order of image blocks’ feature vectors and the related structures need to be added to 

complement the positional information. There are two mainstream ways to represent location 
information, absolute position encoding and relative position encoding. For the improved DETR, 
employs the relative position encoding to encode the images’ positions with the coordinates of key 

points. The encoded positional information of key points is the initialization status of prediction 
heads of DETR to engage in the encoder-decoder model. Because the position of the key points 

comes from the source image, the feature information of the same source image in the detection 
head is added to the training in the encoder section. In the decoder section, the prediction heads 
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decode the feature information of the target image and get the predicted positional features in 
order to complete the matching of key points. 

3 IMPROVED MODEL’S NETWORK STRUCTURE AND LOSS FUNCTION 

3.1 Network Structure of Improved Model 

Given image pairs: source image A and target image B, as well as N key point positions on image 

A. The model task is to predict the specific positions of key points on target image B. Set  ,A B
i ix y  

as the coordinate of the number i  key point on image A, ,B B
i ix y  as the coordinate of the 

corresponding coordinate on image B and ,P P
i ix y  as the coordinate of the predicated coordinate. 

Obviously, the closer the distance between ,B B
i ix y and ,P P

i ix y , the better the predicted effect. 

Figure 4 overviews the basic framework of the improved model. 

 

 

 
Figure 4: The structural schematic of the improved model in this article. 

 

As is shown in Figure 4, this model is based on the DETR framework and consists of four main 

components: firstly, a CNN backbone network to extract the feature representation of images; 
secondly, a prompt encoder to fit the matching of key points; thirdly, an encoder-decoder 
transformer; fourthly, a simple prediction network to make the final predicated coordinates with 

the extracted representation of features. 

3.1.1 Improved feature extraction network 

Different from feature detection which extracts features of one image, image registration requires 

the feature extraction of both the source image A and target image B. In this article, the feature 
extraction is taken by CNN, which with the inductive bias of translation equivariance and locality is 

suitable to make the local extraction of image blocks, to let the characteristic length uniform and 
to manage the computing cost. Figure 5 illustrates that after the two grayscale images pass CNN’s 
four layers, layer0, layer1, layer2, layer3, the dimensions of feature vectors turn into 128, 128, 

196 and 256 respectively, and the sizes of feature images change from 480*640 to 240*320, 
240*320, 120*160 and 60*80 respectively. With the local feature extraction, the information of 
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images is transformed into 4800 256-dimensional feature vectors, each of which represents the 
feature information in the 8*8 block of images. Then the sequential information will be processed 

as the basic elements by the following transformer framework, and the basic feature vectors are 
called tokens. Finally, image A and image B will both get 4800 256-dimentional tokens which are 

named AF  and BF  respectively. 

 

  
 

Figure 5: CNN used in feature extraction. 
 

3.1.2 Positional encoder and prompt encoder 

The prompt encoder turns the positional information of key points to the prompt information and 

inputs it to the neural network. The key points are expressed by position coding [25]. And N 
sparse position encodings and Gaussian matrices are combined to form a sparse position encoding 

tensor pF , which is the token for the hint information. Then, generate dense hints based on sparse 

position encoding tensors as position information CF . The position information CF has a spatial 

correspondence with the image, and the channel dimension is mapped to 256 dimensions using a 

1x1 convolution, which is added to the image elements AF , BF  and embedded into the network. 

The summation of AF , BF  and the corresponding part CF  can effectively combine the image 

information of AF  and BF  with the prompt information pF  and the position-coding CF  [26, 27]. It 

is convenient for the encoder and decoder to utilize the attention mechanism when the dynamic 

relative position coding is employed to insert the positional information of the token. After 

embedding the position information and features AF  and BF  of images A and B, a new feature 

vector of AF  and BF  is obtained, which, together with the prompt information pF  , enters the 

encoder layer for encoding operation. 

3.1.3 Image encoder and decoder network 

The features of AF  and BF  got by adding the information on image features and positions and 

taking the image information coding, which makes use of the framework of the transformer [28]. 
The encoder consisted of encoder layers connected in order, alternately employing the self-
attention coding and cross-attention coding [22] to finish the image coding. Use a self-attention 

mechanism to encode the self-feature information of source image A and target image B, and use 
a cross-attention mechanism to interact with the feature information of source image A and target 

image B. Figure 6 reveals the inner framework of encoder layers. 
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Figure 6: Transformer encoder network. 

 

Formula (1) expresses the calculation method of attention mechanism, where Q , K  and V are the 

representatives of query, key and value vectors respectively. The self-attention and cross-
attention mechanisms can be achieved by dot product calculation with the query vectors and the 

image’s own key vectors or the key vectors of another image. 

, , TAttention Q K V softmax QK V                                                      (1) 

The key points’ positional information from source image A in tensor pF  , takes part in the 

following calculation with AF . The self-attention mechanisms of image A and image B take AF  

and BF  as the input to take calculations. This kind of self-attention allows for the maximum 

receptive field of one's own image in the initial stage of training. The cross-attention mechanism 

between image A and image B is used AF  as the query vector, BF  the key vector and the value 

vector. Conversely, the cross-attention mechanism between image B and image A is used BF  as 

the query vector and AF  as the key vector and value vector. In this way, the cross-attention 

mechanism is capable of making information interact as much as possible between these two 

images. 

The encoder is made up of the alternate self-attention layers and cross-attention layers, and 
the self-attention and cross-attention mechanisms are used alternately four times to complete the 

image encoding process. The above attention mechanism adopts an 8-head attention mechanism, 
which uses 8 identical attention structures and operates in parallel with 256-dimensional vectors 
under different initialization parameters. Each attention structure can learn different feature 

information. Finally, the resulting feature vectors of 
pF  and 

BF  taken from the studied pF  and 

BF  to participate in the following decoding process. With the mechanisms of self-attention and 

cross-attention, the information in every token possesses the structural information of two images, 
which is beneficial to accomplishing the positional prediction of key points. Moreover, the decoder, 

by the framework of the transformer, takes the multi-head self-attention mechanism and the 
decoder-attention mechanism to convert the feature vectors. The converted vectors are the 
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positional features of the corresponding key points in image B. The structure of the decoder is 
illustrated in Figure 7. 

 

 
 

Figure 7: Transformer decoder. 
 

Take N tokens 
pF  with a vector size of 256 as the query vector for the attention mechanism and 

use the sum of the corresponding elements of feature vector 
BF  and position encoding 

information CF  generated by target image B as the key vector and value vector.
pF  are parallelly 

decoded in each decoder layer and the predicated vector 
iF  refers to the predicted result of 

number i  token. For the information in pF  is got from the learning of different key points’ 

positions and N various positional results will be generated when the information of N positions 

parallelly passes the same decoder, 
iF  which means the positional feature of the number i  key 

point in target image B. 
iF is reasoned as the feature vector by the model which fully uses the 

encoder-decoder framework of the attention mechanism, and then the vector employs the 
corresponding relations between two images to take reasoning at the global level while preserving 

its own unique positional feature. 

3.1.4 Prediction network 

The final prediction network is composed of a three-layer perception with a middle dimension of 

256 to calculate the coordinates of corresponding key points on the target image. Then take a 

parallel calculation to predicate the positions of N key points, which ,p p
i ix y  represents the 

coordinate of the number i  of key points. 

3.2 Loss Function of Model 

One of the difficulties of training is to assess the predicted positions in the real situation. The loss 

function l  is made up of positional loss cl  and structural loss fl . 

The error parameter to measure the registration of key points is TRE(Target Registration 

Error), namely, the Euclidean distance between the predicted position ,p p
i ix y  and the real one 

,B B
i ix y . The computing method is shown in formula (2). 
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2 2
= p B p B

i i i iTRE x x y y
                                            

(2) 

The model takes the normalized TRE (Registration Target Registration Error) as the positional loss 

cl . The computing method is manifested in formula (3). 

2 2
1

1

N

N

c
i

TRE
l

w h
                                                             

(3) 

In this formula, w  and h  mean the width and height of the image, respectively. However, if only 

the positional loss cl  is used, the predicted positions will focus on the image center, falling into the 

local optimal solution in the training process. Hence, the structural loss fl  is also needed. 

Regard key points’ coordinates as a set, where the distance matrix formed by the distances of 

each point pair is considered as the set’s structural information. Utilize ,p px y  and ,B Bx y  to 

calculate the distance matrixes named BM and PM of the inner set, respectively. For the 

parameter values of these two matrixes should be as equal as possible, the computing method fl  

is shown in formula (4). 
2

2

2
1

1 N
P B

f i i
i

l M M
N

                                                  (4) 

In this formula, P
iM  and B

iM  mean the value of number i  element in PM  and BM  respectively. 

BM  and PM  both belong to the N N  matrix. 

The formula to calculate the loss function l  is c fl l l , where the hyper-parameter  will be 

smaller as the training goes on so that the model effect can be measured by cl  (rTRE）more 

conveniently. 

4 SIMULATION EXPERIMENTS AND RESULTS ANALYSIS 

4.1 Experimental Platform 

The experimental platform is NVIDIA RTX4080 GPU adopting version 1.13.1 of pytorch and version 

12.0 of CUDA. The training takes 60 rounds with an initial learning rate of 51 10  and batch size of 
51 10 . After about 7 hours, the model converges. The whole model uses the weights initialized at 

random to carry out the end-to-end training with the 256-dimentional chained vectors between 

modules, each of which is designed with a softmax activation function and a normalized module. In 
the present situation, the average running time of modules every time is 113 milliseconds. 

In this article, two datasets are selected. The first dataset is (1) ANHIR dataset [29], which is 
composed of images of pathological tissues, like the lung lobe, breast and kidney. Every group of 
images stained with various colors contains consecutive tissue slices, where the images can take 

registration freely. And the trained 230 image pairs in this article are at a medium solution with a 
pixel of about 8k×12K. The second dataset is (2) the FIRE dataset, which collects 39 patients’ 129 

fundus retinal images with pixels of about 3K×3K. Also, the data including the mask and the 

corresponding position marker of each image, is used to take the zero-shot verification. The 
ordinary images are illustrated in Figure 8 (a) and Figure 8 (b). 
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Figure 8 (a): ANHIR dataset. 

 
 

Figure 8 (b): FIRE dataset. 
 

  

4.2 Assessment Indicators and Experimental Analysis 

In this article, rTRE and homography estimation are applied to assess the properties of the model. 

4.2.1 Analysis of rTRE 

According to section 3.2, rTRE (Registration Target Registration Error), cl  in experimental training, 

refers to the registration error between key points from the source and target images. The average 
registration error reflects the accuracy of registration; the median and maximum show its 

robustness; and the executive time reveals the efficiency of the algorithm. The model aims to 
pursue accuracy and timeliness in keypoint matching. Randomly pass image pairs into the model, 
calculate the relative target registration error (rTRE) and runtime of the model, and analyze the 

impact of different methods and images on the model. 
 

Method Average-rTRE Max-rTRE Median-rTRE 
Average-
Time(S) 

UPENN 0.004057 0.023043 0.002791 1.451193 

AGH 0.005636 0.030005 0.003804 6.863679 
MEVIS 0.005191 0.026069 0.003852 0.145392 
TUB 0.004731 0.014927 0.004099 0.000705 

CKVST 0.006044 0.026128 0.004609 7.127142 
TUNI 0.010363 0.038723 0.008724 10.320549 

RVSS 0.047089 0.103180 0.045024 4.723187 
UA 0.056887 0.119045 0.054878 1.470925 
DROP 0.061602 0.122958 0.061336 3.406355 

Elastix 0.069476 0.137054 0.068433 2.962337 
ANTs 0.069322 0.134296 0.068621 43.092353 

bUnwarpJ 0.079704 0.149613 0.079557 9.151172 
NiftyReg 0.082488 0.151446 0.082781 0.151164 
our 0.013054 0.242175 0.008343 0.134871 

 

Table 1: Comparison results under different models. 

The experimental results are shown in Table 1, The average registration error of the method 
proposed in this article is 0.013054, and the average matching time is nearly 0.134871 seconds. 
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In most cases, the matching of key points can be finished within a reasonable time and its real and 
predicated situations are shown in Figure 9 (a) and Figure 9 (b). 

 

 
 

Figure 9 (a): Real situation. 
 

 
 

Figure 9 (b): Predicted situation. 
 

Compared with other experimental results, these results show that although there are structural 
deformations, color changes and different detailed features in the experimental image pairs, the 

model mentioned in this article still accomplishes the matching of key points well, owns certain 
robustness for some situations, like deformation, and can make a balance between the precision 
and time efficiency of key points matching. Also, compared to the methods of UPENN, AGH, TUNI, 

CKVST, ANTs, RVSS and bUnwarpJ, in terms of time efficiency, the deep neural network model has 
advantages, which are caused by the model’s parallel computing. Besides, about the deformation 

processing, the accuracy of the method proposed in this article is better than Elastix, ANTs, RVSS, 
bUnwarpJ and NiftyReg, for the expanded receptive field is capable of adding the structures of 
images into training in the early stage to boost the method’s accuracy. However, compared to the 

methods of UPENN, AGH, MEVIS and TUB, the precision of the proposed method is lower, maybe 
since the image pyramid is not well integrated with this model, which means the detailed parts still 

need to be adjusted and strengthened. 

4.2.2 Analysis of homography estimation 

This study makes a comparison between the LoFTR model and the SuperGlue one, for the self-

attention and cross-attention mechanisms used in the proposed model, are also employed by 
these two models. The method of RANSAC in OpenCV is adopted as the robustness estimator to 
calculate the angle error of image registration. The resolution of the experimental images from 

ANHIR dataset is 8K×12K, which is almost 20 times larger than 640×480 of images set by LoFTR. 
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Therefore, it is necessary to turn up the threshold of RANSAC to 60px, 100px and 200px and to 
employ the percentage form to express the conformity error. 

 

Method 
homography estimation AUC 

matches-points 
60px 100px 200px 

SuperGlue 22.3 30.1 54.3 605 

LoFTR 24.3 29.4 60.1 810 

Our 30.2 42.8 80.4 134 

 

Table 2: Comparison with other attention mechanism methods. 

 

The experimental results are shown in Table 2, it is obvious to see that although the LoFTR 
algorithm can test a great number of feature points, its matching accuracy is adversely affected 

under the situation of a medical dataset. There may be two reasons for this. For one thing, this 
algorithm utilizes the scene datasets both indoors and outdoors to take training, while these 
datasets cannot fit the medical images well for there are more repeated textures and deformations 

than scene data in medical images; for the other thing, in this algorithm, the confidence threshold 
related to successful matching is set to be so low that it is only 0.2, while medical images need 

higher confidence interval to make calculations. Then, for the model of this article, since it only 
focuses on the interested key points, its accuracy is better than LoFTR and SuperGlue, while it also 
has to bear the cost of the amount of used key points being smaller. 

4.3 rTRE Loss of Different Tissue Samples in Experimental Datasets 

In the experimental datasets, the number of images has a great impact on the model. The 
datasets contain breast tissues, colon adenocarcinomas (COAD), gastric mucosa and gastric 

adenocarcinoma tissues, kidney tissues and mice-kidney tissues, lung lesions and lung lobes and 
mammary glands. Among them, there are 5 pairs of breast tissues, 84 pairs of COADs, 13 pairs of 

gastric mucosa and gastric adenocarcinoma tissues, 20 pairs of kidney tissues and mice-kidney 
tissues, 70 pairs of lung lesions and lung lobes and 38 pairs of mammary glands. The rTRE loss 
values of images are shown in Table 3: 

 

Method Average-rTRE Max-rTRE Min-rTRE 
Standard 
Deviation 

Breast tissue 0.102909 0.242175 0.022016 0.074842 

COAD 0.010613 0.042750 0.002526 0.008008 

Gastric mucosa 0.031411 0.084196 0.003162 0.033246 

Kidney tissue 0.008982 0.019115 0.004092 0.004099 

lung lesion 0.007942 0.014522 0.003553 0.002776 

Mammary 
glands 

0.011303 0.020974 0.004146 0.004616 

 
Table 3: rTRE loss of different tissue samples in datasets. 

 

The average rTRE loss value is a reflection of the fitting ability and accuracy of the model. Among 

all the tissues, the best tissues are kidney tissues and mice-kidney tissues lung lesions and lung 
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lobes and the second one is COADs. Although their losses all outperform the average level, the 
effect of COADs with more data is a little bit worse than the first two, maybe COADs have a larger 

variability and more various shaped images. Then the loss values of breast tissues gastric mucosa 
and gastric adenocarcinoma tissues are the highest, and the loss of gastric mucosa is even better 

than that of breast tissue, which obviously shows that the loss has direct relations with fewer 
related training data in datasets. The standard deviation regarded as the reflection of the model’s 
stability, is related to the amount of sample data. The standard deviations of COADs, lung lesions 

and lung lobes, and mammary glands which are all with large data amounts, are 0.008008, 
0.002776 and 0.004616 respectively, which is a showcase of the matching stability. However, for 
the data with small amounts, like breast tissues gastric mucosa and gastric adenocarcinoma 

tissues, their standard deviations are 0.074842 and 0.033246, which are nearly 10 times larger 
than the standard deviations with excellent data amounts. Because there is a 10-times gap 

between these training data amounts, the model has a large dependence on the data amount. 

The results above reveal that to optimize the model’s accuracy and stability, the expansion of 
data is a vital direction, for data amount can make contributions to the accuracy, complexity and 

stability of the model. The larger the amount of data, the more accurate the statistical distribution 
of the model for real data. By providing more data samples, the model can better capture the true 
features and patterns of the data, thereby improving the accuracy of predictions. Also, when the 

data amount is larger, the complexity of the model will be advanced accordingly, for the larger 
datasets can support more complex model structures, which can better fit the non-linear 

relationship of data so as to improve the accuracy. In addition, with a bigger data amount, the 
model will be more stable in terms of the volatilities with different features, for the model may be 
too sensitive to some rare feature changes with a relatively smaller amount. In this way, larger 

datasets are capable of offering more samples to cover the changing range of different features so 
as to make the model better tackle diverse situations. 

4.4 Model Generalization 

This study takes a zero-shot verification on the model with FIRE dataset and observes that the 
rTRE of experimental results is 0.02414, showcasing that the model proposed in this article owns 

excellent generalization performance, an indicator to evaluate the adaptation and universality of 
models when they face the unknown data. Through this verification, the model has not only been 
proven to possess a good performance in data training but also to secure relatively accurate 

results in new fields and missions. The experimental results of FIRE dataset are illustrated in 
Figure 10. 

The generalization performance of this model is not only shown in the experimental results but 
also in the model’s design and algorithm. Based on the deep learning technology, this model with 
the strong ability, is able to learn from the limited samples and generalize the learning results. 

Besides, with certain robustness, the framework and training method of the model can process the 
changes of the input data and the noises to make the model’s application in real cases more 
reliable and stable. According to the results and features, the model secures excellent properties 

and strong generalization ability so that it can be employed in various real cases and unknown 
fields. Therefore, important references for further research, engineering application, and 

technology development in the related fields are provided. 

5 CONCLUSIONS 

This article raises a Registration Algorithm based on the DETR model to solve the problem of 

medical image registration. Firstly, the features of the two images and the relations between the 
image pair are extracted through the working of CNN and the attention mechanism. Then, the 
model training and verification will be completed by designing the specific loss function. Finally, 

the experimental results demonstrate that the usage of CNN to pre-process the multi-sensor 
images to extract their features and the usage of feature matching method based on deep learning 
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can effectively boost the accuracy and robustness of the matching algorithm, which is a showcase 
of the feasibility to process other downstream tasks through transformer model generalization. 

 

 
 

Figure 10 (a): The real results of FIRE dataset. 

 
 

Figure 10 (b): The predicted results of the model in this article. 

In addition, this article improves the network structure of the ordinary DETR to fit the image 

registration so that the quality of image generation is boosted and effective reference data are 
provided to deal with the registration of medical images and the processing of heterogeneous 
images 

In the following research, the image features pyramid and the image deformation field will be 
introduced to the DETR model study for the registration speed acceleration and enhancing its 

accuracy, which would offer thoughts on image change detection or fusion in other fields. 
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