

Computer-Aided Design & Applications, 21(4), 2024, 693-704

© 2024 U-turn Press LLC, http://www.cad-journal.net

693

Beta-Bezier Surfaces

Seifalla Moustafa1 , Anatasia Kazadi1 , Fuhua (Frank) Cheng1 , Shuhua Lai2 and Alice J. Lin3

1University of Kentucky, seifalla.moustafa@uky.edu, ansm226@g.uky.edu, cheng@cs.uky.edu

2Georgia Gwinnett College, slai@ggc.edu
3Austin Peay State University, lina@apsu.edu

Corresponding author: Seifalla Moustafa, seifalla.moustafa@uky.edu

Abstract. In this paper, the concept of tension control [1] is developed for Bezier
surfaces so that one can reshape a so-called Beta-Bezier surface without moving its

control points, a property motivated by NURBS surfaces but can be performed more
efficiently and in a friendlier manner with the new surface representation technique. In

addition to developing the concept of tension control for Bezier surfaces, an efficient
rectangular mesh interpolation scheme for Beta-Bezier surfaces is also developed.

Keywords: Bezier curves, Bezier surfaces, Beta-Bezier Curves, Beta-Bezier Surfaces,
tension control, interpolation.
DOI: https://doi.org/10.14733/cadaps.2024.693-704

1 INTRODUCTION

In the 1960s, Pierre Bezier invented Bezier curves which are defined explicitly in terms of the Bernstein

basis functions. In the 1980s, a numerically stable algorithm known as de Casteljau's algorithm for
evaluating Bezier curves was published. In addition to being numerically stable, De Casteljau's algorithm
is widely thought to be more intuitive than the explicit definition of a Bezier curve. The algorithm takes

as input an array of n+1 points known as control points and produces as output a point on a Bezier
curve of degree n by initially performing linear interpolation (i.e. c = a(1-t) + bt, where a, b, and c are
points and t is a real number between 0 and 1) between the adjacent points in the input array and from

this point onwards recursively performing linear interpolation between the resulting points n times using
the initial value of t. Tensor product surface patches have been around for a long time, but they were

probably first considered for use in CAGD modeling in the early 1960s by Paul de Casteljau. A Bezier
surface patch is defined as a tensor product patch; that is, a Bézier curve is swept along another Bézier
curve.

Bezier surface patches are used in computer graphics and computer-aided design. They satisfy the
convex hull property, which makes their shapes easier to control than other types of surfaces. A Bezier
surface patch interpolates the four corner points of its control net. This means that complex shapes can

be modeled using a piecewise Bezier surface (i.e. multiple patches pieced together). Piecewise Bézier
surfaces are superior to triangle meshes as a representation of smooth surfaces. They require fewer

points (and thus less memory) to represent curved surfaces, are easier to manipulate, and have much
better continuity properties.

If a 3D mesh is to be interpolated and a C2-continuous piecewise surface is to be produced, the

locations of a Bezier surface’s control points are determined solely by continuity conditions; that is, we
cannot freely move them around. Researchers [2; 8-10] tried to find ways to extend/modify the

http://www.cad-journal.net/
mailto:seifalla.moustafa@uky.edu
mailto:ansm226@g.uky.edu
mailto:cheng@cs.uky.edu
mailto:slai@ggc.edu
mailto:lina@apsu.edu
mailto:seifalla.moustafa@uky.edu
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d

Computer-Aided Design & Applications, 21(4), 2024, 693-704

© 2024 U-turn Press LLC, http://www.cad-journal.net

694

definition of a Bezier surface so that one could reshape the surface without moving the control points,
but an intuitive and straightforward approach was not available for quite a while.

Thanks to the introduction of the tension control concept to curves and triangular patches [3], [1]
was able to invent a Beta-Bezier curve (see equation 1) which (adopting the tensor-product approach)

can be used to define the type of surface patches that we propose in this paper: Beta-Bezier patches.
Mathematical functions have one or more arguments that are designated in the definition by variables.
A function definition can also contain parameters. When parameters are present, the definition actually

defines a whole family of functions. Beta is a parameter. Parameters influence the shape of curves in a
way that is more complicated than a simple linear transformation. In the case of Beta, the curve flattens
out as its value increases. In addition to extending the work of [3] to surfaces, we propose an efficient

rectangular mesh interpolation scheme that makes use of Beta-Bezier patches.

𝐵𝑘
𝑛(𝑡; 𝛽) = ∑ 𝐏𝐤(𝑛

𝑘
)

∏ (𝑡+𝑖𝛽) ∏ ((1−𝑡)+jβ)𝑛−1−𝑘
𝑗=0 𝑘−1

𝑖=0

∏ (1+𝑚𝛽)𝑛−1
𝑚=0

𝑛
𝑘=0 (1)

In addition to extending the work of [1] to surfaces, we propose an efficient rectangular mesh
interpolation scheme that makes use of Beta-Bezier patches. Our scheme yields C2-continuous

piecewise Beta-Bezier surfaces which improves on the existing algorithms [5-7] in two ways:
The existing algorithms yield G1-continuous surfaces; ours yields C2-continuous surfaces.

- Surfaces produced by the existing algorithms cannot be reshaped; ours can be.

The rest of the paper is organized as follows. Section 2 provides a little background for readers unfamiliar
with Bézier curves. Section 3 gives the definition of a Beta-Bezier surface patch. Section 4 describes our
interpolation scheme and derives its time complexity. Section 5 summarizes our work.

2 BACKGROUND

The explicit form of a Bezier curve segment is as follows:

𝐵(𝑡) = ∑ (𝑛
𝑖
)𝑡𝑖(1 − 𝑡)𝑛−𝑖𝑷𝒊

𝑛
𝑖=0 (2)

n is the degree of the curve. The coefficients of the control points (i.e (𝑛
𝑖
)𝑡𝑖(1 − 𝑡)𝑛−𝑖) are known as the

Bernstein basis functions and are denoted by 𝐵𝑖
𝑛(𝑡).

Control point locations are usually affected by external factors. For example, when C2-continuous
interpolation is desired, the locations of a Bezier curve’s control points are determined solely by

continuity conditions. This necessitated the development of techniques that provide another means for
controlling curves’ shapes. Beta-Bezier curves have this feature; their shapes can be changed without
moving their control points.

A famous function in mathematics is the beta-function: 𝑏(𝛼, 𝛾) = ∫ 𝑥𝛼−1(1 − 𝑥)𝛾−1𝑑𝑥
1

0
 (3). Originally,

in this formula, 𝛽 was used in place of 𝛾. We use 𝛾 because 𝛽 has a different meaning in this paper. An

important property of the beta-function is the recursion property:

𝑏(𝛼 + 1, 𝛾) =
𝛼

𝛼+𝛾
 𝑏(𝛼, 𝛾) (4)

𝑏(𝛼, 𝛾 + 1) =
𝛾

𝛼+𝛾
 𝑏(𝛼, 𝛾) (5)

Let 𝛼 = 𝜆𝑡 and 𝛾 = 𝜆(1 − 𝑡). Applying (4) k times and then (5) n-k times, we get 𝑏(𝜆𝑡 + 𝑘, 𝜆(1 − 𝑡) + 𝑛 − 𝑘) =
𝜆𝑡

𝜆

𝜆𝑡+1

𝜆+1
…

𝜆𝑡+𝑘−1

𝜆+𝑘+1
∙

𝜆(1−𝑡)

(𝜆+𝑘)

𝜆(1−𝑡)+1

(𝜆+𝑘+1)
…

𝜆(1−𝑡)+n−k+1

(𝜆+𝑛−1)
𝑏(𝜆𝑡, 𝜆(1 − 𝑡)) =

∏ (𝜆𝑡+𝑖) ∏ (𝜆(1−𝑡)+j)𝑛−𝑘−1
𝑗=0 𝑘−1

𝑖=0

∏ (𝜆+𝑚)𝑛−1
𝑚=0

𝑏(𝜆𝑡, 𝜆(1 − 𝑡)).

If we multiply this by (𝑛
𝑘

) and divide it by 𝑏(𝜆𝑡, 𝜆(1 − 𝑡)), we get a function that has a close relationship

with the Bernstein polynomial discussed earlier: 𝐵𝑘
𝑛(𝑡; 𝜆) = (𝑛

𝑘
)

∏ (𝜆𝑡+𝑖) ∏ (𝜆(1−𝑡)+j)𝑛−𝑘−1
𝑗=0 𝑘−1

𝑖=0

∏ (𝜆+𝑚)𝑛−1
𝑚=0

. The relationship is

lim
𝜆→∞

(𝑛
𝑘

)
∏ (𝜆𝑡+𝑖) ∏ (𝜆(1−𝑡)+j)𝑛−𝑘−1

𝑗=0 𝑘−1
𝑖=0

∏ (𝜆+𝑚)𝑛−1
𝑚=0

= (𝑛
𝑘

)𝑡𝑘(1 − 𝑡)𝑛−𝑘. This was developed by Zeng et al. [3].

http://www.cad-journal.net/

Computer-Aided Design & Applications, 21(4), 2024, 693-704

© 2024 U-turn Press LLC, http://www.cad-journal.net

695

It has been shown [1] that the properties of Beta-Bezier curves are easier to study when 𝜆 =
1

𝛽
. In this

case, we have 𝐵𝑘
𝑛(𝑡; 𝛽) = (𝑛

𝑘
)

∏ (𝑡+𝑖𝛽) ∏ ((1−𝑡)+jβ)𝑛−1−𝑘
𝑗=0 𝑘−1

𝑖=0

∏ (1+𝑚𝛽)𝑛−1
𝑚=0

. A Beta-Bezier curve segment is defined as 𝐶(𝑡; 𝛽) =

∑ 𝐏𝐤𝐵𝑘
𝑛(𝑡; 𝛽)𝑛

𝑘=0 . Examples of Beta-Bezier curve segments are shown in figure 1.

 𝛽 = 0 𝛽 = 0.5 𝛽 → ∞

Figure 1: a Beta-Bezier curve segment at different values of Beta.

Note that lim
𝛽→∞

𝐵𝑘
𝑛(𝑡; 𝛽) = lim

𝛽→∞
(𝑛

𝑘
)

∏ (𝑡+𝑖𝛽) ∏ ((1−𝑡)+jβ)𝑛−1−𝑘
𝑗=0 𝑘−1

𝑖=0

∏ (1+𝑚𝛽)𝑛−1
𝑚=0

= 0, which means that the curve becomes flatter as

𝛽 increases. This is shown in the rightmost figure above.

A Beta-Bezier curve segment interpolates its first and last control points. Suppose we have a set of
data points that we wish to interpolate. We can use multiple cubic Beta-Bezier curve segments to
interpolate these data points. To understand this idea, we consider the following example. Suppose we

have three data points D0, D1, and D2 that we wish to interpolate. Let x- and x+ be two cubic Beta-
Bezier curve segments with control point sets {P0, P1, P2, P3} and {Q0, Q1, Q2, Q3}, respectively. To
interpolate the data points, we connect x- and x+ such that D0 = P0, P3 = Q0 = D1, and Q3 = D2 (see

figure 2).

Figure 2: Interpolating three data points with two Bezier curves.

One problem with this approach is that the resulting curve might have a removable discontinuity. Recall
that if a curve f is differentiable at a point x0, then f must also be continuous at x0. So, to solve this
problem, we set the first and second derivatives equal to each other at the shared point; that is, we set

𝑥−
′ = 𝑥+

′ and 𝑥−
′′ = 𝑥+

′′ at P3. Doing so gives us two equations in four unknowns. So, we need two more

equations which we can get by setting the second derivatives at P0 and Q3 equal to 0 (since the curve

does not have to be continuous at these points). We now generalize this idea to n data points. To
interpolate n data points, we need n-1 curve segments, each contributing two unknown control points,
for a total of 2(n-1) unknown control points. If we set the first derivatives equal to each other, we have

an equation for every two segments, for a total of n-2 equations. Similarly, setting the second
derivatives equal to each other gives us n-2 more equations. So, in total, we have 2n-4 equations. This

means we need two more equations, which we can get by setting the second derivatives at end data
points equal to zero. For a closed curve, we have n segments, each contributing two unknown control
points, for a total of 2n unknown control points. If we set the first derivatives equal to each other, we

have an equation for every two segments, for a total of n equations. Similarly, setting the second
derivatives equal to each other gives us n more equations, for a total of 2n equations. Unlike Bezier
curves, Beta-Bezier curves allow us to change the shape of the interpolating curve. It should be noted

that each segment can have its own 𝛽 or there can be a global 𝛽. Figures 3 and 4 show examples of

Beta-Bezier curves, respectively.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 21(4), 2024, 693-704

© 2024 U-turn Press LLC, http://www.cad-journal.net

696

Figure 3: a closed composite Beta-Bezier curves with 𝛽 = 0, 𝛽 = 0.7, and 𝛽 = 9.43.

Figure 4: an open composite Beta-Bezier curve with 𝛽 = 0, 𝛽 = 0.73, and 𝛽 = 10.

A Beta-Bezier curve 𝑃(𝒖; 𝜷) with control points P0, P1, P2, and P3 can be expressed as a cubic Bezier

curve in 𝑢 as follows:

𝑃(𝒖; 𝜷) = ∑ 𝑄𝑖𝐵𝑖
3(𝑢)3

𝑖=0 .

𝑄0, 𝑄1, 𝑄2 and 𝑄3 can be found as follows:

𝑄0 = 𝑃0

𝑄1 =
𝛽(3 + 4𝛽)

3(1 + 𝛽)(1 + 2𝛽)
𝑃0 +

1

1 + 2𝛽
𝑃1 +

𝛽

(1 + 𝛽)(1 + 2𝛽)
𝑃2 +

2𝛽2

3(1 + 𝛽)(1 + 2𝛽)
𝑃3

𝑄2 =
2𝛽2

3(1 + 𝛽)(1 + 2𝛽)
𝑃0 +

𝛽

(1 + 𝛽)(1 + 2𝛽)
𝑃1 +

1

1 + 2𝛽
𝑃2,𝑗 +

𝛽(3 + 4𝛽)

3(1 + 𝛽)(1 + 2𝛽)
𝑃3

𝑄3 = 𝑃3

http://www.cad-journal.net/

Computer-Aided Design & Applications, 21(4), 2024, 693-704

© 2024 U-turn Press LLC, http://www.cad-journal.net

697

A cubic Beta-Bezier curve segment can be represented as a cubic B-spline curve segment.

We compute �̅�0, �̅�1, �̅�2 and �̅�3:

If we define a cubic B-spline curve segment using �̅�0, �̅�1, �̅�2 and �̅�3 as its control points as follows,

, it can be proven through straight forward algebra that CB(t) = 𝑃(𝒖; 𝜷). The knot vector is [0, 0, 0, 1,

1, 1].
Figure 5 shows an example of representation conversion.

Figure 5: the purple polygon is the B-spline control polygon. The gray polygon is the Bezier control
polygon.

A Bezier surface patch is defined as the locus of a moving, deforming Bezier curve segment. An

important assumption here is that each control point 𝑷𝒊(𝒖) moves along a Bezier curve which has its

own control points. The equation of a moving Bezier curve segment is

𝐵(𝑢, 𝑣) = ∑ (
𝑛

𝑖
) 𝑣𝑖(1 − 𝑣)𝑛−𝑖

𝑛

𝑖=0

𝑷𝒊(𝒖)

Our discussion suggests that we have a grid of control points. This grid of control points is called a
control net. Each control point is denoted by Pij. Since 𝑷𝒊(𝒖) is a Bezier curve, it is defined as

𝑷𝒊(𝒖) = ∑ (
𝑛

𝑗
) 𝑢𝑗(1 − 𝑢)𝑛−𝑗

𝑛

𝑗=0

𝑷𝒊𝒋

If we substitute ∑ (𝑛
𝑗
) 𝑢𝑗(1 − 𝑢)𝑛−𝑗𝑛

𝑗=0 𝑷𝒊𝒋 for 𝑷𝒊(𝒖) in the equation of a moving Bezier curve segment, we

get

∑ (𝑛
𝑖
)𝑣(1 − 𝑣)𝑛

𝑖=0

𝑛−𝑖
∑ (𝑛

𝑗
) 𝑢𝑗(1 − 𝑢)𝑛−𝑗𝑛

𝑗=0 𝑷𝒊𝒋 = ∑ ∑ (𝑛
𝑖
) (𝑛

𝑗
) 𝑢𝑗(1 − 𝑢)𝑛−𝑗𝑣(1 − 𝑣)𝑛−𝑖𝑷𝒊𝒋

𝑛
𝑗=0

𝑛
𝑖=0 =

∑ ∑ 𝐵𝑗
𝑛(𝑢)𝐵𝑖

𝑛(𝑣)𝑷𝒊𝒋
𝑛
𝑗=0

𝑛
𝑖=0 ,

http://www.cad-journal.net/

Computer-Aided Design & Applications, 21(4), 2024, 693-704

© 2024 U-turn Press LLC, http://www.cad-journal.net

698

which is the equation of a Bezier surface patch. It is easy to show that a Bezier surface patch interpolates
the four corner points of its control net. An example of a Bezier surface patch is shown in figure 6.

Figure 6: A Bezier surface patch with Beta = 0.

3 BETA-BEZIER SURFACE

A Beta-Bezier surface patch is defined as the locus of a moving, deforming Beta-Bezier curve segment.
Proceeding in the same manner as above, we get

𝐵(𝑢, 𝑣; 𝛽𝑢; 𝛽𝑣) = ∑ ∑ 𝐵𝑗
𝑛(𝑢; 𝛽𝑢)𝐵𝑖

𝑛(𝑣; 𝛽𝑣)𝑷𝒊𝒋
𝑛
𝑗=0

𝑛
𝑖=0 .

A Beta-Bezier surface patch interpolates its four corner control points. The following is the proof:

𝐵0
𝑛(0; 𝛽) = (

𝑛

0
)

∏ (0 + 𝑖𝛽) ∏ ((1 − 0) + jβ)𝑛−1−0
𝑗=0 0−1

𝑖=0

∏ (1 + 𝑚𝛽)𝑛−1
𝑚=0

By the definition of a binomial coefficient, (𝑛
0

) = 1. ∏ 𝑖𝛽−1
𝑖=0 is an empty product and is, by definition, equal

to 1. The remaining two products are equal and, therefore, cancel out. So, 𝐵0
𝑛(0; 𝛽) = 1. For 0 < k < n,

∏ 𝑖𝛽𝑘−1
𝑖=0 is 0 and, therefore, 𝐵𝑘

𝑛(0; 𝛽) is 0. Thus, 𝐵(0,0; 𝛽) = 𝑃00.

𝐵𝑛
𝑛(1; 𝛽) = (

𝑛

𝑛
)

∏ (1 + 𝑖𝛽) ∏ ((1 − 1) + jβ)𝑛−1−𝑛
𝑗=0 𝑛−1

𝑖=0

∏ (1 + 𝑚𝛽)𝑛−1
𝑚=0

By the definition of a binomial coefficient, (𝑛
𝑛

) = 1. ∏ (jβ)−1
𝑗=0 is an empty product, and the other two

products cancel out, which means 𝐵𝑛
𝑛(1; 𝛽) = 1. For 0 < k < n, ∏ 𝑗𝛽𝑛−1−𝑘

𝑖=0 is 0 and, therefore, 𝐵𝑘
𝑛(1; 𝛽) is 0.

This implies the following:
𝐵(1,1; 𝛽) = 𝑃𝑛𝑛
𝐵(0,1; 𝛽) = 𝑃0𝑛
𝐵(1,0; 𝛽) = 𝑃𝑛0

A Beta-Bezier surface patch lies within the convex hull of its control points. To prove this, it suffices to
show that ∑ ∑ 𝐵𝑗

𝑛(𝑢; 𝛽𝑢)𝐵𝑖
𝑛(𝑣; 𝛽𝑣)𝑛

𝑗=0
𝑛
𝑖=0 = 1 and that 𝐵𝑘

𝑛(𝑥; 𝛽) > 0 for 𝑥 ∈ [0,1]. We start with the latter. The

beta function (3) is positive for ∀𝛼, 𝛾 > 0. The binomial coefficient is positive. Recall that

𝐵𝑘
𝑛(𝑥; 𝜆) = (𝑛

𝑘
)

𝑏(𝜆𝑡+𝑘,𝜆(1−𝑡)+𝑛−𝑘)

𝑏(𝜆𝑡,𝜆(1−𝑡))
, where 𝜆 =

1

𝛽
.

Since this formula only consists of divisions and multiplications, 𝐵𝑘
𝑛(𝑥; 𝜆) > 0 for 𝑥 ∈ [0,1] and, therefore,

𝐵𝑘
𝑛(𝑥; 𝛽) > 0 for 𝑥 ∈ [0,1]1. It remains to show that

∑ ∑ 𝐵𝑗
𝑛(𝑢; 𝛽𝑢)𝐵𝑖

𝑛(𝑣; 𝛽𝑣)𝑛
𝑗=0

𝑛
𝑖=0 = 1.

1 Since 𝛼 and 𝛾 in the beta function are required to be greater than 0 and since 𝛼 = 𝜆𝑡 + 𝑘 and 𝛾 =
𝜆(1 − 𝑡) + 𝑛 − 𝑘, 𝜆 is required to be greater than or equal to 0. It follows that, in order for the convex

hull property to hold, 𝛽 must be nonnegative.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 21(4), 2024, 693-704

© 2024 U-turn Press LLC, http://www.cad-journal.net

699

We first show that ∑ 𝐵𝑘
𝑛(𝑡; 𝛽)𝑛

𝑘=0 = 1; that is, we show that ∑ (𝑛
𝑘

)
𝑏(𝜆𝑡+𝑘,𝜆(1−𝑡)+𝑛−𝑘)

𝑏(𝜆𝑡,𝜆(1−𝑡))
𝑛
𝑘=0 = 1. We note that

𝑏(𝜆𝑡, 𝜆(1 − 𝑡)) is independent of the summation index and, hence, can be factored out. In other words,

we only need to show that ∑ (𝑛
𝑘

)𝑏(𝜆𝑡 + 𝑘, 𝜆(1 − 𝑡) + 𝑛 − 𝑘) = 𝑏(𝜆𝑡, 𝜆(1 − 𝑡))𝑛
𝑘=0 . 𝑏(𝜆𝑡 + 𝑘, 𝜆(1 − 𝑡) + 𝑛 − 𝑘) =

∫ 𝑥𝜆𝑡+𝑘−1(1 − 𝑥)𝜆(1−𝑡)+𝑛−𝑘−1𝑑𝑥
1

0
. So, ∑k=0

n (𝑛
𝑘

)𝑏(𝜆𝑡 + 𝑘, 𝜆(1 − 𝑡) + 𝑛 − 𝑘) = ∑k=0
n (𝑛

𝑘
) ∫ 𝑥𝜆𝑡+𝑘−1(1 − 𝑥)𝜆(1−𝑡)+𝑛−𝑘−1𝑑𝑥

1

0
.

If we factor out 𝑥𝑘(1 − 𝑥)𝑛−𝑘, we get ∑k=0
n (𝑛

𝑘
) ∫ (𝑥𝑘(1 − 𝑥)𝑛−𝑘)𝑥𝜆𝑡−1(1 − 𝑥)𝜆(1−𝑡)+1𝑑𝑥

1

0
. After slight

rearrangement, we get ∫ (∑k=0
n (𝑛

𝑘
)𝑥𝑘(1 − 𝑥)𝑛−𝑘)𝑥𝜆𝑡−1(1 − 𝑥)𝜆(1−𝑡)+1𝑑𝑥

1

0
. By the binomial theorem,

∑k=0
n (𝑛

𝑘
)𝑥𝑘(1 − 𝑥)𝑛−𝑘 = (𝑥 + (1 − 𝑥))𝑛 = 1. This simplifies the expression to ∫ 𝑥𝜆𝑡−1(1 − 𝑥)𝜆(1−𝑡)+1𝑑𝑥

1

0
. Recall

that this is the beta function with 𝛼 = 𝜆𝑡 and 𝛽 = 𝜆(1 − 𝑡); that is, ∫ 𝑥𝜆𝑡−1(1 − 𝑥)𝜆(1−𝑡)+1𝑑𝑥
1

0
= 𝑏(𝜆𝑡, 𝜆(1 − 𝑡)),

which is what we were to prove. ∑ ∑ 𝐵𝑗
𝑛(𝑢; 𝛽𝑢)𝐵𝑖

𝑛(𝑣; 𝛽𝑣)𝑛
𝑗=0

𝑛
𝑖=0 can be rewritten as ∑ 𝐵𝑖

𝑛(𝑣; 𝛽𝑣) ∑ 𝐵𝑗
𝑛(𝑢; 𝛽𝑢)𝑛

𝑗=0
𝑛
𝑖=0 .

The inner summation evaluates to 1. So,
 ∑ 𝐵𝑖

𝑛(𝑣; 𝛽𝑣) ∑ 𝐵𝑗
𝑛(𝑢; 𝛽𝑢)𝑛

𝑗=0
𝑛
𝑖=0 = ∑ 𝐵𝑖

𝑛(𝑣; 𝛽𝑣)𝑛
𝑖=0 (6)

This also evaluates to 1, which completes our proof.
A bicubic Beta-Bezier surface patch can be represented by a bicubic Bezier surface patch. Recall

that a Beta-Bezier surface patch is defined as the locus of a moving, deforming Beta-Bezier curve
segment. So, it can be written as

 𝐵(𝑢, 𝑣; 𝛽𝑢; 𝛽𝑣) = ∑ 𝐵𝑖
𝑛(𝑣; 𝛽𝑣)𝑛

𝑖=0 𝑷𝒊(𝒖; 𝜷𝒖) (7).

For each 𝑷𝒊(𝒖; 𝜷𝒖), we find �̅�0,𝑗 , �̅�1,𝑗, �̅�2,𝑗 and �̅�3,𝑗, so that 𝑷𝒊(𝒖; 𝜷𝒖) can be expressed as a cubic Bezier curve

in 𝑢 as follows:

𝑷𝒊(𝒖; 𝜷𝒖) = ∑ �̅�𝑖,𝑗𝐵𝑖
3(𝑢)3

𝑖=0 (8).

�̅�0,𝑗 , �̅�1,𝑗, �̅�2,𝑗 and �̅�3,𝑗 can be found as follows:

�̅�0,𝑗 = 𝑃0,𝑗

�̅�1,𝑗 =
𝛽(3 + 4𝛽)

3(1 + 𝛽)(1 + 2𝛽)
𝑃0,𝑗 +

1

1 + 2𝛽
𝑃1,𝑗 +

𝛽

(1 + 𝛽)(1 + 2𝛽)
𝑃2,𝑗 +

2𝛽2

3(1 + 𝛽)(1 + 2𝛽)
𝑃3,𝑗

�̅�2,𝑗 =
2𝛽2

3(1 + 𝛽)(1 + 2𝛽)
𝑃0,𝑗 +

𝛽

(1 + 𝛽)(1 + 2𝛽)
𝑃1,𝑗 +

1

1 + 2𝛽
𝑃2,𝑗+

𝛽(3 + 4𝛽)

3(1 + 𝛽)(1 + 2𝛽)
𝑃3,𝑗

�̅�3,𝑗 = 𝑃3,𝑗

By substituting (7) into (8), we get
∑ [∑ �̅�𝑖,𝑗𝐵𝑖

3(𝑢)]𝐵𝑗
3(𝑣; 𝛽𝑣)3

𝑖=0
3
𝑗=0 =∑ [∑ �̅�𝑖,𝑗𝐵𝑗

3(𝑣; 𝛽𝑣)3
𝑗=0]𝐵𝑖

3(𝑢)3
𝑖=0 = ∑ �̅�𝑖(𝑣; 𝛽𝑣)𝐵𝑖

3(𝑢)3
𝑖=0 (9)

For each �̅�𝑖(𝑣; 𝛽), we find 𝑄𝑖,0, 𝑄𝑖,1, 𝑄𝑖,2 and 𝑄𝑖,3 using the same procedure as above, so that �̅�𝑖(𝑣; 𝛽) can

be expressed as a cubic Bezier curve in 𝑣 as follows:
∑ 𝑄𝑖,𝑗𝐵3,𝑗(𝑣)3

𝑗=0 (10)

By substituting (9) into (10), we have a bicubic Bezier surface patch representation for 𝐵(𝑢, 𝑣; 𝛽𝑢; 𝛽𝑣).
Figures 7 and 8 show two examples of Beta-Bezier surface patches.

Figure 7: The blue control polygon is the control polygon for the Bezier surface patch.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 21(4), 2024, 693-704

© 2024 U-turn Press LLC, http://www.cad-journal.net

700

Figure 8: The blue control polygon is the control polygon for the Bezier surface patch.

NURBS surfaces can also be reshaped without moving their control points; each vertex on the surface
has a weight which “pulls” the surface towards it. However, this makes it hard to change the overall

shape of a surface. Beta-Bezier surfaces provide an easy way to change the overall shape of a surface.

4 COMPOSITE BETA-BEZIER SURFACES

A Beta-Bezier surface patch interpolates its four corner control points. This means that complex shapes

can be modeled using a composite Bezier surface (i.e. multiple patches pieced together). For any two
patches to meet smoothly (e.g. to be Cn continuous), there are two conditions that must be met:

- The two patches must have a common boundary

- All the columns of their control nets (or rows if the two patches are to be pieced together
sideways) must be control polygons for Cn continuous curves

Let’s suppose that there is a 3D regular quad mesh that we wish to interpolate. Our algorithm
works as follows. It (a) generates topographical curves interpolating data points at the same longitude,
(b) generates topographical curves interpolating data points at the same latitude (including the points

generated by step (a)), and finally (c) generates a piecewise surface using the control points computed
in the process. There are many representations for 3D meshes, none of which directly tells us the
topography of the mesh. However, it can be deduced through a simple algorithm. For the sake of

argument, let’s restrict our attention to mesh files which tell us the vertex locations and the face
definitions. This is a common representation. In a regular quad mesh, every vertex has four neighbors,

two of which are on the same latitude/longitude (depending on which phase of the interpolation
algorithm we are in). Recall that the cross product of two vectors gives us a vector that’s orthogonal to
the two vectors. The direction of this vector is simply determined using the right-hand rule. More

specifically, a positive z-component of the product means the two vectors make a right turn, a negative
z means a left turn and a zero z means the vectors are pointing in the same direction. We can apply
this to the edges incident to the mesh vertex to choose the neighbor that is at the same

latitude/longitude keeping in mind that that edge leading to that neighbor will probably not be in the
exact same direction as the other edge. This suggests that we need to traverse the mesh. The depth-

first search algorithm is well-suited for this purpose. So, in summary, we compute a topographical curve
on the mesh by performing a depth-first search on the mesh choosing the edge with the median z-
component of the cross product at every step. This is inspired by Graham’s scan [11]. As is the case

with curves, each patch can have its own beta or there can be a global 𝛽. Composite Beta-Bezier

surfaces are shown in figures 9, 10, 11, and 12. The black dots in those figures are the controls points.

To prove the correctness of our algorithm, we need to prove that it produces the right number of
control points for each patch and that the control points meet the continuity conditions. We start with
the former. We will prove it for the bicubic case. To generate a bicubic Beta-Bezier patch, we need 16

control points. If we interpolate a column of the data mesh, we get two control points for every segment.
After interpolating all the columns, each patch has 4 control points plus the 4 data points, for a total of

8 control points. Put another way, each patch has four rows of control points each containing 2 control
points.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 21(4), 2024, 693-704

© 2024 U-turn Press LLC, http://www.cad-journal.net

701

Figure 9: Composite surface with Beta = 0, Beta = 0.5, and Beta = 1.5.

Figure 10: Composite surface with Beta = 0, Beta = 0.5, and Beta = 1.5.

Figure 11: Composite surface with Beta = 0, Beta = 0.5, and Beta = 1.5.

Figure 12: Composite surface with Beta = 0, Beta = 0.5, and Beta = 5.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 21(4), 2024, 693-704

© 2024 U-turn Press LLC, http://www.cad-journal.net

702

If we interpolate those rows, we get 8 additional control points, totaling 16 control points. Curve
interpolation, as described in section II, generates cubic curves that are C2 continuous. Therefore, the

columns (and rows) of the control nets of the adjacent patches produced by our algorithm are control
polygons of C2 continuous Beta-Bezier curves (i.e. the second continuity condition). We start by

interpolating the data points. This guarantees that we have common boundary curves (i.e. the first
continuity condition), which completes our proof.

As for the running time of our algorithm, let’s suppose there are n columns and m rows on the

mesh. As explained in section II, interpolating m points involves solving an 2𝑚 × 2𝑚 system which, in a

worst-case scenario, takes O(𝑚3) time. Therefore, step (a) of our algorithm takes O(𝑛𝑚3) time.

Following similar reasoning, we can conclude that step (b) takes O(𝑚𝑛3) time, for a total running time

of O(𝑛𝑚3 + 𝑚𝑛3).

A more complex surface (an elliptic torus) is shown in figure 13. The isophotes for that surface are
shown in figure 14.

Figure 13: Composite surface with Beta = 0, Beta = 3, and Beta = 100.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 21(4), 2024, 693-704

© 2024 U-turn Press LLC, http://www.cad-journal.net

703

Figure 14: Isophote plots for the surfaces in figure 13.

5 CONCLUSIONS

In this paper, we extend the concept of tension control proposed in [1] from curves to surfaces. The
proposed type of surface patches can be reshaped without moving its control points. In addition to
extending the work of [1] to surfaces, we propose an efficient rectangular mesh interpolation scheme

that makes use of the proposed type of patches.One thing that should be studied is how a Beta-Bezier
surface can be represented as a B-spline surface. Also, our interpolation scheme only works with
rectangular grids. Meshes with arbitrary topology should also be considered. More work is needed to

address these tasks, including providing supporting examples on morphing applications of this new
surface tension control technique.

REFERENCES

[1] Cheng, F.; Kazadi, A.; Lin, A.: Beta-Bezier curves, Computer Aided Design and Applications 18(6),
2021, 1265-1278. https://doi.org/10.14733/cadaps.2021.1265-1278

[2] Cao, J.; Wang, G.Z.: An extension of Bernstein-Bezier surface over the triangular domain,
Progress Nat. Sci. 17, 2007, 352-357. https://doi.org/10.1080/10020070612331343269.

[3] Chu, L.; Zeng, X.M.: 2014. Constructing curves and triangular patches by Beta functions. Journal

of Computational and Applied Mathematics 260, 191-200.
https://doi.org/10.1016/j.cam.2013.09.025.

[4] Farin, G.E.: Curves and surfaces for computer aided geometric design: A practical guide. Academic
Press. 1998, https://doi.org/10.1016/B978-0-12-460515-2.50020-2

[5] Lin, H.; Chen, W.; Bao, H.: Adaptive patch-based mesh fitting for reverse engineering, Computer-

Aided Design, 39(12), 2007, 1134–1142. https://doi.org/10.1016/j.cad.2007.10.002.
[6] Eck, M.; Hoppe, H.: Automatic reconstruction of B-spline surfaces of arbitrary topological type. In

Proceedings of the 23rd annual conference on Computer graphics and interactive techniques

(SIGGRAPH '96). Assoc. for Computing Machinery, New York, NY, USA, 1996, 325–334.
https://doi.org/10.1145/237170.237271

[7] Shirman, L.; Sequin, C.: Local surface interpolation with Bezier patches, Computer Aided
Geometric Design, 4, 1987, 279-95. https://doi.org/10.1016/0167-8396(87)90003-3.

[8] Yan, L.L.; Liang, J.F.: An extension of the Bezier model, Applied Mathematics and Computation,

218, 2011, 2863-2879. https://doi.org/10.1016/j.amc.2011.08.030
[9] Yang, L.Q.; Zeng, X.M.: Bezier curves and surfaces with shape parameters, Int. J. Comput. Math.

86, 2009, 1253-1263. https://doi.org/10.1080/00207160701821715.

http://www.cad-journal.net/
https://doi.org/10.14733/cadaps.2021.1265-1278
https://doi.org/10.1080/10020070612331343269
https://doi.org/10.1016/j.cam.2013.09.025
https://doi.org/10.1016/B978-0-12-460515-2.50020-2
https://doi.org/10.1016/j.cad.2007.10.002
https://doi.org/10.1145/237170.237271
https://doi.org/10.1016/0167-8396(87)90003-3
https://doi.org/10.1016/j.amc.2011.08.030
https://doi.org/10.1080/00207160701821715

Computer-Aided Design & Applications, 21(4), 2024, 693-704

© 2024 U-turn Press LLC, http://www.cad-journal.net

704

[10] Zhu, Y.; Han, X.: Quasi-Bernstein-Bezier polynomials over triangular domain with multiple shape
parameters, Applied Mathematics and Computation, 250, 2015, 181-192.

https://doi.org/10.1016/j.amc.2014.10.098
[11] Graham, R.: An efficient algorithm for determining the convex hull of a finite planar set.

Information Processing Letters, 1(4), 1972, 132–133. https://doi.org/10.1016/0020-
0190(72)90045-2

http://www.cad-journal.net/
https://doi.org/10.1016/j.amc.2014.10.098
https://doi.org/10.1016/0020-0190(72)90045-2
https://doi.org/10.1016/0020-0190(72)90045-2

