

Computer-Aided Design & Applications, 20(6), 2023, 1061-1073

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

1061

We Don’t Really Need Quaternions in Geometric Modeling,

Computer Graphics and Animation: Here Is Why

Fuhua (Frank) Cheng1 , T. Lee Johnson2 , Anastasia Kazadi3 , Ethan G. Toney4 , Jonathan I.

Watson5 and Alice J. Lin6

1University of Kentucky, cheng@cs.uky.edu
2University of Kentucky, timothy.johnsonii@uky.edu

3University of Kentucky, ansm226@g.uky.edu
4University of Kentucky, ethan.toney@uky.edu

5University of Kentucky, jonathan.watson@uky.edu
6Austin Peay State University, lina@apsu.edu

Corresponding author: Fuhua (Frank) Cheng, cheng@cs.uky.edu

Abstract. It has long been believed that quaternions are more efficient to use for
3D rotations than ordinary rotation approach. It is also commonly believed that the
geometric meaning of quaternions is more obvious. One can also easily recover
rotation axis and rotation angle from the representation of a rotation quaternion. In
this paper we present important features of ordinary rotation that are critical in

judging which technique should be used in a particular application. We show that
everything quaternion rotation can do, ordinary rotation can do as well and, actually,
more efficiently, including interpolation of rotations.

Keywords: Quaternion, Rotation, Computer Graphics, Computer Animation
DOI: https://doi.org/10.14733/cadaps.2023.1061-1073

1 INTRODUCTION

It has long been believed that quaternions are more efficient to use for 3D rotations than ordinary
rotation approach. It is also commonly believed that the geometric meaning of quaternions is more
obvious. The justification is two-folded. First, the 3×3 matrix representation of a 3D rotation is
expensive to use. For instance, to compose two rotations, one needs to compute the product of the
two corresponding matrices, which requires twenty-seven multiplications and eighteen additions.

Secondly, the matrix representation is redundant as only four of its nine entries are independent
and it is not easy to extract information on rotation axis and rotation angle from the matrix
representation of a 3D rotation. Quaternions, on the other hand, are cheaper to use. To compose
two rotations, one only needs to do nineteen multiplications and seven additions. One can also easily
recover rotation axis and rotation angle from the representation of a rotation quaternion.

While the above justification is indeed true for some aspects of the problem, it overlooked several
important features of ordinary rotation approach and these features are actually critical in judging

http://www.cad-journal.net/
mailto:cheng@cs.uky.edu
mailto:timothy.johnsonii@uky.edu
mailto:ansm226@g.uky.edu
mailto:ethan.toney@uky.edu
mailto:jonathan.watson@uky.edu
mailto:lina@apsu.edu
mailto:cheng@cs.uky.edu
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d

Computer-Aided Design & Applications, 20(6), 2023, 1061-1073

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

1062

which technique should be used in a particular application. For instance, the matrix representation
of a 3D rotation is important for processing geometric models with a large number of points/vertices.
Further study shows that a special matrix representation of 3D rotation is not only more efficient in
most applications involving geometric objects, but also more general than quaternion rotation when

extracting rotation axis and rotation angle of a 3D rotation is concerned. Even more surprisingly,
generating a smooth curve to interpolate a set of points on a 3D sphere can be done using ordinary
rotation as well if one knows how to interpolate rotations on a 3D sphere. Besides, matrix
represented 3D rotations can be accumulated with other transformations such as translation, scaling,
shearing and reflection (in homogeneous coordinates) so that one can accomplish all the
transformations specified by the user in modeling space (plus the projection process) with only one
vector-matrix multiplication. This is how we make real-time performance possible in computer

graphics and computer animation. Therefore, there is no reason to use quaternions in geometric

modeling, computer graphics and computer animation at all.
The rest of the paper is arranged as follows. In section 2, definitions of quaternion and quaternion

rotation and properties of quaternion rotation are reviewed, including interpolation of rotations
represented by quaternions. In Section 3, we study some important properties of ordinary rotation
and discuss applications of two important rotation representations. In Section 4, we discuss the

relationship between general rotation and principal rotations. In Section 5, we show that
interpolation of rotations can actually be implemented using ordinary rotation as well. Concluding
remarks are given in Section 6.

2 QUATERNIONS AND QUATERNION ROTATIONS

We briefly review some basic properties of quaternions first.

2.1 Definitions

A quaternion 𝑞 is the combination of a scalar and a three-dimensional vector, as was originally

defined by W. R. Hamilton [6]. A quaternion can be represented in several forms. We use the
following form here:
 𝑞 ≡ [𝑤, 𝑣̂] (2-1)

where w is a scalar and 𝑣̂ = (𝑥, 𝑦, 𝑧) is a three-dimensional vector. The set of all quaternions is called

𝑆3. 𝑆3 includes 𝑅 as a subset in the sense that each 𝑤 ∈ 𝑅, the set of real numbers, corresponds to

[𝑤, 0̂] = [𝑤, (0, 0, 0)] in 𝑆3. A quaternion 𝑞 = [𝑤, 𝑣̂] will simply be regarded as a scalar w if 𝑣̂ is a zero

vector. Actually 𝑆3 includes 𝑅3, the set of three-dimensional points/vectors, as a subset as well. Each

point P or vector 𝑣̂ in 𝑅3 corresponds to [0, 𝑃] or [0, 𝑣̂] in 𝑆3. A quaternion will be regarded as a point

or vector in 𝑅3 if the scalar component of the quaternion is zero.

Given two quaternions 𝑞1 = [𝑤1, 𝑣̂1] and 𝑞2 = [𝑤2, 𝑣̂2] where 𝑣̂𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖), 𝑖 = 1,2, addition and

subtraction of 𝑞1 and 𝑞2 are defined as follows:

 𝑞1 ± 𝑞2 ≡ [𝑤1 ± 𝑤2, 𝑣̂1 ± 𝑣̂2] = [𝑤1 ± 𝑤2, (𝑥1 ± 𝑥2, 𝑦1 ± 𝑦2, 𝑧1 ± 𝑧2)]. (2-2)

𝑞1 + 𝑞2 and 𝑞1 − 𝑞2 are called the sum and difference of 𝑞1 and 𝑞2, respectively. Multiplication of 𝑞1

and 𝑞2 is defined as

 𝑞1𝑞2 ≡ [𝑤1𝑤2 − 𝑣̂1 ∙ 𝑣̂2, 𝑤1𝑣̂2 + 𝑤2𝑣̂1 + 𝑣̂1⨂𝑣̂2] (2-3)

where 𝑣̂1 ∙ 𝑣̂2 and 𝑣̂1⨂𝑣̂2 are inner and cross products of three-dimensional vectors, respectively. 𝑞1𝑞2

is called the product of 𝑞1 and 𝑞2. Quaternion multiplication is not commutative, i.e., in general,

𝑞1𝑞2 ≠ 𝑞2𝑞1. Quaternion multiplication is associative, i.e., (𝑞1𝑞2)𝑞3 = 𝑞1(𝑞2𝑞3) for any three quaternions

𝑞1, 𝑞2 and 𝑞3.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(6), 2023, 1061-1073

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

1063

 The conjugate 𝑞∗ of a quaternion 𝑞 = [𝑤, 𝑣̂] = [𝑤, (𝑥, 𝑦, 𝑧)] is defined as 𝑞∗ ≡ [𝑤,−𝑣̂] = [𝑤,
(−𝑥.−𝑦.−𝑧)]. It is easy to see that

 𝑞𝑞∗ = 𝑞∗𝑞 = |𝑞|2 = 𝑤2 + 𝑥2 + 𝑦2 + 𝑧2.

|𝑞| is called the norm of 𝑞. Quaternion norm is multiplication-invariant, i.e., |𝑞1𝑞2| = |𝑞1||𝑞2| for any

two quaternions 𝑞1 and 𝑞2. A quaternion is called a unit quaternion if its norm equals one. We use 𝑆2

to represent the set of all unit quaternions in 𝑆3. Each unit quaternion can be arranged in the form

of [cos 𝜃 , sin 𝜃𝑛̂] for some 0 ≤ 𝜃 ≤ 𝜋 and some unit vector 𝑛̂ in 𝑅3.

 The inverse 𝑞−1 of a quaternion 𝑞 = [𝑤, 𝑣̂] = [𝑤, (𝑥, 𝑦, 𝑧)] satisfies the condition 𝑞𝑞−1 = 1 and can be

expressed as

 𝑞−1 =
𝑞∗

𝑞𝑞∗
=

𝑞∗

|𝑞|2
=

𝑞∗

𝑤2+𝑥2+𝑦2+𝑧2
 . (2-4)

Multiplication of a quaternion by its inverse does not depend on the order of the multiplication. It is
easy to verify that 𝑞−1𝑞 = 1. A unit quaternion’s inverse is just its conjugate.

 Division of quaternion 𝑞1 by quaternion 𝑞2 is defined as:

 𝑞1/𝑞2 ≡ 𝑞1𝑞2
−1 (2-5)

where 𝑞2
−1 is the inverse of 𝑞2 as defined in (2-4). Note that (𝑞1𝑞2)/𝑞2 = (𝑞1𝑞2)𝑞2

−1 = 𝑞1(𝑞2𝑞2
−1) = 𝑞1.

Hence quaternion division is an inverse operation of quaternion multiplication.

2.2 Quaternion Rotation

Let 𝒒 = [𝑐𝑜𝑠 (
𝜃𝑢

2
) , 𝑠𝑖𝑛 (

𝜃𝑢

2
) (1, 0, 0)] , 𝒒∗ being its conjugate 𝒒∗ = [𝑐𝑜𝑠 (

𝜃𝑢

2
) , −𝑠𝑖𝑛 (

𝜃𝑢

2
) (1, 0, 0)] , and 𝑟 =

(𝑟𝑢, 𝑟𝑣, 𝑟𝑤), a unit 3D vector. A quaternion rotation about a unit vector in U-direction for 𝜃𝑢 degree is

defined and computed as follows:

𝒒 ∗ [0, 𝑟] ∗ 𝒒∗ = [𝑐𝑜𝑠 (
𝜃𝑢

2
) , 𝑠𝑖𝑛 (

𝜃𝑢

2
) (1, 0, 0)] ∗ [0, 𝑟] ∗ [𝑐𝑜𝑠 (

𝜃𝑢

2
) , −𝑠𝑖𝑛 (

𝜃𝑢

2
) (1, 0, 0)]

= [−𝑠𝑖𝑛 (
𝜃𝑢

2
) 𝑟𝑢, 𝑐𝑜𝑠 (

𝜃𝑢

2
) 𝑟 + 𝑠𝑖𝑛 (

𝜃𝑢

2
) (1,0,0)⨂𝑟] ∗ [𝑐𝑜𝑠 (

𝜃𝑢

2
) , −𝑠𝑖𝑛 (

𝜃𝑢

2
) (1, 0, 0)]

= [−𝑠𝑖𝑛 (
𝜃𝑢

2
) 𝑟𝑢, 𝑐𝑜𝑠 (

𝜃𝑢

2
) 𝑟 + 𝑠𝑖𝑛 (

𝜃𝑢

2
) (0,−𝑟𝑤, 𝑟𝑣)] ∗ [𝑐𝑜𝑠 (

𝜃𝑢

2
) , −𝑠𝑖𝑛 (

𝜃𝑢

2
) (1, 0, 0)]

= [−𝑠𝑖𝑛 (
𝜃𝑢

2
) 𝑐𝑜𝑠 (

𝜃𝑢

2
) 𝑟𝑢 + 𝑐𝑜𝑠 (

𝜃𝑢

2
) 𝑠𝑖𝑛 (

𝜃𝑢

2
) 𝑟𝑢,

 𝑐𝑜𝑠2 (
𝜃𝑢

2
) 𝑟 + 𝑐𝑜𝑠 (

𝜃𝑢

2
) 𝑠𝑖𝑛 (

𝜃𝑢

2
) (0,−𝑟𝑤, 𝑟𝑣) + 𝑠𝑖𝑛2 (

𝜃𝑢

2
) (𝑟𝑢, 0, 0)

 −𝑐𝑜𝑠 (
𝜃𝑢

2
) 𝑠𝑖𝑛 (

𝜃𝑢

2
) 𝑟⨂(1,0,0) − 𝑠𝑖𝑛2 (

𝜃𝑢

2
) (0, −𝑟𝑤, 𝑟𝑣)⨂(1, 0, 0)]

= [0, 𝑐𝑜𝑠2 (
𝜃𝑢

2
) 𝑟 + 2𝑐𝑜𝑠 (

𝜃𝑢

2
) 𝑠𝑖𝑛 (

𝜃𝑢

2
) (0,−𝑟𝑤, 𝑟𝑣) + 𝑠𝑖𝑛2 (

𝜃𝑢

2
) (𝑟𝑢, −𝑟𝑣, −𝑟𝑤)]

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(6), 2023, 1061-1073

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

1064

= [0, (𝑟𝑢, cos 𝜃𝑢𝑟𝑣 − sin 𝜃𝑣𝑟𝑤, cos 𝜃𝑢𝑟𝑤 + sin 𝜃𝑢𝑟𝑣)] (2-6)

3 ORDINARY ROTATION

In this section we will review and re-visit some important properties of ordinary rotation and discuss
applications of two important rotation representations. The goal is to show that underneath the
surface ordinary rotation has advantages that we sometime overlook.

Figure 1: Rotation of a vector 𝑟 about a unit vector 𝑛⃗⃗ for 𝜃 degree.

If a vector 𝑟 = (𝑟𝑢, 𝑟𝑣, 𝑟𝑤)𝑡 (or, a point 𝑃 = (𝑃𝑢, 𝑃𝑣, 𝑃𝑤)𝑡) is rotated about a unit vector 𝒏̂ = (𝒏𝑢, 𝒏𝑣, 𝒏𝑤)𝑡 for

𝜃 degree (see Fig. 1), the resulting vector

 𝑟′ = (𝑟𝑢
′, 𝑟𝑣

′, 𝑟𝑤
′)𝑡 (or, point 𝑃′) can be computed as follows

𝑟′ = (𝑟 ∙ 𝒏̂)𝒏̂ + 𝑐𝑜𝑠𝜃(𝑟 − (𝑟 ∙ 𝒏̂)𝒏̂) + 𝑠𝑖𝑛𝜃(𝒏̂⨂𝑟)
= 𝑐𝑜𝑠𝜃𝑟 + (1 − 𝑐𝑜𝑠𝜃)(𝑟 ∙ 𝒏̂)𝒏̂ + 𝑠𝑖𝑛𝜃(𝒏̂⨂𝑟) (3-1)

𝑂 in Fig. 1 is the origin of the UVW-coordinate system. Since the three terms in the second line of

Eq. (3-1) satisfy the following properties,

𝑐𝑜𝑠𝜃𝑟 = 𝑐𝑜𝑠𝜃 [
1 0 0
0 1 0
0 0 1

] [

𝑟𝑢
𝑟𝑣
𝑟𝑤

], (1 − 𝑐𝑜𝑠𝜃)(𝑟 ∙ 𝒏̂)𝒏̂ = (1 − 𝑐𝑜𝑠𝜃) [

𝒏𝑢𝒏𝑢 𝒏𝑣𝒏𝑢 𝒏𝑤𝒏𝑢

𝒏𝑢𝒏𝑣 𝒏𝑣𝒏𝑣 𝒏𝑤𝒏𝑣

𝒏𝑢𝒏𝑤 𝒏𝑣𝒏𝑤 𝒏𝑤𝒏𝑤

] [

𝑟𝑢
𝑟𝑣
𝑟𝑤

],

 𝑠𝑖𝑛𝜃(𝒏̂⨂𝑟) = 𝑠𝑖𝑛𝜃 [

0 −𝒏𝑤 𝒏𝑣

𝒏𝑤 0 −𝒏𝑢

−𝒏𝑣 𝒏𝑢 0
] [

𝑟𝑢
𝑟𝑣
𝑟𝑤

]

By substituting the above equations into (3-1) and combining corresponding entries, we have the
following matrix form of Eq. (3-1).

 𝑟′ = [

𝑟𝑢
′

𝑟𝑣
′

𝑟𝑤
′
] = 𝑀𝑅(𝜃,𝒏̂)𝑟 = 𝑀𝑅(𝜃,𝒏̂) [

𝑟𝑢
𝑟𝑣
𝑟𝑤

] (3-2)

where 𝑀𝑅(𝜃,𝒏̂) is a 3×3 matrix defined as follows

𝑀𝑅(𝜃,𝒏̂) = [

𝑐𝑜𝑠𝜃 + (1 − 𝑐𝑜𝑠𝜃)𝒏𝑢𝒏𝑢 (1 − 𝑐𝑜𝑠𝜃)𝒏𝑢𝒏𝑣 − 𝑠𝑖𝑛𝜃𝒏𝑤 (1 − 𝑐𝑜𝑠𝜃)𝒏𝑢𝒏𝑤 + 𝑠𝑖𝑛𝜃𝒏𝑣

(1 − 𝑐𝑜𝑠𝜃)𝒏𝑢𝒏𝑣 + 𝑠𝑖𝑛𝜃𝒏𝑤 𝑐𝑜𝑠𝜃 + (1 − 𝑐𝑜𝑠𝜃)𝒏𝑣𝒏𝑣 (1 − 𝑐𝑜𝑠𝜃)𝒏𝑣𝒏𝑤 − 𝑠𝑖𝑛𝜃𝒏𝑢

(1 − 𝑐𝑜𝑠𝜃)𝒏𝑢𝒏𝑤 − 𝑠𝑖𝑛𝜃𝒏𝑣 (1 − 𝑐𝑜𝑠𝜃)𝒏𝑣𝒏𝑤 + 𝑠𝑖𝑛𝜃𝒏𝑢 𝑐𝑜𝑠𝜃 + (1 − 𝑐𝑜𝑠𝜃)𝒏𝑤𝒏𝑤

] (3-3)

Using eq. (3-2) for the computation of the rotation of a single point is more expensive than eq. (2-6)

because one needs to compute the matrix 𝑀𝑅(𝜃,𝒏̂) first which requires 24 multiplications and 10

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(6), 2023, 1061-1073

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

1065

additions/subtractions and then perform the vector-matrix multiplication which requires 9
multiplications and 6 additions, so totally one needs 33 multiplications and 16 additions/subtractions.
However, if one needs to perform the same rotation for many points, such as all the vertices of the
mesh representation of a car model or even just the mesh representation of a teaspoon model (100+

vertices), then eq. (3-2) is a more efficient approach to use than eq. (2-6) because one only needs

to compute the matrix 𝑀𝑅(𝜃,𝒏̂) once and then it can be used for the rotation of all the mesh vertices,

so the total cost is the construction of the matrix 𝑀𝑅(𝜃,𝑢⃗⃗⃗) plus the number of vertices 𝑛 times the

cost of a single vector-matrix multiplication:
(24 + 9𝑛) multiplications + (10 + 6𝑛) additions/subtractions

while the total cost for eq. (2-6) is (19𝑛) multiplications + (7𝑛) additions/subtractions

When 𝑛 is large, the construction cost of the matrix 𝑀𝑅(𝜃,𝒏̂) is a relatively small portion of the entire

cost and can actually be ignored. Hence, when 𝑛 is large, the computation cost for eq. (2-6) is

(19𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 + 7𝑛 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠) compared to (9𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 + 6𝑛 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑠) for eq. (3-2).

Another advantage of eq. (3-2) is certainly its capability to be accumulated with other transformations
such as translation, scaling, shearing and reflection (in homogeneous coordinates based
representation) so that one can accomplish all the transformations specified by the user in the
modeling space (plus the projection process) with only one vector-matrix multiplication. This is how
we make real-time performance possible in most applications in addition to relying on hardware-
implementation of the rendering algorithms.

4 GENERAL ROTATION

Given a principal rotation about the U-axis for 𝜃𝑢 degree, represented as 𝑀𝑅(𝜃𝑢), a principal rotation

about the V-axis for 𝜃𝑣 degree, represented as 𝑀𝑅(𝜃𝑣), and a principal rotation about the W-axis for

𝜃𝑤 degree, represented as 𝑀𝑅(𝜃𝑤) . 𝑀𝑅(𝜃𝑢) , 𝑀𝑅(𝜃𝑣) and 𝑀𝑅(𝜃𝑤) can be expressed in homogeneous

coordinates-based representation as follows.

𝑀𝑅(𝜃𝑢) = [

1 0
0 𝑐𝑜𝑠𝜃𝑢

0 0
−𝑠𝑖𝑛𝜃𝑢 0

0 𝑠𝑖𝑛𝜃𝑢

0 0

𝑐𝑜𝑠𝜃𝑢 0

0 1

]

𝑀𝑅(𝜃𝑣) = [

𝑐𝑜𝑠𝜃𝑣 0
0 1

𝑠𝑖𝑛𝜃𝑣 0
0 0

−𝑠𝑖𝑛𝜃𝑣 0
0 0

𝑐𝑜𝑠𝜃𝑣 0

0 1

]

𝑀𝑅(𝜃𝑤) = [

𝑐𝑜𝑠𝜃𝑤 −𝑠𝑖𝑛𝜃𝑤

𝑠𝑖𝑛𝜃𝑤 𝑐𝑜𝑠𝜃𝑤

 0 0
 0 0

0 0
0 0

1 0
0 1

]

If a point in homogeneous coordinates (𝑟𝑢, 𝑟𝑣, 𝑟𝑤, 1)𝑡 is rotated about the U-axis, the V-axis and the

W-axis for 𝜃𝑢, 𝜃𝑣, and 𝜃𝑤 degrees, respectively, the resulting point (𝑟𝑢
′, 𝑟𝑣

′, 𝑟𝑤
′, 1)𝑡 is obtained by pre-

multiplying (𝑟𝑢, 𝑟𝑣, 𝑟𝑤, 1)𝑡 by the matrices 𝑀𝑅(𝜃𝑢) 𝑀𝑅(𝜃𝑣) and 𝑀𝑅(𝜃𝑤) as follows.

 [

𝑟𝑢
′

𝑟𝑣
′

𝑟𝑤
′

1

] = 𝑀𝑅(𝜃𝑤)𝑀𝑅(𝜃𝑣)𝑀𝑅(𝜃𝑢) [

𝑟𝑢
𝑟𝑣
𝑟𝑤
1

] (4-1)

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(6), 2023, 1061-1073

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

1066

Note that

𝑀𝑅(𝜃𝑣)𝑀𝑅(𝜃𝑢) = [

𝑐𝑜𝑠𝜃𝑣 0
0 1

𝑠𝑖𝑛𝜃𝑣 0
0 0

−𝑠𝑖𝑛𝜃𝑣 0
0 0

𝑐𝑜𝑠𝜃𝑣 0

0 1

] [

1 0
0 𝑐𝑜𝑠𝜃𝑢

0 0
−𝑠𝑖𝑛𝜃𝑢 0

0 𝑠𝑖𝑛𝜃𝑢

0 0

𝑐𝑜𝑠𝜃𝑢 0

0 1

]

= [

𝑐𝑜𝑠(𝜃𝑣) 𝑠𝑖𝑛(𝜃𝑢)𝑠𝑖𝑛(𝜃𝑣)

0 𝑐𝑜𝑠(𝜃𝑢)
𝑐𝑜𝑠(𝜃𝑢)𝑠𝑖𝑛(𝜃𝑣) 0

−𝑠𝑖𝑛(𝜃𝑢) 0

−𝑠𝑖𝑛(𝜃𝑣) 𝑠𝑖𝑛(𝜃𝑢)𝑐𝑜𝑠(𝜃𝑣)
0 0

𝑐𝑜𝑠(𝜃𝑢)𝑐𝑜𝑠(𝜃𝑣) 0
0 1

]

Hence, 𝑀𝑅(𝜃𝑤)𝑀𝑅(𝜃𝑣)𝑀𝑅(𝜃𝑢) can be expressed as

𝑀𝑅(𝜃𝑤)𝑀𝑅(𝜃𝑣)𝑀𝑅(𝜃𝑢) = [

cos (𝜃𝑤) −𝑠𝑖𝑛(𝜃𝑤)
sin (𝜃𝑤) 𝑐𝑜𝑠(𝜃𝑤)

 0 0
 0 0

0 0
0 0

1 0
0 1

] [

𝑐𝑜𝑠(𝜃𝑣) 𝑠𝑖𝑛(𝜃𝑢)𝑠𝑖𝑛(𝜃𝑣)

0 𝑐𝑜𝑠(𝜃𝑢)
𝑐𝑜𝑠(𝜃𝑢)𝑠𝑖𝑛(𝜃𝑣) 0

−𝑠𝑖𝑛(𝜃𝑢) 0

−𝑠𝑖𝑛(𝜃𝑣) 𝑠𝑖𝑛(𝜃𝑢)𝑐𝑜𝑠(𝜃𝑣)
0 0

𝑐𝑜𝑠(𝜃𝑢)𝑐𝑜𝑠(𝜃𝑣) 0
0 1

]

= [

𝑐𝑜𝑠(𝜃𝑣)cos (𝜃𝑤) 𝑠𝑖𝑛(𝜃𝑢)𝑠𝑖𝑛(𝜃𝑣) cos(𝜃𝑤) − 𝑐𝑜𝑠(𝜃𝑢)𝑠𝑖𝑛(𝜃𝑤)

𝑐𝑜𝑠(𝜃𝑣)sin (𝜃𝑤) 𝑠𝑖𝑛(𝜃𝑢)𝑠𝑖𝑛(𝜃𝑣) sin(𝜃𝑤) + 𝑐𝑜𝑠(𝜃𝑢)𝑐𝑜𝑠(𝜃𝑤)

𝑐𝑜𝑠(𝜃𝑢)𝑠𝑖𝑛(𝜃𝑣) cos(𝜃𝑤) + 𝑠𝑖𝑛(𝜃𝑢)𝑠𝑖𝑛(𝜃𝑤) 0

𝑐𝑜𝑠(𝜃𝑢)𝑠𝑖𝑛(𝜃𝑣) sin(𝜃𝑤) − 𝑠𝑖𝑛(𝜃𝑢)𝑐𝑜𝑠(𝜃𝑤) 0

−𝑠𝑖𝑛(𝜃𝑣) 𝑠𝑖𝑛(𝜃𝑢)𝑐𝑜𝑠(𝜃𝑣)
0 0

𝑐𝑜𝑠(𝜃𝑢)𝑐𝑜𝑠(𝜃𝑣) 0
0 1

]

 (4-2)

It should be pointed out that (4-1) can be replaced with a single ordinary rotation. This rotation is

performed about a rotation axis (unit vector) 𝑎̂ = (𝑎𝑢, 𝑎𝑣, 𝑎𝑤) defined as follows.

 𝑎̂ =
(𝛼,𝛽,𝛾)

√𝛼2+𝛽2+𝛾2
 (4-3)

where

𝛼 = 𝑠𝑖𝑛 (
𝜃𝑢

2
) 𝑐𝑜𝑠 (

𝜃𝑣

2
) 𝑐𝑜𝑠 (

𝜃𝑤

2
) − 𝑐𝑜𝑠 (

𝜃𝑢

2
) 𝑠𝑖𝑛 (

𝜃𝑣

2
) 𝑠𝑖𝑛 (

𝜃𝑤

2
)

𝛽 = 𝑐𝑜𝑠 (
𝜃𝑢

2
) 𝑠𝑖𝑛 (

𝜃𝑣

2
) 𝑐𝑜𝑠 (

𝜃𝑤

2
) + 𝑠𝑖𝑛 (

𝜃𝑢

2
) 𝑐𝑜𝑠 (

𝜃𝑣

2
) 𝑠𝑖𝑛 (

𝜃𝑤

2
)

𝛾 = 𝑐𝑜𝑠 (
𝜃𝑢

2
) 𝑐𝑜𝑠 (

𝜃𝑣

2
) 𝑠𝑖𝑛 (

𝜃𝑤

2
) − 𝑠𝑖𝑛 (

𝜃𝑢

2
) 𝑠𝑖𝑛 (

𝜃𝑣

2
) 𝑐𝑜𝑠 (

𝜃𝑤

2
)

 (4-4)

The rotation angle 𝜃 is defined through the following triangular functions

 𝑠𝑖𝑛 (
𝜃

2
) = √𝛼2 + 𝛽2 + 𝛾2 (4-5)

 𝑐𝑜𝑠 (
𝜃

2
) = 𝑐𝑜𝑠 (

𝜃𝑢

2
) 𝑐𝑜𝑠 (

𝜃𝑣

2
) 𝑐𝑜𝑠 (

𝜃𝑤

2
) + 𝑠𝑖𝑛 (

𝜃𝑢

2
) 𝑠𝑖𝑛 (

𝜃𝑣

2
) 𝑠𝑖𝑛 (

𝜃𝑤

2
) (4-6)

What this says is, if one defines an ordinary rotation matrix 𝑀𝑅(𝜃,𝑎̂) as follows

 𝑀𝑅(𝜃,𝑎̂) =

[

𝑐𝑜𝑠(𝜃) + (1 − 𝑐𝑜𝑠(𝜃))𝑎𝑢𝑎𝑢 (1 − 𝑐𝑜𝑠(𝜃))𝑎𝑢𝑎𝑣 − 𝑠𝑖𝑛(𝜃)𝑎𝑤

(1 − 𝑐𝑜𝑠(𝜃))𝑎𝑢𝑎𝑣 + 𝑠𝑖𝑛(𝜃)𝑎𝑤 𝑐𝑜𝑠(𝜃) + (1 − 𝑐𝑜𝑠(𝜃))𝑎𝑣𝑎𝑣

(1 − 𝑐𝑜𝑠(𝜃))𝑎𝑢𝑎𝑤 + 𝑠𝑖𝑛(𝜃)𝑎𝑣 0

(1 − 𝑐𝑜𝑠(𝜃))𝑎𝑣𝑎𝑤 − 𝑠𝑖𝑛(𝜃)𝑎𝑢 0

(1 − 𝑐𝑜𝑠(𝜃))𝑎𝑢𝑎𝑤 − 𝑠𝑖𝑛(𝜃)𝑎𝑣 (1 − 𝑐𝑜𝑠(𝜃))𝑎𝑣𝑎𝑤 + 𝑠𝑖𝑛(𝜃)𝑎𝑢

0 0

𝑐𝑜𝑠(𝜃) + (1 − 𝑐𝑜𝑠(𝜃))𝑎𝑤𝑎𝑤 0

0 1]

 (4-7)

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(6), 2023, 1061-1073

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

1067

where 𝜃 and 𝑎̂ = (𝑎𝑢, 𝑎𝑣, 𝑎𝑤 , 1) are defined as above, then if we rotate (𝑟𝑢, 𝑟𝑣, 𝑟𝑤 , 1)𝑡 about the rotation

axis 𝑎̂ = (𝑎𝑢, 𝑎𝑣, 𝑎𝑤, 1) for 𝜃 degree, the result computed as follows is the same as the result computed

using (4-1).

[

𝑟𝑢
′

𝑟𝑣
′

𝑟𝑤
′

1

] = 𝑀𝑅(𝜃,𝑎̂) [

𝑟𝑢
𝑟𝑣
𝑟𝑤
1

]

This work shows that one can easily recover rotation axis and rotation angle for ordinary rotations
from the representation techniques presented in Sections 3 and 4 in a more general way than
quaternion rotation.

5 INTERPOLATION OF ROTATIONS

Our task here is to generate a closed path (space) curve 𝐶(𝑢) on the 3D sphere 𝑆 that passes through

a set of given points 𝑃0, 𝑃1, ⋯ , 𝑃𝑛 on S. 𝐶(𝑢) will be at least 𝐶1-continuous. For this task, instead of

considering 𝑞1 and 𝑞2 on 𝑆3 (the set of unit quaternions), we can simply consider 𝑣̂1 and 𝑣̂2 on 𝑆2

(the set of unit 3D vectors).

Figure 2: Construction of the rotation axis 𝑣̂.

For two given unit vectors 𝑣̂1 = (𝑣̂1𝑥 , 𝑣̂1𝑦 , 𝑣̂1𝑧)
𝑡
 and 𝑣̂2 = (𝑣̂2𝑥 , 𝑣̂2𝑦 , 𝑣̂2𝑧)

𝑡
 in 𝑆2, define 𝑣̂ as follows (see

Fig. 2)

 𝑣̂ =
𝑣̂1⨂𝑣̂2

𝑠𝑖𝑛𝜃
 (5-1)

Then any point on the circular arc between 𝑣̂1 and 𝑣̂2 can be computed as follows

 𝑣̂(𝑡) =
𝑠𝑖𝑛((1−𝑡)𝜃)

𝑠𝑖𝑛𝜃
𝑣̂1+

𝑠𝑖𝑛(𝑡𝜃)

𝑠𝑖𝑛𝜃
𝑣̂2 (5-2)

where 0 ≤ 𝑡 ≤ 1 and 𝑣̂1 ∙ 𝑣̂2=𝑐𝑜𝑠θ.

Instead of eq. (5-2), a second choice to compute 𝑣̂(𝑡) is to use the following formula

 [

𝑣̂𝑥(𝑡)
𝑣̂𝑦(𝑡)

𝑣̂𝑧(𝑡)
1

] = 𝑀𝑅(𝑡𝜃,𝑣̂) [

𝑣̂1𝑥

𝑣̂1𝑦

𝑣̂1𝑧

1

] (5-3)

where 𝑣̂𝑥(𝑡), 𝑣̂𝑦(𝑡) and 𝑣̂𝑧(𝑡) are 𝑥, 𝑦 and 𝑧 components of 𝑣̂(𝑡) and 𝑀𝑅(𝑡𝜃,𝑣̂) is a 4×4 rotation matrix

defined in (3-3). Note that the 𝑠𝑙𝑒𝑟𝑝 technique cannot have a vector-matrix multiplication

representation like eq. (5-3).

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(6), 2023, 1061-1073

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

1068

Eq. (5-2) or eq. (5-3) can only give us a circular arc between two consecutive points 𝑃𝑖−1 and 𝑃𝑖.

We need to use 3D cubic composite Bezier curve technique to construct a smooth path curve to
interpolate the given points 𝑃0, 𝑃1, … 𝑃𝑛, and use eq. (5-2) or eq. (5-3) only in the computation of the

circular control polygon of the path curve on 𝑆2.

Figure 3: Construction of the control points 𝑎𝑖 and 𝑏𝑖.

To compute the control points of the cubic composite Bezier curve that interpolates the given points

𝑃0, 𝑃1, … 𝑃𝑛, we use Shoemake’s 2nd approach to compute 𝑎𝑖 and 𝑏𝑖 for each set of three consecutive

points 𝑃𝑖−1, 𝑃𝑖 , and 𝑃𝑖+1 (see Fig. 3).

𝑎𝑖 = 𝐵𝑖𝑠𝑒𝑐𝑡(𝑃𝑖 , 𝐵𝑖𝑠𝑒𝑐𝑡(𝐷𝑜𝑢𝑏𝑙𝑒(𝑃𝑖−1, 𝑃𝑖), 𝑃𝑖+1))

 𝑏𝑖 = 𝐷𝑜𝑢𝑏𝑙𝑒(𝑎𝑖 , 𝑃𝑖)

See Fig. 3 for the locations of 𝑎𝑖 and 𝑏𝑖. In this figure, 𝑃̅𝑖−1 = 𝐷𝑜𝑢𝑏𝑙𝑒(𝑃𝑖−1, 𝑃𝑖), 𝑃̅𝑖 = 𝐵𝑖𝑠𝑒𝑐𝑡(𝑃̅𝑖−1, 𝑃𝑖+1). If
the angle between 𝑃𝑖−1 and 𝑃𝑖 is 𝜃𝑖−1 then the angle between 𝑃𝑖−1 and 𝑃̅𝑖−1 is 2𝜃𝑖−1 (see Fig. 4). Hence,

𝑃̅𝑖−1 can be computed as follows:

Figure 4: Construction of the rotation axis 𝑣̂𝑖−1.

 𝑃̅𝑖−1 = 2𝑐𝑜𝑠(𝜃𝑖−1)𝑃𝑖 − 𝑃𝑖−1 (5-4)

or

[

𝑃̅(𝑖−1)𝑥

𝑃̅(𝑖−1)𝑦

𝑃̅(𝑖−1)𝑧

1]

= 𝑀𝑅(2𝜃𝑖−1,𝑣̂𝑖−1) [

𝑃(𝑖−1)𝑥

𝑃(𝑖−1)𝑦

𝑃(𝑖−1)𝑧

1

] (5-5)

where 𝑀𝑅(2𝜃𝑖−1,𝑣̂𝑖−1) is a 4×4 rotation matrix defined in (3-3) and 𝑣̂𝑖−1 is the rotation axis defined as

follows

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(6), 2023, 1061-1073

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

1069

 𝑣̂𝑖−1 =
𝑃𝑖−1⨂𝑃𝑖

sin (𝜃𝑖−1)
 (5-6)

with 𝜃𝑖−1 being the angle between 𝑃𝑖−1 and 𝑃𝑖. Our path curve is a closed curve, therefore, 𝑖 − 1 and

𝑖 + 1 are modulo 𝑛.

Once we have 𝑃̅𝑖−1, we can compute 𝑃̅𝑖 as follows

 𝑃̅𝑖 =
𝑠𝑖𝑛(𝜃̅𝑖−1/2)

𝑠𝑖𝑛(𝜃̅𝑖−1)
𝑃𝑖+1 +

𝑠𝑖𝑛(𝜃̅𝑖−1/2)

𝑠𝑖𝑛(𝜃̅𝑖−1)
𝑃̅𝑖−1 (5-7)

or

[

𝑃̅𝑖𝑥

𝑃̅𝑖𝑦

𝑃̅𝑖𝑧

1]

= 𝑀𝑅(𝜃̅𝑖−1/2,𝑣̂̅𝑖−1)

[

𝑃̅(𝑖−1)𝑥

𝑃̅(𝑖−1)𝑦

𝑃̅(𝑖−1)𝑧

1]

 (5-8)

where 𝑀𝑅(𝜃̅𝑖−1/2,𝑣̂̅𝑖−1)
 is a 4×4 rotation matrix defined in (3-3) with 𝜃̅𝑖−1 being the angle between 𝑃̅𝑖−1

and 𝑃𝑖+1, and 𝑣̂̅𝑖−1 being the rotation axis defined as follows

 𝑣̂̅𝑖−1 =
𝑃𝑖+1⨂𝑃̅𝑖−1

𝑠𝑖𝑛(𝜃̅𝑖−1)
 (5-9)

Figure 5: Construction of the rotation axis 𝑣̂̅𝑖−1.

We are ready to compute 𝑎𝑖 and 𝑏𝑖 now. 𝑎𝑖 = 𝐵𝑖𝑠𝑒𝑐𝑡(𝑃𝑖 , 𝑃̅𝑖), mid-point of the circular arc between 𝑃𝑖 and

𝑃̅𝑖, is computed as follows

 𝑎𝑖 =
𝑠𝑖𝑛(𝜃̅𝑖/2)

𝑠𝑖𝑛(𝜃̅𝑖)
𝑃𝑖 +

𝑠𝑖𝑛(𝜃̅𝑖/2)

𝑠𝑖𝑛(𝜃̅𝑖)
𝑃̅𝑖 (5-10)

or

 [

𝑎𝑖𝑥

𝑎𝑖𝑦

𝑎𝑖𝑧

1

] = 𝑀𝑅(𝜃̅𝑖/2,𝑣̂̅𝑖)

[

𝑃̅𝑖𝑥

𝑃̅𝑖𝑦

𝑃̅𝑖𝑧

1]

 (5-11)

where 𝑀𝑅(𝜃̅𝑖/2,𝑣̂̅𝑖)

 is a 4×4 rotation matrix defined in (3-3) with 𝜃̅𝑖 being the angle between 𝑃̅𝑖 and 𝑃𝑖

(see Fig. 6) and 𝑣̂̅𝑖 being the rotation axis defined as follows

 𝑣̂̅𝑖 =
𝑃̅𝑖⨂𝑃𝑖

𝑠𝑖𝑛(𝜃̅𝑖)
 (5-12)

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(6), 2023, 1061-1073

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

1070

Figure 6: Construction of the rotation axis 𝑣̂̅𝑖.

𝑏𝑖 = 𝐷𝑜𝑢𝑏𝑙𝑒(𝑎𝑖 , 𝑃𝑖) is obtained by extending the circular arc 𝑎𝑖𝑃𝑖
̂ in the direction of 𝑎𝑖𝑃𝑖

⃗⃗⃗⃗⃗⃗ ⃗⃗ so that the angle

between 𝑏𝑖 and 𝑃𝑖 is the same as the angle between 𝑃𝑖 and 𝑎𝑖 (see Fig. 7).

Figure 7: Construction of the rotation axis 𝑣̂̃𝑖.

𝑏𝑖 is computed as follows

 𝑏𝑖 = 2𝑐𝑜𝑠(𝜃𝑖)𝑎𝑖 − 𝑃𝑖 (5-13)

or

 [

𝑏𝑖𝑥

𝑏𝑖𝑦

𝑏𝑖𝑧

1

] = 𝑀
𝑅(2𝜃̃𝑖,𝜃̂̃𝑖)

[

𝑎𝑖𝑥

𝑎𝑖𝑦

𝑎𝑖𝑧

1

] (5-14)

where 𝑀
𝑅(2𝜃̃𝑖,𝜃̂̃𝑖)

 is a 4×4 rotation matrix defined in (3-3) with 𝜃𝑖 being the angle between 𝑎𝑖 and 𝑃𝑖

(see Fig. 7) and 𝑣̂̃𝑖 being the rotation axis defined as follows

 𝑣̂̃𝑖 =
𝑎𝑖⨂𝑃𝑖

𝑠𝑖𝑛(𝜃̃𝑖)
 (5-15)

Once we have all the 𝑎𝑖 and 𝑏𝑖 constructed, we are ready to construct a closed composite cubic Bezier

curve on 𝑆2 that interpolates all the 𝑃𝑖 . Fig. 8 shows the relationship between 𝑎𝑖 , 𝑏𝑖 , 𝑃𝑖 and the

composite cubic Bezier curve 𝐶(𝑢). Each segment of 𝐶(𝑢) is defined by four control points. For instance,

the second segment of 𝐶(𝑢), denoted 𝐶2(𝑢), is defined by control points 𝑃1, 𝑎1, 𝑏2 and 𝑃2. In general,

the i-th segment 𝐶𝑖(𝑢) is defined by control points 𝑃𝑖−1, 𝑎𝑖−1, 𝑏𝑖 and 𝑃𝑖.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(6), 2023, 1061-1073

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

1071

Figure 8: A closed composite cubic Bezier curve that interpolates 𝑃0 ,𝑃1, 𝑃2, 𝑃3 and 𝑃4 (= 𝑃0) on 𝑆2.

The parameter space of each segment is the same: the unit interval [0, 1]. Each segment of the
curve is generated using the 𝑑𝑒 𝐶𝑎𝑠𝑡𝑒𝑙𝑗𝑎𝑢 algorithm for circular arc interpolation instead of linear

segment interpolation. For example, for the second curve segment 𝐶2(𝑢), if 100 points are to be

generated for the curve segment, we set step size to be ∆𝑢 = 0.01 and then use the following pseudo

code to generate the curve segment:

 Q[0][0] = 𝑃1;

 Q[0][1] = 𝑎1;

 Q[0][2] = 𝑏2;

 Q[0][3] = 𝑃2;

 Current = Q[0][0];
 𝑢 = 0.0;
 ∆𝑢 = 0.01;
 for (i=0; i<100; i++) {
 𝑢 = 𝑢 + ∆𝑢;
 for (j=1; j<=3; j++) {

 for (k=j; k<=3; k++) {
 cos𝜃𝑗,𝑘 = 𝑄[𝑗][𝑘 − 1] ∙ 𝑄[𝑗][𝑘];

 sin𝜃𝑗,𝑘 = √1 − (𝑐𝑜𝑠𝜃𝑗,𝑘)
2
 ;

 //sin𝜃𝑗,𝑘 is negative if cos𝜃𝑗.𝑘 is negative

 Q[j][k] =
𝑠𝑖𝑛((1−𝑢)𝜃𝑗,𝑘)

𝑠𝑖𝑛𝜃𝑗,𝑘
Q[j][k-1]+

𝑠𝑖𝑛(𝑢𝜃𝑗,𝑘)

𝑠𝑖𝑛𝜃𝑗,𝑘
Q[j][k];

 }
 }
 Next = Q[3][3];

 Line(Current, Next); //Draw a line segment from Current to Next
 Current = Next;
 }

This procedure generates a good 𝐶1-continuous curve on 𝑆2 that interpolates all the given 𝑃𝑖.

6 CONCLUSIONS

From the work shown in Sections 3, 4 and 5, one can see that anything quaternions can do, ordinary
rotation can do as well and actually more efficiently for most of the applications in geometric modeling,

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(6), 2023, 1061-1073

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

1072

computer graphics and computer animation. This is because for most applications in these areas, one
usually deals with geometric models with large number of points/vertices. Therefore, the techniques
presented in Section 3 is more efficient than using quaternions. Another important advantage of the
representation techniques presented in Section 3 is its capability to be accumulated with other
transformations in homogeneous coordinates so that one can accomplish all the transformations in
the modeling space (plus the projection process) with only one vector-matrix multiplication, an
advantage quaternion cannot enjoy. The work presented in Section 4 also shows that one can easily
recover rotation axis and rotation angle for ordinary rotations in a more general way than quaternion
rotation. Most importantly, quaternion rotation commonly used in generating smooth curves to
interpolate a set of given points on 3D sphere S can be completely replaced with ordinary rotation if
a technique to interpolate rotations on 3D sphere S developed in Section 5 is used. Hence, quaternions
are not really needed in geometric modeling, computer graphics and computer animation.

7 ACKNOWLEDGEMENT

Research work of the first author is supported by the National Science Foundation of China
(61572020).

8 REFERENCES

[1] Besl, P. J.; McKay, N. D.: A method for registration of 3-D shapes. IEEE Transactions onpattern
analysis and machine intelligence, 14(2):239–256, 1992. https://doi.org/10.1109/34.121791

[2] Clifford, W. K.: Preliminary sketch of bi-quaternions, Proceedings of the London Mathematical
Society, s1–4(1):381–395, 1873. https://doi.org/10.1093/nq/s4-XI.280.381c

[3] Dam, E. B.; Koch, M.; Lillholm, M.: Quaternions, Interpolation, and Animation. Technical Report

DIKU-TR-98/5, Department of Computer Science, University of Copenhagen, Denmark, July

17, 1998.
[4] Euler, Leonhard: Decouverte d'un nouveau principe de mechanique, Opera omnia (1957), Ser.

Secunda (Vol. 5):81{108, 1752}, Orell Fusli Turici.
[5] Faugeras, O. D.; Hebert, M.: The representation, recognition, and locating of 3-D objects,

International Journal of Robotics Research, 5(3):27–52, 1986.

https://doi.org/10.1177/027836498600500302
[6] Hamilton, W. R.: On quaternions; or on a new system of imaginaries in algebra. London,

Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 25(3):489–495, 1844.
https://doi.org/10.1080/14786444408645047

[7] Horn, B. K. P.: Closed-form solution of absolute orientation using unit quaternions, Journal of
Optical Society of America A, 4(4):629–642, 1987. https://doi.org/10.1364/JOSAA.4.000629

[8] Jia, Y.-B.: Quaternions and Rotation (Computer Science 477/577 Notes), Department of

Computer Science, Iowa State University.

 http://web.cs.iastate.edu/~cs577/handouts/quaternion.pdf
[9] Kantor, I. L.; Solodovnikov, A.S.: Hypercomplex Numbers, An Elementary Introduction to

Algebras, Springer-Verlag, 1989.
[10] Kuipers, J. B.: Quaternions and Rotation Sequences, Princeton University Press, 1999.

https://doi.org/10.1515/9780691211701
[11] Miura, K. T.; Wang, L.; Cheng, F.: Streamline modeling with subdivision surfaces on the

Gaussian sphere, Computer-Aided Design 33: 975-987, 2001. https://doi.org/10.1016/S0010-
4485(00)00134-2

[12] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P.: Numerical Recipies in C, 2nd
Edition, Cambridge University Press, Inc., 2002.

[13] Schwartz, J. T.; Sharir, M.: Identification of partially obscured objects in two and three
dimensions by matching noisy characteristic curves, International Journal of Robotics

Research, 6(2):29–44, 1987. https://doi.org/10.1016/0950-5849(87)90020-6

[14] Shoemake, K.: Animating rotation with quaternion curves, Computer Graphics, 19(3):245-
254, 1985. https://doi.org/10.1145/325165.325242

http://www.cad-journal.net/
https://doi.org/10.1109/34.121791
https://doi.org/10.1093/nq/s4-XI.280.381c
https://doi.org/10.1177/027836498600500302
https://doi.org/10.1080/14786444408645047
https://doi.org/10.1364/JOSAA.4.000629
https://doi.org/10.1515/9780691211701
https://doi.org/10.1016/S0010-4485(00)00134-2
https://doi.org/10.1016/S0010-4485(00)00134-2
https://doi.org/10.1016/0950-5849(87)90020-6
https://doi.org/10.1145/325165.325242

Computer-Aided Design & Applications, 20(6), 2023, 1061-1073

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

1073

[15] Zhao, F.; Wachem, B. G. M. van: A novel quaternion integration approach for describing the
behavior of non-spherical particles, Acta Mechanica, 224:3091–3109, 2013.
https://doi.org/10.1007/s00707-013-0914-2

http://www.cad-journal.net/
https://doi.org/10.1007/s00707-013-0914-2

