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Abstract. An algorithm for fast construction of a smooth subdivision surface that inter-
polates the vertices of an arbitrary input mesh M is presented. The central idea of the
proposed algorithm is to find the inverse A~" of the matrix A that calculates the limit points
of M with respect to a chosen subdivision scheme. However, instead of a costly matrix
computation process, a technique to calculate A~ indirectly by representing it as an infinite
series of matrices is developed. With this infinite series of matrices, one can construct an
infinite iterative series of meshes, which converges to a mesh whose subdivision surface inter-
polates the given input mesh M. Most importantly, control points of these infinite iterative
series of meshes can be calculated locally based on the chosen subdivision scheme. Hence,
the matrices A and A™! do not have to be really constructed. They are simply used in a
theoretical derivation to obtain the iteration formula. The construction of the interpolation
surface is done basically by iteratively adjusting vertices of the given mesh locally until some
given error tolerance is reached. The concept of iterative interpolation has been presented
in the literature before. The main differences between our algorithm and existing approaches
are five-fold: 1). Our algorithm is the first one that derives the iterative equation from the
perspective of computing A~ 2). Rigorous mathematical proof is provided that guarantees
the existence, convergence and uniqueness of A~ 3). Our iterative interpolation algorithm,
as proven in the paper, converges at an exponential rate, is a local process and does not in-
volve costly matrix computation. Hence the new method is very fast and can handle meshes
with large number of vertices. 4). Our algorithm does not require fairing in the construction
process because solution to the above interpolation process is unique. 5). Although only the
general Catmull-Clark subdivision surface is used here for deriving the iterative algorithm,
the idea of the proposed algorithm works for other popular subdivision schemes as well.
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1 Introduction

The study of smooth surface construction from data points produced by sampling or a laser range scanning
system has become increasingly important in computer graphics, reverse engineering, geometric modeling,
interactive design and animation [1, 5, 4]. Interpolation is the most widely used technique in this smooth
surface construction process. There are many subdivision surface based interpolation algorithms available
in the literature. These algorithms can be roughly divided into three types. The first, called interpolating
subdivision [6, 8], generates an interpolation surface by applying well designed subdivision rules. The second
one, called global optimization [7, 10], does the work by building a global linear system with some fairness
constraints to avoid undesired undulations. And the last one, called progressive interpolation [2, 3, 18], uses
some local adjustment of mesh vertices to achieve an new mesh so that the subdivision surface of the new
mesh interpolates the original mesh. In this paper, we propose an algorithm that is a type of progressive
interpolation methods. Our new method has the advantages of global property, which means it generates
smooth interpolating subdivision surfaces that resemble the shape of the given meshes well. Meanwhile our
new method has the advantages of local property, which means it iteratively generates new meshes by moving
vertices in the input mesh through performing affine transformation on nearby vertices locally. Because it is
done locally, our new algorithm is very fast and very easy to implement.

Subdivision surfaces [1, 4, 5, 12] are efficient smooth surface representation for meshes of arbitrary topology.
Recently with parametrization of subdivision surfaces becoming available [9, 17], they have become popular
in computer graphics, geometric modeling and animation because of their capability in modeling complex
shape of arbitrary topology, their relatively high visual quality and their stability and efficiency in numerical
computation. Subdivision surfaces cover both parametric forms [15, 17] and discrete forms. Parametric forms
are good for design and representation and discrete forms are good for machining and tessellation (including
FE mesh generation). Therefore we have a representation scheme that is good for almost all applications.
Powerful interpolation techniques using subdivision surfaces as a representation scheme certainly are needed.

Subdivision surfaces are used as the surface representation in our new interpolation technique. Without
loss of generality, we shall assume the subdivision scheme considered in this paper is general Catmull-Clark
subdivision scheme [9]. But the idea behind our approach works for other subdivision schemes as well, for
instance, Loop subdivision[12] or Doo-Sabin [5] subdivision scheme.

2 Previous Work

Interpolation is an extensively studied classic problem in computer graphics and geometric modeling. When it
comes to interpolating arbitrary topology meshes, subdivision surfaces are the most frequently used representa-
tion scheme. There are three major ways to interpolate a given mesh with a subdivision surface: interpolating
subdivision [6, 11, 8, 16, 19], global optimization [7, 13] and progressive interpolation [3, 2, 18].

In the first approach, interpolating subdivision, a subdivision scheme that interpolates the control vertices,
such as the Butterfly scheme[6], Zorin et al's improved version [19] or Kobbelt's scheme [8], is used to
generate the interpolating surface. New vertices are defined as local affine combinations of nearby vertices.
This approach is simple and easy to implement. It can handle meshes with large number of vertices. The
resulting surfaces are C'' continuous. However, since no vertex is ever moved once it is computed, any
distortion in the early stage of the subdivision will persist. This makes interpolating subdivision very sensitive
to the irregularity in the given mesh. When the mesh vertices are dense enough, the undesired artifacts would
not be so clear to see. But when the mesh vertices are not so dense, the effect of undesired artifacts becomes
obvious on the resulting interpolating surfaces.

The second approach, global optimization, usually needs to build a global linear system with some con-
straints [14]. The solution to the global linear system is an interpolating mesh whose limit surface interpolates
the vertices of the given mesh. This approach usually requires some fairness constraints in the interpolation
process, such as the energy functions presented in [7], to avoid undesired undulations. Although this approach
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seems more complicated, it results in a traditional subdivision surface. For example, the method in [7] results in
a Catmull-Clark subdivision surface (CCSS), which is C? continuous almost everywhere and whose properties
are well studied and understood. The shape of the resulting interpolating surface resembles that of the given
mesh more faithfully because of the global property. The problem with this approach is that it is difficult to
handle meshes with large number of vertices.

The third approach, progressive interpolation, uses some local adjustment of mesh vertices to achieve an
new mesh so that the subdivision surface of the new mesh interpolates the original mesh. It also results
in a traditional subdivision surface. Most progressive interpolation algorithms generate smooth interpolating
subdivision surfaces that resemble the shape of the given meshes well hence a fairing process is not needed
because they do not need to solve a global linear system, instead they generate new meshes progressively by
performing local linear transformation on nearby vertices.

3 Basic ldea

Given a mesh M and a subdivision scheme, our task is to find a smooth subdivision surface to interpolate M.
We use the following notations in the paper: A refers to the matrix [9] that calculates all the limit points of
M with respect to the given subdivision scheme; S(M) refers to the limit surface of M; I(M) refers to the
subdivision surface that interpolates M and satisfies the property that limit points of its control mesh equal
to M, i.e., if P is the control mesh of I(M) then we must have M = A x P. We also assume the subdivision
scheme considered here is the Catmull-Clark scheme. Hence, I(M) and S(M) are Catmull-Clark subdivision
surfaces. However, the techniques presented here work for other subdivision schemes as well.

To find I(M), we just need to find P such that I(M) = S(P), which means M = Ax P, or P =A™+« M
For any given mesh (A is only dependent on the topology of the given mesh M and the chosen subdivision
scheme [9]), if we can find A™!, then the interpolation problem is solved. So we just need to prove that for
any given mesh, A™! exists and, for any given mesh, we are able to compute A™! directly or indirectly. We
will prove the existence of A™! in Section 6. However, we should not directly compute the A™! because the
matrix A could be huge (the size of A is N x N, where N is the number of vertices of the input mesh M).
Hence for meshes with thousands or even millions of vertices, it is not cost effective to directly find A~! and
also the result could be numerically unstable. Our basic idea in this paper is to compute A™" indirectly using
an iterative approach.

4 Fast lterative Interpolation

In this section, we present our approach for obtaining A~! by iterations. Let

oo

L= E-A=(E-A+(E-A) +(E-A?+E-A+ - 1)

=0

where E is an identity matrix that has the same dimension of A. The convergence of the above infinite series
will be proven in Section 6. By multiplying (E — A) to both sides of Eq. (1), we have

E-AL=E-A'+E-A?*+(E-A>P+(E-A?! ... (2)
By subtracting the left (right) side of Eq. (2) from the left (right) side of Eq. (1), respectively, we get
(E—(E—A))L=(E—-A)°
Simplifying the above equation, and noting that (E — A)? = E, we get AL = E, which leads to

L=> (E- (3)

=0
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Eq. (3) provides an indirect way to compute the inverse of matrix A. But it still has too much costly
matrix computation and is not efficient for obtaining A™'. Furthermore, based on the definition of P and M
in the previous section, we have

(oo}
P=A"'"M =) (E-A)M.
i=0
Let My = M be the given mesh and for any i > 0, define

M; = (E—A)'M.

It can be proven (see Section 6) that
11— 00
As a result, I(M;) approaches to 0 when i tends to co. This is due to the convex hull property of subdivision
surfaces. In addition, because subdivision is a linear process, we have Y S(M;) = S(3>_ M;). Therefore, P is
the control mesh of the interpolating surface I(M), i.e., I(M) = S(P). From the above definition of M;, we
have
My = (E—A)TM=(E—-A)(E-A)'M=(E—-AM, = M; — AM,.

Hence, for any n > 0, we can have the following.

My =M, —Ax M,

M, =M,_1—AxM,_4
My 1 =M, o—AxM, o
My _o=M,_3—AxM, 3

M1 :Mo—A*MO

Adding up all the values on the left side and adding up all the values on the right side of all the equations
in Eq. (4), respectively, also letting
n
Py=> M,
i=0

and noting My = M, we get P,11 — M = P, — Ax P,. Simplifying it we have
Poi1=P,+M—-AxP,. (5)

Eq. (5) is the most important result of this paper because it provides an iterative way to calculate P,
which basically is P,.

Just like we mentioned before, Eq. (3) should not be used to construct the interpolating surface directly,
because it requires costly matrix multiplications. Actually, in the construction of the interpolating surface,
there is no need to compute the matrix A at all, let alone computing the matrix A~!. We can use Eq. (5)
to find the control mesh P = P, of the interpolating surface iteratively and this is because A * P, can be
calculated locally [9] according to the chosen subdivision scheme without the need to construct the matrix A.
As a result, matrices A and A™" are not needed in the iterative process at all, even though they are used in
the derivation process of Eq. (5).

On the other hand, because A is invertible, it is easy to see that A"*M = P. Hence P is indeed the ONLY
mesh (having the same topology as M) whose limit surface interpolates the given M using the given subdivision
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scheme whose subdivision matrix is A. Consequently a fairing process is not needed in the construction of the
interpolation surface because for the given subdivision scheme (say Catmull-Clark subdivision) there exists only
one such surface that interpolates the given mesh. Traditional interpolation techniques need a fairing process
because extra vertices are added in the interpolation process to smooth out the resulting surface. These extra
vertices, with possibly improperly assigned positions, lead to undulations in the interpolating surface because
they need to be interpolated as well. Our approach avoids the fairing process, which leads to less undesired
undulation artifacts.

Also traditionally, people tried to directly find A~*M by solving a linear system. It is difficult to deal with
meshes that have large number of vertices that way. With our new algorithm, P can be constructed not by
solving a linear system, but by iteratively applying eq. (5) until some given error tolerance is reached (see
Section 5). Hence there is no problem to deal with meshes with large number of vertices.

It can be proven that Eq. (5) converges at an exponential rate (see Section 6). Hence good interpolation
results can be obtained in just a few iterations. Nevertheless, error can be explicitly calculated as ||M —Ax P, ||
and the iteration stop criteria can be determined based on some given error tolerance. Because it converges
very fast, the new interpolation technique is suitable for interactive shape design. Figure (2) shows some
test results. We can see from these examples that smooth and visually pleasant interpolation shapes can be
obtained for dense and complicated meshes. All the test cases are done in less than one second.

5 Pseudo Code of the Iterative Interpolation Algorithm

In this section, we provide the pseudo code using the above iterative approach for finding the interpolation
surface of an input mesh of arbitrary topology.

Iterative Interpolation Algorithm:

Input: a mesh M, a error tolerance ¢, and a choice of subdivision scheme.
Output: a mesh P, whose subdivision surface interpolates M. Let P = M,

Do {
Locally calculate @Q = A x P using the given subdivision scheme.
/*Note that in the above step, A does not need to be constructed.*/
d=1M-Qlf;
P=P+M-Q;

} while(d > ¢);

Perform subdivision on P to obtain the interpolation surface of M.

6 Mathematical Proof

In this section we provide rigorous mathematical proof for the proposed iterative interpolation method. First
of all, let's construct the matrix A.

6.1 Construction of Matrix A

Even though A is not needed in the implementation of the iteration process, for our proof, it is better to show
what A is. Here we construct A using generalized Catmull-Clark subdivision scheme. Other schemes can be
done similarity. For generalized Catmull-Clark subdivision scheme, new face points and new edge points are
calculated the same way as they are in a standard Catmull-Clark subdivision scheme, but the new vertex points
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after one subdivision are calculated differently using the following formula.

n_2 1 n 1 n
V= . V—l—EZ(aV—l—(l—a)Ej)—i—ﬁij,
j=1

Jj=1

where 0 < a <1 and f; are the new face points after one subdivision. When . = 0, it becomes the standard
Catmull-Clark subdivision scheme. The limit point of the vertex V; of degree n; can be calculated as follows
[9].

1

Vi = m(buvz + ;bijEj + ;biij)v

where

bii = (ni — 1)ng +nia + Y- 7

bij=(2—a)(1+F +2), if (Vi,V)) is an edge

bi; =4/d;j, if (Vi,V;) is a diagonal line of a face

b;; =0, if (Vi,V;) is not in a common face
Note that the above formula is used for a vertex whose surrounding faces might not be four-sided. Hence in
the above formula, E; are the edge points, but F}; are all the generalized faces points. d;; are the number
of sides of the face, of which (V;,V}) is an edge or a diagonal line (see figure (1)). Note that d;; might not

equal to d;; because the two faces adjacent to the edge (V;,V;) could be of different side. But if (V;,V}) is a
diagonal line of a face, d;; = d;;. According to the above definition, it is easy to see that

_r
ni(n; +5)

Aij = bij

Figure 1: Vertex V with valence n and its neighboring face points and edge points. Note that faces might
not be 4-sided.

6.2 Eigen Analysis of Matrix A

To prove A is invertible, and to prove (E — A)? approaches 0 when i approaches co, we just need to prove that
any A's eigen value \; € (0,1]. It is easy to check that A;; > 0 and for each row, Zj Ai; =1, hence \; < 1;
Therefore we just need to show all the eigen values A; of A are \; > 0. A common coefficient 1/n;/(n; + 5)
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can be factored out for each row of A. If we define a matrix B as B;; = b;;, A can be represented as
A = diag(1/n;/(n; +5)) * B. It is easy to verify that B is symmetric. Hence to prove all B's eigen values are
bigger than 0 is equivalent to prove B is positive definite.

For any vector X # 0, if XTBX > 0 then B is positive definite. It is easy to see this if we expand X” BX

as follows.
XTBX = > 2bjmw; + Y 2bjxw; + Zb“m

all E all D
4 4 9
:Z(bij_d*_d ) (i + ;) "‘Z (@i +aj+ - +xp)
all E v all F dij

- S <bij—d‘f,j—‘f>— S e

, d d
i (Vi,V;) €E 7 (v vyee Y

where E denotes all edges, D denotes diagonal lines of faces and F' denotes faces of the given mesh. Let

4 4 4
pi=bii— (bij_I_I)_ > -
(Vi,Vj) € Yoot mwer Y

For now, we assume o = 0, which gives us the standard Catmull-Clark subdivision surface. Because b;; > 0,
fj > 0 and b;; — d% — ﬁ =2> 0, to prove X' BX, we just need to show p; > 0. By plugging in b;; and
bi;j, we have p; =n? — 3% n;.

Obviously, when n; > 4, we have p; > 0. Hence B is positive definite. Also we can conclude that B is
positive definite if there exists at least one vertex Vj in the given mesh such that ny > 4, i.e., pp > 0, then
XTBX > 0. This can be proven by contradiction. Suppose this is not the case, then there exists an X # 0
such that XTBX = 0. It is easy to see that x; = 0 otherwise xT'BX > pkxk > 0. In addition, all z; where

4

(Vk,V) is an edge or a diagonal line must be 0 as well otherwise X'BX > (b, — el k)(ac;C + x;)% =

(brj— W — dék )xj > 0. Similarly, all vertices directly or indirectly connecting to Vj, are all equal to 0. Because
M is a connected mesh, all x; are 0, which contradicts X # 0. Hence if there exists at least one vertex whose
valance is bigger than 3, then B is positive definite as well.

When all n; are 3 in a mesh and o = 0, then B is not positive definite. However, we can change a to
modify the standard Catmull-Clark subdivision scheme into a general Catmull-Clark subdivision scheme, such
that B is positive definite. It is easy to verify when « > 0, and ni > 3, we have p; > 0. Therefore to make B

positive definite, we just need to find «, such that b;; — d%_ — a5 > 0. By solving this inequality, we have

a € (0, 7]. Let a be any value in this range, say a = 0.5, B becomes positive definite.

Because B is positive definite, A is positive definite as well. Therefore A is invertible and all its eigenvalues
are € (0,1]. We call a mesh, whose A is invertible uniquely interpolatable using some subdivision scheme.
According to the above proof, we can make any given mesh uniquely interpolatable using general Catmull-Clark
subdivision scheme. For other subdivision scheme, similar proof can be done. For example, it can be proven
for Loop and Doo-Sabin subdivision surfaces, it is always uniquely interpolatable for any given mesh.

6.3 Proof of Convergence in an Exponential Rate

Because all A’s eigenvalues are € (0, 1], all the eigenvalues of (E — A) are € [0,1). Hence (E — A)? converges
to 0 when i approaches to infinity. As a result, > .- (E—A)" converges to A~! when n approaches to infinity.
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PHHEY

(a) Input mesh (b) Subdivision surface (¢) Interpolation mesh (d) Subdivision surface (e) Surface (d) interpo-
of mesh (a) with the same topology of mesh (c) lating input mesh (a)
as mesh (a)

(f) Input mesh (g) Subdivision surface (h) Interpolation mesh (i) Subdivision surface (j) Surface (i) interpo-
of mesh (f) with the same topology of mesh (h) lating input mesh (f)
as mesh (f)

aifll o a8

(k) Input mesh (1) Subdivision surface (m) Interpolation mesh (n) Subdivision surface (o) Surface (n) interpo-
of mesh (k) with the same topology of mesh (m) lating input mesh (k)
as mesh (k)

dadda

(p) Input mesh (q) Subdivision surface (r) Interpolation mesh (s) Subdivision surface (t) Surface (s) interpo-
of mesh (p) with the same topology of mesh (r) lating input mesh (p)
as mesh (p)

Fig. 2: Examples of iterative mesh interpolation.
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Also it can be proven that eq. (3) or eq. (5) converges in an exponential rate. To prove this it is sufficient
to prove ||Ps, — P,|| converges to 0 in an exponential rate.

[[Poo = Pu|

=122 (E—A)Y M|

= ||(E—= A" 1« A~ % M|

= || XA X« AT x M|

<= [T X (X [JATE ] ]
= [|A"HH | &,

where k is a constant and A are the diagonal matrix whose A;; is the ith eigenvalue of matrix (E—A). Suppose
the biggest eigenvalue of matrix (E — A) is A, then |[J[A"T}|| < A\"*1. As proved above, 0 < X\ < 1, hence we
have

||Po — Py|| < ks A"

According to the definition of convergence rate, it can be seen that P, converges to P., exponentially.

7 Test Results

The proposed techniques have been implemented in C++ using OpenGL as the supporting graphics system
on the Windows platform. The implementation is simple and straightforward. Quite a few examples have
been tested with the techniques described here. All the examples have extra-ordinary vertices. Some of the
tested results are shown in Figure (2). The intention of our implementation is to demonstrate the versatility
and capability of the new representation for surfaces and meshes given in eq. (5), hence we did not compare
our results with other similar methods. Nevertheless, our method is easy to understand, easy to implement,
and yet visually pleasant results still are achievable. One main advantage of our new method is that it is very
fast (as proved theoretically in the above section). All the test examples shown in this paper are done in less
than a second in a normal laptop.

8 Summary

We present a fast iterative algorithm for constructing a smooth subdivision surface that interpolates the
vertices of a mesh with arbitrary topology. The interpolating surface is obtained by iteratively adjusting the
vertex positions locally. Hence there is no need for solving linear systems, and no need for fairing in the
interpolation surface construction process. Because of this, the new method can handle meshes with large
number of vertices and yet good interpolation results can still be achieved. It is proved that for any mesh, the
iterative process is convergent at an exponential rate, hence the method is very fast and effective. It is also
proved that of all the meshes that have the same topology of a given mesh, there is only ONE mesh whose
limit surface interpolates the given mesh. Our iterative interpolation method converges to this mesh.
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