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ABSTRACT 

 

For the machining of a complicated surface, a large amount of linear NC segments are usually 

generated to approximate the surface with precision. If inaccurate NC codes are not discovered 

until the end of cutting, time and expensive material would be wasted. However, accurate and 

view-independent verification of multi-axis NC machining is still a challenge. This paper 

emphasizes the use of adaptive octree to develop a reliable multi-axis simulation procedure which 

verifies the cutting route and the workpiece appearance during and after simulation. Voxel models 

with adaptive octree data structure are used to approximate the machined workpiece with specified 

resolution. Implicit functions are used to represent various cutter geometries for the examination of 

cutter contact points with speed and accuracy. It allows a user to do error analysis and comparison 

between the cutting model and the original CAD model. It can also verify the exactness of NC 

codes before machining is carried out by a CNC machine in order to avoid wasting material and to 

improve machining accuracy. 
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1. INTRODUCTION 

NC machining is a fundamental and important manufacturing process for the production of mechanical parts. Ideally, 

an NC machine would be running in unmanned mode. The use of NC simulation and verification is essential if 

programs are to be run with confidence during an unmanned operation [1]. Therefore, it is of vital importance to 

guarantee the exactness of NC paths before execution. From literature, NC simulation can mainly be divided into 

three major approaches [7], described as follows. 

The first kind of approach uses direct Boolean intersections of solid models to calculate the material removal volumes 

during machining [2,3]. This approach is theoretically capable of providing accurate NC simulation, but the problem 

with using the solid modeling approach is that it is computationally expensive. The cost of simulation using 

constructive solid geometry is proportional to the fourth power of the number of tool movements O(N4) [11]. 

The second kind of approach uses spatial partitioning representation to represent the cutter and the workpiece [4-8]. 

In this approach, a solid object is decomposed into a collection of basic geometric elements, which include voxels 

[4,5], dexels [6,7], G-buffers [8], and so on, thus simplifying the processes of regularized Boolean set operations. The 

third kind of approach uses discrete vector intersection [9-11]. This method is based on a discretization of a surface 

into a set of points. Cutting is simulated by calculating the intersection of vectors which pass through the surface points 

with tool path envelopes. 

During multi-axis NC machining, the cutting tool frequently rotates so that it is very difficult to calculate a workpiece 

model that is view-dependent. Thus, in this paper, we use the voxel data structure to represent the workpiece model. 

But according to past literature, if precision is needed, a large number of voxels must be set up to carry out Boolean 

set operations. This consumes memory and time. Thus, our approach uses the octree data structure to represent the 

workpiece model. The octree can be adapted to create voxels with the desired resolutions that are needed. We utilize 

the octree to quickly search for voxels which have contact with the cutter. However, our approach uses an implicit 

function to represent the cutting tool because a cutter can be easily and exactly represented by implicit algebraic 

equations, and judging whether the cutter keeps in contact with the workpiece is also easy. Thus, our approach is 

reliable and precise. 

The content of the paper is organized as follows. Section 2 discusses the workpiece representation using octree based 

voxel modes. Section 3 presents the formulation of implicit functions used to represent the geometry of various cutters. 
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Section 4 outlines the procedure of the proposed algorithm for 3-axis NC simulation. Section 5 shows how the 

proposed approach can be easily adapted to 5-axis simulation by extending the implicit functions to accommodate for 

the 5-axis rotation. Examples are given to demonstrate the effectiveness and simplicity of the proposed approach. 

Section 6 shows the experimental results of the required memory space and computation time for NC simulation. At 

the end, conclusions are made in Section 7. 

 

2. VOXEL REPRESENTATION OF SOLID GEOMETRY 

In this paper, we use a voxel data structure to represent the free form solid geometry of a milled workpiece because a 

voxel model has axis alignment and view-independent properties. At the same time we use the octree to avoid creating 

a large number of voxels. The method judges whether the cutter keeps in contact with the workpiece, finds all voxels 

which have such contact, and then subdivides these voxels into eight voxels in space recursively until the resolution 

reaches the desired precision level. Thus, if there is no voxel in contact with the cutter, there is no need to subdivide 

the voxel.  Fig. 1. shows the Octree data structure and the voxel model it represents. 

 

 
 

Fig. 1. Octree data structure and the associated voxel model 

 

Traditionally, since machining simulation uses the uniform voxel data structure to represent a milled workpiece, when 

precision increases, great quantity of voxel data will be produced to represent the workpiece. This will make the 

machining simulation slow because a lot of computer memory is needed. Thus, we use the octree data structure to 

adaptively create voxels as needed during simulation. 
 

3. REPRESENTATION OF CUTTER GEOMETRY USING IMPLICIT FUNCTIONS 

The spatial partitioning approach with uniform voxels has failed to address multi-dimensional NC verification for 

workpieces of comparable complexity and accuracy. If high precision is needed, a large number of voxels must be set 

up to carry out Boolean set operations. This will consume considerable amount of memory and time. But our new 

approach for three-axis simulation uses the adaptive voxel model to represent a milled workpiece, and uses implicit 

functions to represent a solid model of the cutter. Since the cutter is not decomposed into a collection of basic 

geometric elements, high accuracy can be achieved. At the same time the workpiece model makes use of the octree 

model to reduce the number of unnecessary voxels. In the following, we describe the representation of various cutters 

using implicit functions. 

Flat endmills can be represented by a cylinder. Fig. 2. shows the flat endmill aligned with the direction of cutting. 

Assuming the tool is parallel to the z-axis, and the coordinate system is translated such that the center point is located 

at the origin. Thus, the implicit function of a flat endmill is: 

2 2 2( , , ) max ( ) , 0
2 2

L L
F X Y Z abs Z X Y R if Z

 = − − + − ≥ 
 

                                                                               (1) 
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This implicit function is used to determine whether a voxel is inside, outside, or intersected with the cutter without 

losing any accuracy. The judgment can be made by inserting the coordinates of the vertices of a voxel into the implicit 

function. Eqn. (2) describes the relationship between a vertex and the cutter, which is also illustrated in Fig. 3. 

0       lie inside the surface

( , , ) 0 lie on the surface

0         lie outside the surface

F X Y Z

<

=
>

                                                                                                         (2) 

where 

R : the cutter radius 

L : the distance measured from the center point along the cutter axis 

 

 
 

Fig. 2. Flat endmill and the associated coordinate system  

 

 
 

Fig. 3. Implicit function used to determine the interior or exterior of a cutter 

 

Ball endmills can be represented by the union of a cylinder and a sphere, as shown in Fig. 4. Assuming the tool is 

parallel to the z-axis, and the origin of the coordinate system is translated to the center of the sphere, the implicit 

function of a ball endmill can be described as: 

{ }2 2 2

2 2 2 2

max ( ) ,  0
( , , )

abs Z L X Y R if Z
F X Y Z

X Y Z R otherwise

 − + − ≥
= 
 + + −

                                                                                 (3) 

where 

R : the cutter radius 

L : the distance measured from the center point along the cutter axis 
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Fig. 4. Ball endmill and the associated coordinate system 

 

Fillet endmills can be represented by the union of two cylinders and a torus. Assuming the tool is parallel to the z-axis, 

and the coordinate system is translated to the center point as shown in Fig. 5., the implicit function of a fillet endmill 

can be derived as:  

{ }
{ }

2 2 2

2 2 2

2 2 2 2 2 2 2 2 2

max ( ) , ( ) 0

( , , ) max ( ) ,  ( )

( ) 4 ( )

abs Z L X Y R r if Z

F X Y Z abs Z r X Y R else if abs X R

X Y Z R r R X Z otherwise

 − + − + ≥



= − + − ≤


+ + + − − +


                                               (4) 

where 

R : the radial distance from the cutter axis to the cutter corner center 

r  : the cutter corner radius 

L : the distance measured from the center point along the cutter axis 

 

 
 

Fig. 5. Fillet endmill and the associated coordinate system 

 

As simple as a flat endmill, or as complex as a fillet endmill, the implicit functions can be used to decide whether a 

point is inside or outside a cutter by a direct application of Eqn. (2). The use of implicit functions to represent a cutter is 

not only precise in geometry, simple in concept, and the programming of implicit functions is also very easy and 

straightforward. Thus, we can easily know the geometric relationship between the stock and the cutter by using the 

implicit function ( , , )F X Y Z . 

 

4. SIMULATION OF THREE-AXIS NC MACHINING 

After the implicit function of the cutting tool is formulated, an important task that needs to be performed is to 

determine which voxels need to subdivided or deleted during the milling process. Fig. 6. shows the flow chart of a 

three-axis NC path simulation. 
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Fig. 6. Flow chart of three-axis machining simulation 

 

The process of a three-axis NC path simulation is described as follows. 

(1) The first step is to read the NC codes. Then for each NC segment, we can get the start and end cutter location (CL) 

points of a tool motion. Thus, the three-axis motion is modeled by a joint interpolation of CL points of the 

configuration of any two tool positions. 

(2) The bounding box of the cutter is used preliminarily to judge which part of a voxel model the cutter is in contact 

with. The purpose is to get rid of voxels not in contact with the cutter. If it is determined that a voxel is in contact with 

the cutter, the voxel vertices will be substituted into the implicit function of the cutter to decide if the voxel vertices lie 

inside or outside the cutter. 

(3) If all of the voxel vertices meet the conditions ( , , ) 0F X Y Z < , it is confirmed the voxels have been totally cut by the 

cutter; that is to say that the voxel falling in the cutter should be eliminated. If part of the vertices fall inside and the 

others outside, it means the voxel needs to be further divided. For each subdivided voxel, step (2) and step (3) will be 

carried out recursively until a predetermined precision level is reached.  

After the current segment of the NC path is finished, step 1 is performed again, and the next segment of the NC code is 

read. The procedure is followed to the end until all NC codes have been read.  

In the procedure for three-axis machining simulation mentioned above, it is clear that voxels are subdivided as needed 

according to the geometric relationship between the cutter and the workpiece;  a large number of voxels are not 

created all at once in the beginning. Fig. 7. shows that voxels in contact only with a ball endmill will be subdivided by 

the octree. Voxels not in contact with the cutter will not be subdivided. Thus, this approach greatly reduces the number 

of voxels and saves memory during simulation. 

 

 
 

Fig. 7. Three-axis NC machining simulation. 

 

In comparison with z-map model, NC simulation using voxel model can display multi-axis machining result. The dexel 

model has the restriction of being view-dependent, but the voxel model does not have this restriction. Thus, three-axis, 

five-side machining can utilize the three-axis simulation method of this paper, as Fig. 8. shows. 
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Fig. 8. Example of three-axis and five-side simulation 

 

5. SIMULATION OF FIVE-AXIS NC MACHINING 

In five-axis NC machining, in addition to the three translation movements, the tool axis can also be rotated. Therefore, 

our approach to five-axis simulation only revises the implicit function of the cutter. All other procedures are the same as 

the three-axis simulation. Thus, the three kinds of cutters can be expressed as follows:  

Flat endmills can be represented by a cylinder. Fig. 9. shows that the tool axis is along ˆ{ }n  and the center point is 

located at{ }p . Thus, the implicit function of a flat endmill is: 

2 2 ˆ( , , ) ({ } { }) [ ] ({ } { })  0 { } ({ } { })T TF X Y Z x p n x p R if n x p L= − − − − ≤ − ≤%                                                  (5) 

where 

R : the cutter radius 

{ } { }Tx X Y Z= : the position of a voxel vertex 

ˆ{ } { }
T

x y zn n n n= : the unit vector of the tool axis 

{ } { }
T

x y zp p p p= : the center point 

2

2 2

2

10

[ ] 0 [ ] 1

0 1

x x y x zz y

z x x y y y z

y x
x z y z z

n n n n nn n

n n n n n n n n n

n n n n n n n

 −−      = − = −    −  −   

% %  

 

 
 

Fig. 9. Flat endmill rotated in five-axis mode 
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Ball endmills can be represented by the union of a cylinder and a sphere. Fig. 10. shows that the tool axis is 

along ˆ{ }n and the center point is located at{ }p . Thus, the implicit function of a ball endmill is:  

2 2

2

ˆ({ } { }) [ ] ({ } { })  0 { } ({ } { })
( , , )

({ } { }) ({ } { })

T T

T

x p n x p R if n x p L
F X Y Z

x p x p R otherwise

− − − − ≤ − ≤
= 

− − −

%
                                                     (6) 

where 

R  : the cutter radius 

ˆ{ }n  : the unit vector of the tool axis 

 
 

Fig. 10. Ball endmill rotated in five-axis mode 

 

Fillet endmills can be represented by the union of two cylinders and a torus. Fig. 11. shows that the tool axis is along 

ˆ{ }n and that the center point is located at{ }p . Thus, the implicit function of a round endmill is:  

( )

2 2

2 2

2 2

2
2

2 2 2 2 2

ˆ( { } [ ] { }) ( )  0 { } { }

ˆ ˆ 0 { } ({ } { })   and
( , , ) ( { } [ ] { })

            ( { } [ ] { })

ˆ( { } [ ] { }) { } { } 4 ({ } [ ] { })

T T

T
T

T

T T T

v n v R r if n v L

else if n v r n r
F X Y Z v n v R

v n v R

v n v n v R r R v n v otherwise


 − − + ≤ ≤
 ≤ − <

= − −
− ≤


 − + + − + 
 

%

%

%

% %


    (7) 

where 

R  : the radial distance from the cutter axis to the cutter corner center 
r   : the cutter corner radius 

ˆ{ }n  : the unit vector of the tool axis 

{ } { } { }v x p= −  

 

 
 

Fig. 11. Fillet endmill rotated in five-axis mode 
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Fig. 12. shows a simple example of a cutter axis rotated from 70 degrees to 50 degrees about the x-axis and moved 

along the x-axis. Fig. 13. shows the tool paths and simulation process used for five-axis machining of an impeller. Fig. 

14. shows another example of five-axis machining simulation of a blade.  

 

 
 

Fig. 12. Five-axis machining simulation. 

 

 
 (a)                                                              (b) 

 
(c)                                                               (d) 

 

 
 

Fig. 13. Example of impeller in five-axis simulation. (a) Tool paths. (b)(c) In-process workpiece with a cutter. (d) Finished part. 
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(a)                                                               (b) 

 
(c)                                                               (d) 

 
 

Fig. 14. Example of blade in five-axis simulation. (a) Tool paths. (b)(c) In-process workpiece with a cutter. (d) Finished part. 

 

6. EXPERIMENTAL RESULTS 

The proposed method has been implemented in C++ and some test cases were run on a 2.4 GHZ Pentium 4 

computer. Tab. 1. gives a comparison of the required memory space and computation time for adaptive NC 

simulation. The first row shows the pictures of NC path for four different models. The second and third rows show the 

information of NC code. The fourth row is the resolution of the workpiece model. The cutter models are presented by 

implicit functions exactly, so there is no accuracy issue here. The fifth row shows the types of cutter being used. The 

last three rows are the required memory space, computation time, and the rendered simulation result. 

 

Part  Impeller Blade Shoe Bottle 

NC path 

    
Number of NC code (line) 2654 2536 74803 3340 

Length of NC code (mm) 24950 8642 27287 3060 

Resolution (mm) 0.1 0.1 0.1 0.1 

Cutting tool Flat R3 Ball R10 Flat R1.5 Ball R1 

Computation time (Sec) 562 387 296 209 

Memory space (MB) 192 101 67 132 

Simulation result 

    
 

Tab. 1. Required memory space and computation time for adaptive NC simulation. 
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Tab. 2. gives a comparison of the required memory space and computation time for NC simulation using uniform 

voxel models. The parameters remain the same as adaptive NC simulation. Under this condition, we are not able to 

simulate case1 (Impeller) and case3 (shoe) because such cases exceed our memory limitation. The results that can be 

observed are case 2 (blade) and case 4 (bottle). By comparison, the advantage of the adaptive NC simulation is clear.  

A great reduction of time and space can be achieved by using the adaptive NC simulation. 

 

Part  Impeller Blade Shoe Bottle 

Computation time (Sec) X 1491 X 721 

Memory space (MB) X 414 X 380 

 

Tab. 2. Required memory space and computation time for NC simulation with uniform voxel model. 

 

7. CONCLUSION 

In this paper, we proposed a novel multi-axis simulation method. The objective of this paper was to use the adaptive 

voxel model to develop a reliable multi-axis simulation procedure which can simulate the cutting route and the 

workpiece appearance during and after the simulation. It allows the user to do error analysis and comparison between 

the cutting model and the original CAD model. It can verify the accuracy of NC codes before machining on a CNC 

machine in order to avoid wasting material and to improve machining accuracy.  

In summary, the advantages of the multi-axis simulation method presented in this paper are as follows. (1) The 

simulation method uses less memory than other voxel-based simulation methods. (2) The simulation is view-

independent. The dexel model has the restriction of being view-dependent, but the voxel model does not have this 

restriction. (3) The simulation is reliable and accurate. Regardless of whether it is the five-axis or three-axis simulation 

which uses the implicit function to represent a cutter, the whole method is simple and reliable. 
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