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ABSTRACT 

 

Representations of geometries of cutting tools are usually two-dimensional in nature. This paper 

outlines a detailed geometric model for a variety of end mills and establishes a new three-

dimensional definition for its geometry in terms of biparametric surface patches. The work presents 

the unified models of end mills with different end geometries. The surfaces meant for cutting 

operations, known as flutes, are modeled as helicoidal surfaces. For the purpose, sectional 

geometry of tip-to-tip profile is developed and then swept appropriately. The geometric model of 

shanks and variety of end geometries are developed separately. The transitional surfaces are 

modeled as bicubic Bézier surfaces or biparametric sweep surfaces. The relations to map proposed 

three-dimensional angles to conventional angles (forward mapping) and their reverse relations 

(inverse mapping) are also developed here. The new paradigm offers immense technological 

advantages in terms of numerous downstream applications. 
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1. INTRODUCTION 

Geometry of cutting tool surfaces is one of the crucial parameters affecting the quality of the manufacturing process. 

Traditionally, the geometry of cutting tools has been defined using the principles of projective geometry. The 

parameters of geometry defining the various cutting tool angles are described by means of taking appropriate 

projections of the cutting tool surfaces. Several standards such as ISO, ASA, DIN, BS have been established for 

specifying the geometry of cutting tools. The developments in the field of Computer Aided Geometric Design (CAGD) 

now provide a designer to specify the cutting tool surfaces as biparametric surface patches. Such an approach provides 

the comprehensive three-dimensional (3D) definitions of the cutting tools. The surface model of a cutting tool can be 

converted into a solid model and used for the Finite Element based engineering analysis, stress analysis and simulation 

of the cutting tools. The primary goal of this work is to outline geometric models of surface patches for end mills. 

Further, the relationship between such a geometric model and conventional specification scheme have been 

established and the surface based definitions of cutting tools have been verified by designing and rendering them in 

terms of 3D geometric parameters. It is also shown that the 3D geometric definition of the cutting tool provides quickly 

the data required for numerous downstream applications. 

Methodologies in geometric modeling have been found to be successful in specifying the geometry of complex 

surfaces. The biparametric surface definitions provide extensive freedom for designing complex surfaces [5], [8]. In 

many practical situations a component is broken up into different surface patches and each patch is defined over a 

limited region. It is necessary to ensure the continuity conditions of position, tangency, curvature, etc. between 

adjacent surface patches [1]. Based on the availability of these surface definitions as well as the geometric nature of the 

cutting tools it has been found that the geometric modeling of the cutting tool as a collection of biparametric surfaces 

would help the design, analysis as well as manufacturing processes of cutting tools. 

A wide range of cutters used in practice is fluted in geometry. Among fluted cutters considerable work has been done in 

the area of geometric modeling of the drill and helical milling cutters for their design, analysis and grinding. However, 

modeling of end mills has not received much attention. End mills are cylindrical cutters with teeth on the 

circumferential surface and one of the ends for chip removal [2], [3], [12]. Whatever work is done on modeling end 

mills it is not in the direction of development of unified representation schemes that can provide direct 3D models for 

technological applications. Tandon et al. have proposed the unified modeling schemes for single-point cutting tools 

[11] and side-milling cutters [10]. 
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In the present work, mathematical models of the complex geometry of the end mills are formulated as a combination 

of surface patches using the concept of computational geometry. The model is generated keeping in mind that it is to 

be used for direct analysis, prototyping, manufacturing and grinding of cutters. The orientation of the surface patches is 

defined in a right hand coordinate frame of reference by 3D angles, termed as rotational angles. The cutters are 

modeled by sweeping the sectional profile of the cutter along the perpendicular direction. Several application programs 

to calculate the conventional two-dimensional (2D) tool angles and the rotational angles from one to other are 

developed. Besides, output in the form of rendered image of a cutter is shown for verification of the methodology. 

Section 2 of the manuscript describes the surface modeling of a tooth of flat end mill while surface models of body and 

blending surfaces are presented in Section 4. The schema for mapping the angles between the existing 2D standards 

and the proposed 3D nomenclature for an end mill is discussed in Section 4. Section 5 instantiates modeling of an end 

mill for validation of the methodology, while Section 6 describes one of the down-stream applications of the 3D model 

as a case study. Finally, concluding remarks are presented in the last section. 

 

2. SURFACE MODELING OF FLAT END MILL TOOTH 

End milling cutters are multi-point cutters with cutting edges both on the end face and the circumferential surface of the 

cutter [2], [3]. The teeth can be straight or helical. End mills combine the abilities of end cutting, peripheral cutting and 

face milling into one tool. The end mills have straight or tapered shank for mounting and driving. Used vertically, the 

end mill can plunge cut a counter bore or face mill a slot. When used horizontally in a peripheral milling operation, the 

end mill's flute length limits the width of the cut. End mills can be used for various operations like facing, slotting, 

profiling, die sinking, engraving etc. End mills can be classified according to 

1. Configuration of end profile - Flat, Chamfer, Radius, Ball, Taper, Bull Nose end mills and their combinations 

2. Shank type - Straight shank and Brown and Sharpe or Morse Taper shank 

3. Mounting type - Cylindrical, cylindrical threaded, cylindrical power chuck, Weldon threaded 

In the present work, a generic flat end mill is modeled. Other profiles of the end mills can be developed from this 

generic model. For example, for radius end mill, the value of radius is the additional parameter required to model it. 

The geometry of a flat end mill projected on two-dimensional planes is shown in Fig. 1. The geometry of an end mill 

may consist of two classes, namely 

• Geometry of fluted shank 

• End surface geometry 

 
Fig. 1. Two-Dimensional Projected Geometry of End Mill 

 

The geometry of fluted shank consist of circumferential surface patches formed by sweeping the profile of a section, 

perpendicular to the axis of the cutter. The end geometry depends on the configuration of the end profile. A single 

tooth of the end mill is modeled with the help of nine surface patches, labeled Σ1 to Σ9. Tab. 1 lists the surface patches 

of a tooth of the flat end mill. The schematic figure of the tooth of the right hand, right helix flat end mill is shown with 

the help of Fig. 2 [12].  

 

Symbol Surface Patch Name Symbol Surface Patch Name 

Σ1 

Σ2 

Σ3 

Σ4 

Σ5 

Face 

Peripheral Land 

Heel or Secondary Land 

Blending Surface 

Back of Tooth 

Σ6 

Σ7 

Σ8 

Σ9 

Fillet 

Face Land 

Minor Flank 

Rake Face Extension 

 

Tab. 1 Surface Patches of End Mill 
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2.1 Geometry of Fluted Shank 

Surfaces Σ1 to Σ6 are the surface patches on the fluted shank. These surfaces are formed as helicoidal surfaces. 

Helicoidal surfaces are formed when a composite curve in XY plane is swept with a sweeping rule, composed of 

combined rotational and parallel sweep. The composite sectional curve (V1…V7) at the cutting end is composed of six 

segments and is shown in Fig. 3. Segments V1V2, V2V3 and V6V7 of the composite curve are straight lines, while 

segments V3V4, V4V5 and V5V6 are circular arcs of radii r3, r2 and R respectively. Out of these six, three segments V1V2, 

V2V3 and V6V7 correspond to the three land widths, namely peripheral land, heel and face, and are shown as straight 

lines on a two-dimensional projective plane. The other three segments are circular arcs in geometry and correspond to 

fillet, back of tooth and blending surface. 

  
 

Fig. 2. Modeling of an End Mill Tooth   Fig. 3. Composite Sectional Curve 

 

To model the cross-sectional profile in two-dimensional plane, the input parameters are (i) widths of lands i.e. 

peripheral land, heel or secondary land and face given by l1, l2 and l3 respectively, (ii) 3D angles obtained to form face 

(γ1), land (γ2) and heel (γ3) about Z axis, (iii) radii of fillet (R), back of tooth (r2) and blending surface (r3), (iv) diameter 

of cutting end of the end mill (Dc) and (v) number of flutes (N). Besides, the length and angle of chord represented by l4 

and γ4 respectively, joining the end vertices V3 and V4 of blending surface are also known.  

In a Cartesian coordinate frame of reference C1, with center of the end mill's cross section coinciding with origin, the 

position vectors of end vertices of different sections of the composite profile curve and center points of the three 

circular arcs (c1, c2, c3) are satisfied by the following relations 
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2.2 Modeling of Fluted Surfaces of End Mill 

As discussed earlier, the cross-section profile of an end mill consists of three parametric linear edges and three 

parametric circular edges, namely, p1(s) to p6(s). Edges p1(s), p2(s) and p6(s) are straight edges and p3(s), p4(s) and 

p5(s) are circular in two-dimensional space. The generic definition of the sectional profile in XY plane in terms of 

parameter s may be represented by  

pi(s) = [fi1(s)     fi2(s)     0     1] 

The fluted surface is obtained by combined rotational and parallel sweeping. The helix angle remains constant on the 

cylindrical shank. The helicoidal surface for fluted shank is parametrically described by 

p(s,φ) = p(s).[TS], where 
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In the above equation, L is the length of fluted shank. The length may be equal to L1 for flat end mills and (L1-Dc//2) for 

ball end mills. 
Sweeping Rules 

The fluted section of an end mill can have right helix or left helix. If the flute's spiral have a clockwise contour when 

looked along the cutter axis from either end, then it is a right helix else helix is left [2], [3]. For a right helix cutter, the 

cross-section curve rotates by an angle +φ about the axis in right hand sense. Three different sweeping rules can be 
formulated for the fluted shank and the end profile of the cutter. These rules are for 

(i) Cylindrical Helical Path 

(ii) Conical Helical Path 

(iii) Hemispherical Helical Path 

Cylindrical Helical Path - The path when the composite profile curve is swept helically along a cylinder is known as 

cylindrical helical path. For a helical cutter let φ be the parameter denoting the angular movement, P the pitch of the 

helix, Dc the cylindrical cutter diameter and L1 the length of the cutter, then the mathematical definition of the helix is  

x = (Dc/2).cosφ,   y = (Dc/2).sinφ and   z = (Pφ)/(2π), where 0 ≤ φ ≤ (2πL1/P). 

Conical Helical Path - The helical path along a frustum of cone of cutting end diameter Dc and shank side diameter Ds is 

defined by x = (D/2).cosφ, y = (D/2).sinφ and z = (Pφ)/(2π), where D = Dc + (Ds-Dc)z/L1 and 0 ≤ φ ≤ (2πL1/P). This is 

valid for both types of frustum of cones i.e. when Dc < Ds and when Dc > Ds. 

Hemispherical Helical Path - The helical path along the hemispherical object of diameter Dc is given as x=(D/2).cosψcosφ, 
y = (D/2).cosψsinφ, and z = (Dc/2).(1-sinψ), where 0 ≤ φ ≤ πDc/P and 0 ≤ ψ ≤ π/2. Here, φ is the angle about Z axis 

and ψ is the angle with XY plane and the relation between them is 







−= −

π
φ

ψ
cD

P
1sin 1 . 

2.3 End Surface Geometry 

The end geometry of a fluted end mill depends upon the end mill profile configuration. For example, in the case of the 

flat end mill, the end consists of three planes and one blending surface. The planes are (i) Face Land Σ7, (ii) Minor 

Flank, Σ8 and (iii) rake face extension, Σ9, whereas the blending surface blends surface patch Σ8 of the first tooth with 

surface Σ9 of the second tooth of the end mill (labeled as 2Σ9).  

Face land (Σ7) is formed when an XY plane given by [u7   v7   0   1] is transformed through rotation by an angle α7 

about X axis [Rx,α7], followed by rotation by an angle γ1 about Z axis [Rz, γ1]. The surface Σ7 is defined as 
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
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+−= 1sin)coscossin()sincoscos(),( 771771717717777 αγαγγαγ vvuvuvup      (1) 

Minor Flank (Σ8) is formed when an XY plane is rotated by an angle α8 about X axis [Rx,α8], followed by an angle γ1 
about Z axis [Rz,γ1], and then translated by a distance d82 (=l1cosγ2) along Y axis and d83 (=l1cosγ2sinα7) along Z 

direction [Tyz]. The surface Σ8 is given as 
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An ZX plane ([u9   0   w9   1]), forms rake face extension Σ9 when rotated by an angle α9 about X axis [Rx,α9] and by an 

angle γ1 about Z axis [Rz, γ1]. Here, helix angle λ = tan-1(P/πDc), α9 = 90°-λ* and λ* = λ+(15°-25°) but ≤ 90°. The 
surface Σ9 satisfies the relation 
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2.4 Ball End Mill Cutter 

Similar to flat end mills, the geometry of ball end mills is also made of fluted shank and end portion geometry. The 

fluted shank geometry is similar for all types of end mills but the end geometry differs. In the case of ball end mill, the 

end geometry is also fluted in nature. For end portion of the ball end mill, each flute lies on the surface of the 

hemisphere, and is ground with a constant helix lead [6], [7]. The radius of the ball in XY planes reduces along the 

cutter axis towards cutting end, as the tip of the hemisphere lies in contact with work surface. Due to this, the local helix 

angle varies along the cutting flute. 

The diameter of the cross section of the hemispherical ball is a function of z, which varies from 0 at the tip of the ball 

part to Dc at the meeting of ball and shank boundary. The radius of cross-section at any instance z, is r(z) = (Dcz-z
2)1/2, 

where z = Pφ/(2π) and 0 ≤ φ ≤ πDc/P. The ratio by which the cross-section reduces while moving towards the tip of the 

ball end mill is (2r(z)/Dc). 

  

2.5 Conical End Milling Cutter 

In conical end mills, similar to ball end mills, the end portion is fluted. To obtain the fluted end geometry, the radius of 

cross-section r(z) for conical end portion satisfies the relation r(z) =Dcz/(2h), where h is the height of the conical end. 

 

3. MODELING OF BODY AND BLENDING SURFACES 

The cutter body of end mill consists of a shank, which may be modeled as a combination of two surface patches. These 

surface patches are (i) cylindrical surface of revolution Σ50 and (ii) planar end surface Σ51. The cylindrical surface of 

shank may be parametrically defined by 
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The planar end surface forming the end opposite to cutting end is parametrically modeled as 

[ ] ∞≤≤∞−= vuLvuvu ,for     1),( 251p               (5) 

The only blending surface on the body of the cutter is a unit width, 45° chamfer between body surface patches Σ50 and 

Σ51. The chamfer σ50,51 is modeled as a surface of revolution. The coordinates of the two end points of the edge that is 

revolved about Z axis to form the chamfer are ((Ds/2-0.707), 0, L2) and (Ds/2, 0, (L2-0.707)). The chamfer is given by 
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for 0 ≤ u ≤ 1 and 0 ≤ θ ≤ 2π. 
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4. MAPPING RELATIONS 

This section establishes a set of relations that map the three-dimensional (3D) rotational angles proposed in this paper 

to define the geometry of end mills into traditional two-dimensional angles defined by traditional nomenclatures and 

vice versa. The former is called forward mapping while the latter is known as inverse mapping. The conventional 

angles are formed by projecting the surface patches of the end mill on planes and the traditional geometry of end mill 

can be referred from [2], [3]. Mapping guide table (Tab. 2) shows the methodology of expressing the formation of 

conventional angles. The forward mapping relations are: 

 

Conventional Angles Formed by About the Plane Plane of Projection 

γR 
α R 

α 1R  

φe 
α A 

Σ1 

Σ2 

Σ3 

Σ7 

Σ7 

ZX 

YZ 

YZ 

XY 

XY 

XY 

XY 

XY 

ZX 

YZ 

 
Tab. 2. Mapping Guide Table for End Mill 

 

Radial Rake Angle (γR): Rake face Σ1 forms radial rake angle (γR) with ZX plane. This angle is expressed when projected 
to XY plane. The plane Σ1 is formed by the edge (e01) joining vertex V0 to V1, when swept by transformation matrix 

[Ts]. In terms of homogenous coordinates the edge e01 is expressed as [{Dc/2-l3cosγ1(1-s)}    -l3sinγ1(1-s)   0   1]. The 
mathematical equation of Σ1 is given by 
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The tangent vectors 
φ∂
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∂ 11 ,
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s
 to rake face Σ1 are found by differentiating above equation with respect to parameters s 

and φ and the vector normal to the surface Σ1 is 
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To find radial rake angle γR, n1 is projected on XY plane (n1P) and unit projected normal vector ( 1Pn̂ ) is evaluated as 

jin P
ˆ)cos(ˆ)sin(ˆ 11p1p11 φγφγ +−+== nn . 

Radial rake angle is found by taking scalar product of 1Pn̂  with unit vector ĵ , as this is similar to the angle between 

normal to face Σ1, projected on XY plane and Y axis i.e. cos γR = -cos (γ1+φ). At z=0 plane, φ=0, and hence γR = -γ1. 
 

Radial Relief Angle (αR): Radial relief Angle is formed by land Σ2 about YZ plane when projected on XY plane. The land 

Σ2 can be geometrically expressed by 
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The tangents to Σ2 at any arbitrary point are p2s(s,φ) and p2φ(s,φ). The unit normal to surface Σ2 projected on XY plane 

is jin P
ˆ)sin(ˆ)cos(ˆ 222 φγφγ +++= . Angle of surface Σ2 with YZ plane (Radial Relief Angle) is similar to angle formed 

by 2Pn̂ with unit vector î. This, on solution, gives cosαR = cos (γ2+φ). At z=0 plane, φ = 0, and hence αR = γ2. 

 

Radial Clearance Angle (α1R ): This angle is formed by the flank (Σ3) of a tooth of end mill with YZ plane when projected 

on the XY plane. Flank Σ3 is defined by the relation p3(s,φ)=p2(s).[Ts]. The normal to Σ3 at any arbitrary point is 

ksllll
D

j
Pl

i
Pl c ˆ)cos(sin

2
ˆ)sin(

2
ˆ)cos(

2

2
22321323

2
3

2
3 






 +−+−++++= γγγφγ

π
φγ

π
n  

This normal on projection to XY plane leads jin P
ˆ)sin(ˆ)cos(ˆ 333 φγφγ +++= . Radial clearance angle is similar to the 

angle formed by 3Pn̂  with unit vector normal to YZ plane. This gives cosα1R = cos (γ3+φ) or α1R = γ3 at φ = 0. 
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Axial Relief Angle (αA): It is formed by the surface patch Σ7, given by 
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End Cutting Edge Angle (φe): This angle is formed by the surface patch Σ7 with XY plane and is measured when projected 

on ZX plane. This angle is equivalent to the angle between the unit vectors normal to Σ7 and to XY plane, when 

projected on ZX plane. The angle is computed by taking the scalar product of unit normal vector projected on ZX 

plane and unit vector k̂  and given by the relation 
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Inverse Mapping:  

This constitutes a set of relations, which maps the given conventional 2D angles in terms of proposed 3D angles. Once 

the inverse mapping relations and conventional angles are available, it is very convenient to find the rotational angles. 

The forward mapping relations for end mills are summarized in Tab. 3. 

 

Conventional Angles                                   Rotational Angles 

Radial Rake Angle, ±γR              =                           1γm  

Radial Relief Angle, αR                  =                             2γ  

Radial Clearance Angle, α1R     =                             3γ  

Axial Relief Angle, αA               = 
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End Cutting Edge Angle, φe      = 
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Tab. 3. Forward Mapping Relations for End Mill 

 

Solution of these forward mapping relations establishes inverse mapping that helps to evaluate the 3D rotational angles 

if tool angles specified by conventional nomenclatures are known. Tab. 4 presents the inverse mapping for end mills. 

 

Rotational Angles                            Conventional Angles 

1γ                       =                                      Rγ−  

2γ                      =                                         Rα  

3γ                      =                                          R1α  

7α                      =   
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Tab. 4. Inverse Mapping Relations for End Mill 

5. VALIDATION 

This section presents an example on geometric modeling of an end mill on the basis of 3D geometric parameters. The 

3D parameters used to construct the model of slab mill are referred in ANSI/ASME B94.19-1985 standards. The 

geometric parameters of the cutter used for rendering, to validate the approach of modeling of cutters in terms of 3D 
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parameters is presented in Tab. 5 [9]. The resultant cutter is rendered in OpenGL environment [13] and shown with 

the help of Fig. 4. 

 

Input Data for End Mill 

Dimensional Parameters Value (mm) Rotational Angles Value (degrees) 

Cutter Diameter (DC) 

Length of Cutter (L) 

Length of Flutes (L1) 

Root Diameter (DR) 

Shank side Diameter (DS) 

Number of Flutes (N) 

Pitch (P) 

25.0 

131.0 

71.0 

6.0 

25.0 

4 

450.0       

γ1 
γ2 
γ3 
α7 

-5.0 

5.0 

15.0 

75.0 

 
Tab. 5. Geometric Parameters of End Mill 

 

         
 

Fig. 4. Rendering of an End Mill 

 

6. CASE STUDY 

This paper illustrates the development of comprehensive 3D models of end mills. The inputs to the models are 3D 

geometric parameters. The models developed can be imported into any surface or solid modeling environment and 

subjected to a wide range of down-stream applications. This section presents an exercise on finite element based 

engineering analysis (FEA) on the 3D model of the end mill. This case study highlights the advantages and utilities 

unfolded, once a comprehensive 3D definition of the cutter is available. The purpose here is not to present any 

detailed analysis of end mill during machining. The 3D CAD model of the cutter is imported through ASCII file format 

in one of the commercial CAD/Analysis software and a wide range of analysis (e.g. static, dynamic, impact, fatigue, 

thermal etc.) for stress, wear, deflection etc. can be performed on it using the tools of the software. The present case 

study models the static and impact analysis carried out on the two flute of the end mill using I-DEAS [4]. The impact 

analysis can be useful for high speed machining applications. Fig. 5 shows the resultant stress and displacement 

distribution at one of the corners of the major cutting edge of the end mill. 

 

7. CONCLUSIONS 

The geometric modeling of the cutting tools is an important aspect for the design and manufacturing engineers from 

the viewpoint of shape realization. The present work has covered the modeling of the end mill by mathematically 

expressing the geometry of the cutting tools in terms of various biparametric surface patches. By solving these 

equations, the surface models of the tools have been realized. These surface models have been converted to solid 

models and their engineering analysis is carried out using a standard FEA package. 

Four 3D rotational angles (γ1, γ2, γ3, α7) are defined to model an end mill. The mathematical definitions of the surfaces 

have been used to obtain the standard 2D tool angles from these proposed rotational angles. The inverse relationships 

to obtain the rotational angles from the conventional angles are also obtained. The model has been developed keeping 

in mind a Right Hand cutter but a Left Hand cutter can also be similarly generated. The entire exercise is in the 

direction of proposing a new nomenclature for defining the geometries of fluted cutters and attempts to recast the 

method of defining a cutting tool in terms of 3D geometric models. 
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Fig. 5. Stress and Displacement Distribution at the tip of End Mill 

 

Once an accurate biparametric surface model of the cutting tool is evolved it can be used for numerous downstream 

applications and thus, opens up various probable areas of work. For example, the surface definitions of the tool faces 

could be used to model mathematically the grinding process and the effect of grinding parameters on the tool geometry 

can be studied. The above step would enable the entire grinding or sharpening process of the tool to be simulated on 

the computer and the results verified before any material removal is done. 
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