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ABSTRACT 

 

In order to extract geometric features in 3D meshes with effective interactions according to user-

steering, we generalize the 2D algorithms of snapping and wrapping that, respectively, move a 

cursor to a nearby feature and construct feature boundaries in images. First, we define two 

numerical values measuring the geometric characteristics of meshes: approximate curvatures and 

cost functions. By exploiting the defined measuring values, the techniques of geometric 

snapping and geometric wrapping in 3D meshes are developed and implemented. We also 

visualize the results obtained from applying the techniques to extracting geometric features in the 

general meshes modeled for human faces, cows, and single teeth. 

 

Keywords: geometric snapping, geometric wrapping, geometric features, user-steered methods, 

3D mesh. 

 

 

1. INTRODUCTION 

In CAD and graphics systems, diverse 3D models are represented with 3D meshes in order to be effectively processed. 

One of the most important functions in mesh applications is to detect geometric features representing their principal 

boundaries appearing in the meshes. Similarly to edges in images, geometric features are crucial for deciding which 

parts of the meshes have to be processed or to be preserved in many applications such as simplification, compression, 

editing, morphing, and deformation of the meshes. In mesh simplification and compression, the geometric features 

have to be maximally preserved. Mesh editing usually tends to process the parts appearing as geometric features in a 

mesh, and mesh morphing can also be performed by morphing the corresponding geometric features between two 

meshes. Meshes can be deformed by manipulating their parts appearing as the geometric features. In this paper, we 

consider user-steered methods for extracting geometric features from a given mesh with effective interactions. 

 

Many researches [5-6][12-13][15] for extracting edges in 2D images have been reported for the last decade. Recently, 

2D image snake technique [13] was extended to extracting geometric features in 3D meshes, which is called the 

geometric snake [14]. The concept of the geometric snake is to lock up geometric features with curves after 

mapping some parts of a given 3D mesh into the plane [7]. Initial curves are drawn for approximating the boundary of 

user-steered features, and then final curves are determined by changing the initial curves to minimize their energy 

functions. Since the geometric snake is dependent on only automatic boundary extraction after the initial curves are 

drawn, it often has difficulty in interactively extracting boundary shape. In this paper, we propose methods for 

extracting geometric features in 3D meshes according to user-steering by importing powerful interaction techniques, 

which are called the user-steered geometric feature extraction. 

 

The user-steered feature extraction is composed of two important steps snapping and wrapping; a user moves a cursor 

to locate a sequence of seed points, and then boundary paths connecting the seed points are automatically 

constructed to form an entire boundary. These two steps can be iterated by moving or deleting some seed points, and 

by inserting more seed points to the sequence of seed points. In order to exactly move the cursor position to an 

intended point, a technique called the snapping is used, which moves the cursor to a nearby feature. The process of 

constructing the boundary paths enclosing geometric features after snapping the seed points is called the wrapping. 

2D image snapping [9-10] is an evolution of the cursor snapping [2-3][18]. A few of practical methods have been 

presented for image wrapping: intelligent scissors [15], livewire and livelane [5], livewire on the fly [6], and enhanced 

lane [12]. In this paper, we propose two steps of geometric snapping and geometric wrapping for the user-
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steered geometric features extraction in 3D meshes, which are the extensions of image snapping and image wrapping, 

respectively. 

 

In Section 2, we give the outlines of image snapping for locating an exact cursor position and image wrapping for 

enclosing the boundary paths of features in 2D. Section 3 introduces the notion of approximate curvatures measuring 

the geometric characteristics of 3D meshes, a method for blurring the approximate curvatures, and a method for 

computing cost functions that provide the directions for moving a cursor and locating geometric features. We also 

propose the techniques of geometric snapping and geometric wrapping in 3D meshes, and post-processing for 

smoothing extracted geometric features. In Section 4, our proposed techniques are applied to extracting geometric 

features from the models of a face, a cow and a tooth respectively. Finally, we summarize the results of this paper in 

Section 5. 

 

2. USER-STEERED EDGE EXTRACTION IN 2D IMAGES 

 

2.1 Image Snapping 

The cursor snapping was presented in Sketchpad system [19] for interactively providing an exact cursor position in 

graphical user interfaces, and it has been adopted in many CAD and graphics systems. Image snapping [9-10] is an 

evolution of the cursor snapping, which moves the cursor position to a nearby feature such as edges in 2D images 

when the cursor is located by a user. If we regard the images as height maps, for which the measuring values of 

gradient are used, the image snapping can be explained as the notion of a ball rolling down to valleys. The rolling ball 

may fall into local minimums before reaching at the deepest valley, which are caused by the limitation of computing 

method or the image characteristics themselves. In order to avoid this unexpected phenomenon, a technique called 

blurring is used to soften up local minimums and emphasize global minimum by weighting the gradient of each pixel 

on its nearby images  

 

2.2 Image Wrapping 

For developing the wrapping methods of user-steered edge extraction, an image is represented with a weighted 

directed graph where each node corresponds to a pixel in the image and a directed edge exists between every pair of 

neighboring nodes. After a cost function is defined to assign weighting values to the directed edges, the shortest paths 

from a start node to goal nodes are searched by dynamic programming techniques. A typical wrapping based on the 

graph search is the intelligent scissors presented by Mortenson et. al [15]; intensity difference between a pair of 
neighboring pixels is assigned to the directed edge connecting the pixels, and next the shortest paths from a given seed 

point to all nodes are searched. They suggested that some of these shortest paths are just the boundary paths of image 

edges. However, the shortest paths have to be post-processed since they do not always construct the right feature 

boundaries in an image with noises or complicated objects. 

 

In order to get stronger user-steerability and more efficiency, other wrapping methods of livewire, livelane, and livewire 

on the fly have been presented by Falcao et. al [5-6]. They use other methods for graph search and user interaction 

differently to each other. In the livewire, a global graph is searched same as the intelligent scissors, but users can add 

seed points interactively with moving a cursor near to feature boundaries. Each time a seed point is added, a new 

shortest map is computed. Features are extracted by connecting the shortest paths among the seed points. However, 

this is inefficient since the shortest paths from each seed point to all nodes are computed by searching the global graph 

frequently. The livelane and the livewire on the fly are other wrapping algorithms developed for increasing the 

efficiency. In the livelane, the region for graph searching is restricted within a local window and the searching can be 

iterated with interactive feedbacks. As a cursor moves, the shortest path from a seed point to the cursor is visualized 

interactively. When the cursor escapes from the local window, a new seed point is generated automatically at the 

position where the window boundary intersects a feature boundary. Feature boundaries are extracted only when it 

exists within the width of a lane. In other words, users have to move the cursor near to the feature boundary within the 

permitted width of a lane. This concept of lanes makes it possible to construct the feature boundaries even in an image 

with noises or complicated objects. In the enhanced lane proposed by Kang and Shin [12], the cursor becomes the 

center of a local window while a seed point is used for setting up a local window in the live lane. The local window also 

moves according to the cursor, and the shortest path map is incrementally extended to the nodes within the moving 

local windows from a seed point. Similarly to the live wire on the fly, the extracted features are visualized and a point 

designated as new seed by a user is set up when the cursor escapes from the target boundary. Hence, fewer seed 

points can be set up while the graph searching is restricted within the region of local windows similarly to the live lane. 
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Furthermore, the response time varies within a uniform range differently to the live wire on the fly in which the time 

increases as the cursor goes away from seed points. 

 

3. EXTENSION TO 3D MESHES 

Before continuing, we discuss about a straightforward extension of image snapping and image warping into extracting 

geometric features in a given 3D mesh. First the geometry image of the mesh is generated by using parameterization 

mapping techniques [7]. Next we apply the image snapping and image wrapping to extract features on the generated 

image, and the results are mapped back to the mesh. This approach has been taken by the geometric snake [14], 

however, distance and angle may be distorted as well as it takes much time when geometry images are generated from 

3D meshes. 

 

The image snapping and wrapping in Section 2 represent an image with a weighted directed graph, and exploit the 

well-known graph searching algorithms. Our main idea is that the algorithms in 2D images can be naturally extended 

to 3D meshes if new numerical values measuring geometric characteristics in the meshes can be defined for replacing 

the measured values in the images since the meshes with vertices, edges, and faces can be directly represented as a 

weighted directed graph. Finally we can develop the algorithms of geometric snapping and geometric wrapping based 

on the pre-computed graph. 

 

3.1 Measured Values 

In order to reflect characteristics of each pixel in a given 2D image before extracting its features, the measuring values 

of gradients and energy functions are defined by being based on gravity. These values are weighted to the directed 

edges of a graph representing the image. Since the orientation of a 3D object can be changed, we have to define other 

values reflecting geometric characteristics of each vertex in a 3D mesh, instead of the gradients and energy functions. 

The geometric characteristics of the mesh are measured with approximate curvatures and cost functions. 

 

3.2 Approximate Curvatures 

In general, a curvature in a 3D model is defined as the ratio of change in slope on a particular point. The curvature is 

defined for a particular point on any surface of mesh models not as exactly as on curves or surfaces since the meshes 

are composed of planar faces and discontinuous at each vertex and edge. An important factor in computing curvatures 

on a mesh is how to explain the geometric features of the mesh model as well. Many powerful methods [1][8][11][16-

17][20-22] for computing better approximate curvatures have been presented for mesh models. This paper adopts two 

results presented for computing approximate curvatures so that they reflect the geometric characteristics of 3D meshes 

more exactly. The first method defines the approximate curvature AC(v) on a given vertex v by using the normal 
vectors of faces containing v as. 
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In Equation (1), k is the number of faces sharing v, and 
v
if is the normal vector of the i-th face in the faces when they 

are in the counter-clockwise order. The approximate curvature AC(v) is determined by the minimum value among the 

inner products of normal vectors for all pairs of adjacent faces. The second method defines approximate curvatures on 

the edges incident to a given vertex v, and takes their average. Let the ordered vertices adjacent to v be inv for all 

1,,0 −= ki L , where k is the number of vertices adjacent to v. We denote the edge connecting v and inv with ine . 

Then, the curvature  )( ineAC  on the edge ine  is defined as. 
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In Equation (2), 
v
ir  is the radius of the circle passing the centers of 1−ine , ine , and 1+ine . Here each of 1−ine  and 

1+ine  is contained into one of two faces sharing ine . The radius 
nv
ir is similarly defined by ine  and the two edges 
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adjacent to inv while sharing ine . The approximate curvature AC(v) on the vertex v can be determined by computing 

the average of the curvatures on ine for all 1,,0 −= ki L  as. 
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Since the range of approximate curvatures is dependent on the shape of meshes, we normalize AC(v) for a vertex v by 
redefining it as AC(v) / MAX_AC, where MAX_AC is the maximum of all approximate curvatures. In addition to the 

above methods, the approximate curvatures can be computed by using area and face adjacency [1], quadric error 

metric [8], and the mean or Gaussian curvatures of edges or vertices [20].  

 

3.2.1 Blurring Approximate Curvatures 
The approximate curvatures may have some extreme values as well as noises which are caused by the limitation of 

computing method or the geometric characteristics themselves. In order to avoid this unexpected phenomenon, we 

soften up local minimums and emphasize global minimum by weighting the approximate curvature of each vertex on 

its nearby vertices. This technique is called the blurring. This paper blurs the approximate curvatures by using a well-

known weighting factor called Gaussian smoothing filter [15]. That is, the approximate curvature on a vertex v is 
redefined as.  
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In Equation (4), the vector ),,( dzdydx is ),,( z
i

zy
i
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vertex ),,( z
i
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i

x
ii nvnvnvnv = . As shown in Table 1, we assign appropriate values to σ according to the size of k since 

the smoothing degree of the Gaussian filter is determined by the size of σ. 

 

Range k Assigned value σ 

k ≤ 7 0.85 

7 < k ≤ 16 1.7 

16 < k ≤ 36 2.5 

36 < k 3.5 

 
Tab. 1 Smoothing degree of Gaussian filter 

 

 

3.3 Cost Functions 

For two adjacent vertices v and u in a given mesh, two directed edges <v, u> and <u, v> will be added into the 

corresponding graph, where <v, u> is a directed edge directing from v to u. The weighting value of <v, u> is defined 

as the cost required for moving the cursor from a vertex v to a vertex u. Without loss of generality, let u and v, 
respectively, be the current vertex and the next vertex to be chosen or moved. The cost function cost(u, v) for moving 
from u to v is defined similarly to that of an image pixel [15] as. 

 

)(),()(),(cos vfvufvfvut ggddzz ωωω ++=                                                                                (5) 

 

In Equation (5), the three functions, dz ff ,  and gf are Laplacian zero-crossing, curvature direction, and curvature 

magnitude respectively. The Laplacian zero-crossing )(vf z  is used for representing whether or not a vertex v is on 

geometric features in a mesh. In other words, it is defined )(vf z  = 1 if v is on a geometric feature, and )(vf z = 0 

otherwise. From our experimental results, we use the critical value of approximate curvatures for determining whether 
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a vertex v represents a geometric feature; If AC(v) is greater than 0.75, then )(vf z  = 1 else )(vf z  = 0. Since the 

vertex with a larger curvature represents the geometric feature better than other vertices with smaller curvatures, the 

curvature direction ),( vufd  is used to indicate how the cursor moves between v and u. Let d(u, o) be the vector 

starting at u and going to o such that o is a vertex adjacent to u with maximal curvature. Then, the curvature 

direction ),( vufd can be defined as. 

 

|)),(||),(/(|),(),(0.1),( vudoudvudoudvufd ⋅+=  if AC(v)-AC(u)> 0,  

 |)),(||),(/(|),(),(0.1 uvdouduvdoud ⋅+  otherwise 
 

If ),( vufd is almost zero, the cursor tends to move from v to u. Otherwise, the movement occurs conversely. The last 

function of the curvature magnitude )(vfg is the approximate curvature AC(v). In Equation (5), we can give each ω  

the weight of the corresponding function. We set the weights as zω = 0.43, dω  = 0.43, and gω  = 0.14, respectively, 

from the experimental results; the Laplacian zero-crossing and the curvature direction play important roles while the 

curvature magnitude has less effect relatively. In order that the costs of all directed edges are processed constantly, we 

normalize cost(u,v) for a directed edge <u, v> by redefining it as (MAX_COST-cost(u,v)) / MAX_COST, where 
MAX_COST is the maximum of all costs. 

 

3.4 User-Steered Feature Extraction 

 
3.4.1 Geometric Snapping 
The cost function defined in Section 3.3 is used for moving a cursor to a nearby geometric feature in 3D meshes. We 

consider three strategies for checking the cost functions of neighboring vertices [23]. The first is to check the vertices 

adjacent to current vertex v. If the largest cost of the adjacent vertices is greater than zero, the cursor moves to the 

vertex with the largest. This movement is iterated until the costs of all vertices adjacent to current vertex are less than 

one of the current vertex. This is a simple and convenient method, but it would take too much time in a dense mesh, 

i.e., lots of vertices are connected near to each other. To enhance the performance of moving the cursor in the dense 

mesh, it is possible to check farther vertices with a certain range from v instead of its adjacent vertices. The second 
strategy is to use the range of Euclidean distance, while the third one is to use the range of path length. The Euclidean 

distance is the distance between v and its adjacent vertex that is the farthest from v. An appropriate integer value n is 
selected for the path length that is the minimum number of edges connecting two vertices. Hence, we are checking the 

vertices inside a sphere at origin v with the radius d, or the vertices whose path lengths to v are less than n. The cursor 
movement iterates same as the first method. 

 

3.4.2 Geometric Wrapping 
As we did in geometric snapping, the user-steered algorithms of image wrapping are extended for extracting geometric 

features boundaries in a 3D mesh by using the set of given seed points. First, we can apply the algorithm of intelligent 

scissors to a weighted directed graph DG with the cost functions assigned to directed edges as presented in Section 3.2. 
In this paper, this algorithm is called the geometric intelligent scissors. Assume that a user has selected a point in a 

projected mesh on the screen space with a cursor, and a seed point p on a feature boundary has been determined 

automatically by geometric snapping, which is the nearest to a feature from the selected point. Then, the shortest paths 

from p to all vertices in DG are computed by dynamic programming with the cost functions. In this situation, whenever 

the user selects another vertex q, the shortest path from q to p becomes the geometric feature selected according to 

user-steering in the mesh. 

 

In order to extract geometric features in a 3D mesh more precisely, a user can select a few of seed points in succession. 

Let ),,,( 21 kppp L  be a succession of seed points selected by the user in the mesh. After the shortest paths from 1p to 

all vertices are computed, the shortest path from 2p to 1p  is found, which will be denoted by ),( 21 ppge . After 

computing the shortest paths from each ip to all vertices in sequence, the path ),( 1+ii ppge  from ip  for each 

1,,2 −= ki L  is found as same as ),( 21 ppge . The path ),( 21 ppge  + ),( 32 ppge  + L + ),( 1 kk ppge −  obtained 

by connecting all the paths found by iterating the above process is the geometric feature that the user has intended to 
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extract in the mesh. We call this method the geometric livewire. This algorithm has a shortcoming in the 

computation time since all vertices are considered each time; the more seed points the user has selected, the longer the 

computation time is. 

 

In order to reduce computation time in the geometric livewire, an enhanced algorithm called the geometric livelane 

is considered similarly to the livelane in 2D images. The livelane iterates an incremental process for locating seed points 

automatically with light computation times; the shortest paths are computed from a seed point to only the pixels that 

are in a region bounded by a window with a fixed size, the feature boundary within the fixed width is visualized by 

using the shortest paths as a user moves a cursor, and a new seed point is located automatically when the cursor 

escapes from the window. In the geometric live lane, the shortest paths are computed also from the seed points within 

a uniform range to other vertices. The window can be generalized as a cube in 3D. However, a sphere is more useful 

in 3D meshes, since the mesh is not grid-sized and the sizes of faces are different to each other. In this paper, we define 

a virtual window that is a sphere with the center of the seed point p and a fixed radius wd. The shortest paths from the 

current seed point p to the vertices within the fixed distance wd can be computed by the depth first traversal or breadth 

first traversal of the vertices starting from p. Among vertices within a fixed width, the vertices with the shortest paths are 

connected and the feature boundaries are visualized as the user moves the cursor. A new seed point is also located 

automatically when the cursor escapes from the neighboring range of the Euclidean distance wd. 
 

3.4.3 Post-Processing 
The geometric features obtained by applying the geometric wrappings to a 3D mesh are represented with open or 

closed polygonal lines connecting a selected vertex and other vertices passed during the iteration. Furthermore, the 

polygonal lines obtained by connecting the vertices in the mesh may have the shape of staircases. We remove such 

aliases by applying two kinds of curve fitting techniques [4][22]. The first fitting curve is the B-Spline curve that 

interpolates the start and end vertices of the obtained geometric feature, but approximates other vertices. The second 

one is another spline curve that also interpolates the vertices selected by a user, but approximates other vertices. Since 

the start point and the end point of these curves are always contained in the set of vertices of the given mesh, we can 

obtain the new points mapped onto the surfaces of the mesh from the points of the generated curves. The vertices of 

the new polygonal lines are used to represent the geometric feature better. 

 

4. EXPERIMENTAL RESULTS 

The proposed geometric snapping and geometric wrapping have been implemented in PC environments with the 

libraries of Microsoft Foundation Class (MFC) and OpenGL. Half-edge data structures are adopted for representing 3D 

meshes. We tested our implementation in the mesh models of a human face, a cow, and a tooth. Fig.1(a)-(c) are the 

rendered meshes of the three test models, respectively. 

 

         
(a)                                                       (b)                                               (c) 

Fig. 1. Mesh models of a human face, a cow, and a tooth. 

 

4.1 Approximate Curvatures and Blurring Them 

The approximate curvatures of all vertices of a human face model, which were computed with Equation (1), are 

visualized with their magnitudes as shown in Fig.2(a). The brighter parts in the figures represent larger approximate 

curvatures. As explained in Section 3.2.1, however, the computed approximate curvatures are discontinuous and noisy 

in some regions. To get rid of these phenomena, the approximate curvatures were blurred with Equation (4). Fig.2(b)-

(d) illustrate the results obtained by blurring the computed approximate curvatures that change smoothly in 

neighboring ranges. 
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(a)                                        (b)                                  (c)                                    (d)  

Fig. 2. Blurred approximate curvatures 

 

4.2 Geometric Snapping 

In order to move a cursor from a selected vertex to a nearby geometric feature, we computed the cost function in 

Equation (5) with the blurred approximate curvatures for all vertices within each neighboring range. Fig.3(a)-(c), 

respectively demonstrate the steps of the cursor movement in the first strategy using the adjacency for checking 

neighbors: the 1'st movement, the 5'th movement, and the 7’th (final) movement. The results obtained by other 

strategies using an Euclidean length and a path length are presented in Fig.3(d) and (e). The cursor has settled down 

after 4 movements for a determined Euclidean length (see Fig.3(d)), while 2 movements were needed for the path 

length 3 (see Fig.3(e)). The initial vertex selected by the user is pink-colored, while the vertices passed by the cursor are 

blue-colored. Solid lines with the blue color represent the whole paths along which the cursor moved by the geometric 

snapping. 

 

          
(a)                                  (b)                                    (c)                                 (d)                            (e) 

Fig. 3. Geometric snapping. 

 

4.3 Geometric Wrapping and Post-Processing 

A user can apply the geometric intelligent scissors to extracting geometric features in a mesh, by designating a seed 

point near to the geometric features. The red-colored sphere in Fig.4(a) represents the seed point. The shortest paths 

from the seed point to all other vertices are generated by applying the Dijstra’s algorithm to the weighted directed 

graph constructed by the method in Section 3, which are visualized with blue-colored lines in Fig.4(a). Whenever a 

user selects another vertex, the shortest path from the vertex to the seed point can be obtained directly and the path is 

analyzed as a geometric feature. Solid red-colored lines in Fig.4(b) represent the geometric features obtained from two 

points selected by the user. 

 

       
(a)                                                                  (b) 

Fig. 4. Geometric intelligent scissors. 

 

For applying the proposed geometric livewire, a sequence of seed points near to the geometric features has to be 

provided by the user. Assume that the user has provided a sequence of seed points in the right direction from the left 
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boundary of lips. In Fig.5(a), spheres are used to show the selected seed points, and the shortest paths from the first 

seed point to all vertices are drawn with blue-colored solid lines. Fig.5(b) illustrates the detailed geometric features 

between the first and the second seed points that are computed by the geometric livewire algorithm. The finally 

obtained geometric features are shown in Fig.5(c). Solid red-colored lines in Fig.5(d) illustrate the extracted geometric 

features in a cow model. 

 

We apply the geometric live lane to extracting such geometric features from a face model. When one seed point is 

provided by a user, the algorithm computes the shortest paths from the seed point s to other vertices within a virtual 
window designated by the user, which are shown in Fig.6(a). In this experiment, the Euclidean distance 5.0 is used for 

the virtual window. Next the user selects a vertex v on the shortest paths and then geometric features between s and v 
are directly calculated using the pre-computed shortest paths. If the user wants other geometric features, the algorithm 

treats v as a new seed point and computes the shortest paths from v to other vertices within the distance 5.0. This 
procedure will be repeated until some satisfied geometric features are obtained. The most typical features of a face 

model are the boundaries of eyes, eyebrows, noses, lips, etc. Fig.6(b) is the result from applying geometric livelane to 

extracting the boundary of lips. Fig. 6(c) and (d) are the results from extracting the boundaries of a left eye and of a 

right eye, respectively. Input information and the selected vertices are displayed with spheres and solid lines 

respectively. Solid red-colored lines in Fig.6(e) illustrate the extracted geometric feature in a cow model. 

 

     
 (a)                                    (b)                                      (c)                                              (d)  

Fig. 5. Geometric live wire. 

 

 
(a)                                           (b) 

                                          
(c)                                             (d)                                        (e) 

Fig. 6. Geometric live lane. 

 

In general, a tooth touches another tooth at the opposite side when the upper and lower jaws occlude. During the 

occlusion, the touched surface at the opposite side is said to be an occlusal surface. In order to exactly model artificial 

prostheses with the occlusal surfaces, we have to extract geometric features such as cusp, ridge, fissure, and pit [24] 

from teeth models, which are illustrated in Fig.7(a). The protruded part like a peak and the part descending from it are 

called the cusp and the ridge respectively, while the concave parts sinking in randomly and the deepest one like a small 

point among them are called the fissure and the pit respectively. The thick solid lines of Fig.7(b) are the fissures 

extracted from the tooth. In most cases, we use the 3D scanners of touch type to guarantee the accuracy of tooth 

model. Sampled points with the 3D touched scanners tend to produce an isotropic mesh in which the staircase 
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phenomenon can also appear in the extracted geometric features. Finally, we apply the post-processing to the 

extracted geometric features in order to remove the staircase, as shown in Fig.7(c). Fig.7(d) illustrates the final 

geometric feature that is visualized with thicker and softer solid lines. 

 

                          
(a)                                   (b)                                  (c)                                       (d) 

Fig. 7. Removing staircase on geometric features 

 

5. CONCLUSION 

In order to extend 2D image snapping and wrapping algorithms into user-steered feature extraction in 3D meshes, we 

defined the approximate curvatures and cost functions that are numerically measured values for reflecting the 

geometric characteristics of the meshes. The technique of geometric snapping was presented for moving a cursor 

position to a nearby feature such as vertices in the meshes when the cursor located by a user. We also presented the 

techniques of geometric wrapping: geometric intelligent scissors, geometric live wire, and geometric live lane, which 

extract geometric features by constructing the boundary paths enclosing features. Since the boundaries of the extracted 

features have the shape of staircases, better ones were obtained by removing such aliases with curve fitting methods. 
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