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ABSTRACT 

 

This paper presents an approach for seamless texture synthesis on subdivision surfaces. Based on 

an input sample texture and a preferred scale, the initial control mesh of the subdivision surface is 

first subdivided to a resolution that is appropriate for further processing. The texture is then applied 

to the polygonal model of the control mesh through texture synthesis. Image processing algorithms 

are further applied to smoothly connect textures of neighboring faces. The entire seamlessly 

connected surface texture is finally mapped to the limit surface using a subset of rules for geometry 

subdivision. Several examples are provided to demonstrate the proposed approach using Loop 

subdivision surfaces. 
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1. INTRODUCTION 

For many design and graphics applications, such as digital mockup for product design and digital sculpture modeling 

for art work representation, one often uses surface textures to enhance visual effect of the created virtual model. In 

literature, one may find two general classes of algorithms for texture synthesis, i.e. procedural methods [8, 18] and 

texture from sample methods [4, 14, 19, 21]. Procedural methods can be very efficient in memory utilization and 

texture rendering. However, existing procedural-based methods can only process a specific class of materials such as 

wood and marble. Texture from sample methods can synthesize a wide variety of textures, as long as sample textures 

are provided. The method discussed in this paper falls in the class of texture synthesis methods from sample textures. 

While most of the reported approaches work with polygonal models. This paper presents an alternative approach for 

texture synthesis on subdivision surfaces based on a known sample texture.  

Subdivision-based modelling was first introduced to the CAD and graphics community in early 1980’s for defining 

free-form curves and surfaces starting from an initial control mesh through recursive refinement [1, 3]. In the limit, it 

produces a smooth curve or surface. Today, one may find rich families of subdivision surfaces widely used in 

modelling and graphics applications [17, 22]. Given a 2D sample texture and a 3D subdivision surface, we want to 

cover the entire surface with the sample texture in a seamless fashion. In literature, one may find various approaches 

and excellent results have been introduced recently on texture synthesis. All existing algorithms can be classified into 

two general classes according to the target object on which the sample texture will be synthesized, namely texture 

synthesis on a 2D rectangular domain [4, 5, 10, 12, 20] or on a 3D surface [14, 16, 19, 21]. Most of the algorithms 

reported so far are for texture synthesis on a 2D rectangular domain. Among the algorithms for texture synthesis on 3D 

surfaces, most of the algorithms are extended from the counter part for 2D rectangular domains. One may also classify 

existing texture synthesis algorithms according to the nature of the algorithms, such as pixel-based texture synthesis [5, 

19, 20, 21], patch based texture synthesis [4, 10, 12, 14, 16], or hybrid algorithms. Pixel-based algorithms synthesize 

the source sample texture to the target object pixel by pixel, while patch-based algorithms synthesize the source sample 

texture to the target object area by area.  

Pixel-based algorithms synthesize the target texture line by line and pixel by pixel for each line based on the 

source sample texture. For each pixel to be synthesized, a neighborhood window of N pixels with fixed topology 

around the target pixel is used for comparison with the source sample texture. The window will move within the source 

sample texture and the best position is identified where the difference between the neighborhood window of the 

synthesized target texture and that of the source texture is minimized. The corresponding parameters of the pixel in the 

source texture are then used as that for the pixel to be synthesized. The difference between the target window and the 

moving source window can be defined as the sum of differences between the corresponding pixels of the two windows. 

The difference between the corresponding pixels can be evaluated as the distance between the two pixels in RGB 
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coordinates with certain norm. The quality of the synthesis results will usually depend on the size N of the window, the 

size of typical features of the sample texture being synthesized, and the type of sample texture itself. The window size 

should usually be larger than the features of the source texture to be synthesized and is often varies from 5×5 pixels 

upwards. The larger the size of the window, the better the synthesis result, but the computation time would 

substantially increase with the increase of the size of the evaluation window. Pixel-based algorithms for texture 

synthesis work well for stochastic textures and may also produce satisfactory results for some structured textures. The 

computation time of these algorithms is often slow. The final synthesized texture is usually blurred compared with the 

source texture. Typical examples can be found in [5, 20] for texture synthesis on 2D rectangular patches and in [19, 

21] on 3D surfaces.    

Patch-based algorithms synthesize textures area by area. During the synthesis procedure, a patch of the original 

source texture is selected and pasted onto the target object. The process is continued until the entire surface of the 

target object is covered. The selection of a particular patch from the source texture can be based on optimal pattern 

matching for structured textures, or just randomly for stochastic textures. The patch size depends on the size of the 

source texture and can be as larger as possible. To remove visual discontinuities, various techniques are introduced for 

smoothly bridging the textures along patch boundaries. Depending on the type of the target object, patch-based 

algorithms can also be further classified into two classes for 2D rectangular domains [4, 10, 12] or for 3D surfaces [14, 

16].Compared with pixel-based approaches for texture synthesis, patch-based approaches usually preserve the original 

structure of the source sample texture and the processing speed is extremely fast.  

Among various patch-based methods reported so far for texture synthesis, Efros and Freeman [14] reported an 

approach called image quilting for patch-based texture synthesis on rectangular domains. Individual regular square 

patches are first randomly extracted from the source sample texture and pasted onto the target domain with boundary 

overlap. A minimum-error-boundary-cut is then performed within the overlap region such that the two neighboring 

patches are connected smoothly with minimum error along the cutting boundary curve. Kwartra et al. [10] presented 

another approach for patch-based texture synthesis on rectangular domains. The approach is a further generalization 

of the image quilting method using arbitrarily shaped patches and it is called graphcut textures. Once the texture is 

initialized, the algorithm finds new patch locations so as to refine the texture. Both the patch shape and size are 

determined based on a minimum cost graph cut method. Liang et al. [12] on the other hand presented a patch-based 

method for texture synthesis on rectangular domains based on patch pasting and boundary blending. During the 

process for patch pasting, an appropriate patch is selected from the source sample texture and pasted onto the target 

domain with pattern matching. The boundary edges are further smoothed with linear blending that assures smooth 

transition between neighboring patches after synthesis. For patch-based texture synthesis on 3D surfaces, Praun et al. 

[16] presented lapped textures on 3D surfaces. With this approach, a user specifies a tangential vector field over the 

surface for controlling the texture orientation. The input sample texture is then repeatedly pasted onto the surface by 

flattening a local area of the input 3D mesh and parameterizes the patch in the texture space. In theory, all patch-based 

texture synthesis algorithms for 2D rectangular domains can be extended for 3D surfaces. Magda and Kriegman [14], 

e.g., presented an algorithm similar to the 2D version of image quilting [5], but the shape of a patch in case of 3D 

surfaces is a triangle patch.  

In literature, one may also find a few publications on texture mapping on subdivision surfaces [2, 15]. The method 

of [2] involved texture creation on the initial control meshes and further texture mapping onto subdivision surfaces. 

The initial texture on the control mesh was created using a combination of techniques such as 3D painting, solid 

textures and procedural textures with scalar fields. The created texture on control mesh is further mapped onto the 

subdivision surface through subdivision with texture coordinates. The method of [15] on the other hand relies on a 

global parametrization of the entire control mesh in the form of a pelt with seam texture blended along cutting 

boundaries, the so called model pelting and texture blending. The approach presented in this paper is a kind of patch-

based approach for texture synthesis on 3D surfaces from a sample texture. Based on the input sample texture and a 

preferred scale, the initial control mesh of the subdivision surface is first subdivided to a resolution that is appropriate 

for patch-based texture synthesis. The synthesized texture is then applied to the polygonal model of the control mesh 

face by face. Image processing algorithms are further applied to smoothly connect textures of neighboring faces. The 

entire seamlessly connected surface texture can then be mapped to any fine resolution of the subdivision surface or to 

the limit surface using a subset of rules for geometry subdivision similar to that of [2]. Compared with existing 

approaches, the proposed method exhibits several advantages. Since the algorithm works with a coarse control mesh 

and maps the texture to fine resolution meshes while performing subdivision operations, it is extremely memory 

efficient and the rendering process is pretty fast. There is no need either to preprocess the sample texture. Apart from 

the selection of the input parameters, the entire synthesis process is fully automatic and produces quality textures with 

fast synthesis speed.  
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2. OVERVIEW OF THE SYNTHESIS METHOD 

Based on the dimension of the given texture and a preferred scale, we first subdivide the initial control mesh of the 

subdivision surface to a resolution that is appropriate for the synthesis procedure. A patch-based texture synthesis 

method is then applied to synthesize a piece of texture for every face of the polygonal model. To further improve the 

texture smoothness across patch boundaries, all textures are blended across the patch boundaries. Synthesized textures 

after smooth blending are stored in one or a set of texture atlas for further processing. The polygonal model can then 

be processed together with the texture atlas. One can map the synthesized texture to any refined meshes or to the limit 

surface at any resolutions using a subset of rules for geometry subdivision. Fig. 1 summarizes the entire procedure for 

texture synthesis on Loop subdivision surfaces.  

• Fig. 1(a) illustrates a sample texture to be used for texture synthesis.  

• Fig. 1(b) illustrates an initial control mesh 0M  of a subdivision surface.  

• The initial control mesh is refined to resolution iM  shown in Fig. 1(c) that is appropriate for texture synthesis 

with the given sample texture and a texture synthesis scale.  

• Fig. 1(d) shows the control mesh iM  with synthesized texture after texture synthesis using a patch-based 

approach. During the procedure for texture synthesis, an atlas A is created for storing the synthesized textures.  

• If necessary, one may obtain a refined mesh jM  shown in Fig. 1(e) by subdividing iM  (j-i) times with the 

texture atlas A. 

• One may also directly map the texture for any resolution to the limit surface mesh as shown in Fig. 1(f) for 

iM
~

 and Fig. 1(g) for jM
~

. 

 
 

Fig. 1. Texture synthesis on Loop subdivision surfaces 
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3. KEY ALGORITHMS FOR TEXTURE SYNTHESIS 

The general procedure for texture synthesis on subdivision surfaces is summarized as the following algorithm. For every 

face F, the algorithm first parameterizes the face in the sample texture space and assigns a texture T with corresponding 

texture coordinates. An edge-blending algorithm is then applied for every face F. The synthesized texture after edge 

blending is stored in a texture atlas for further processing.  

• Pre-processing: Refine the initial control mesh 0M  to an appropriate resolution iM  for texture synthesis. 

Specify a preferred texture orientation and a texture scale f.  

• Local parameterization: For each face iMF ∈ , parameterize F (in 3D space) to 'F  (in 2D texture space) 

according to local face orientation and texture scale f. After local parameterization, assign the selected texture 

patch T to F. 

• Edge blending: For each face, blend the boundary of 'F  in texture domain T for obtaining visually smooth 

effect. 

• Texture atlas creation: All smoothly blended textures for individual faces will be stored in one or a set of 

texture atlas for further processing.  

 

For global control of the texture orientation on individual faces, we use a vector field commonly used for texture 

synthesis [5, 16, 19, 21]. Each face of the control mesh is assigned a vector V that is defined as the projection of the 

corresponding direction of a vector field at that position onto the corresponding face, also called face orientation. For 

the present implementation, a constant vector field is used. The constant direction field can be entered interactively 

before synthesizing the textures of all faces. Fig. 2 illustrates two examples with assigned vector for each individual 

faces for texture orientation. 

When applying the texture, one might wish to scale the texture during the procedure for texture synthesis. For the 

moment, a single scale parameter f is used and the scale is directly applied to related faces during local 

parameterization. After local parameterization, the corresponding faces in 3D space and in the 2D texture space are 

similar with a scale factor f. The selection of scale f is restricted by the size of the sample texture and the size of 

individual faces in 3D space. 

Both the face orientation and texture scale will affect the parameterization of the corresponding face onto the 

texture space. The texture will be aligned along the face orientation and scaled when parameterizing a face onto the 

texture space. The actual position for texture parameterization can be optimized, but one may simply select a random 

position for stochastic textures. After parameterization, every face F in iM  should have a texture T which is a portion 

of the original sample texture. In general, the texture of adjacent faces at this moment may not be smooth across 

face/patch boundaries. Pixels near patch boundaries are further blended to remove possible visible seams along 

boundary edges. The blending process can be straight forward if multi-textures are used when rendering individual 

faces [14]. For subdivision surfaces, as it is necessary to process the texture when performing further subdivision 

operations, we directly modify the texture using a blending function. After edge blending, every face has its own texture 

and a texture atlas [7, 11] is created with all individual face textures for dynamic rendering.  

The following section provides further details regarding local parameterization, edge blending, and the set up of a 

texture atlas for further processing.  

 

      
 

Fig. 2. Face orientation for texture alignment 
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3.1 Local parameterization 

In order to synthesize a texture for every face F, we need to parameterize F to the 2D texture space. Ideally, the 

mapping between the triangulated surface and the planar triangulation should be isometric, preserving both angles and 

distances. As a texture scale parameter f and a texture orientation of F have been assigned beforehand, the following 

procedure can be used for parameterizing F (see Fig. 3): 

 

Assumption: Give an arbitrary (triangle) face ( )321 ,, qqqΔ  in 3D space and let 1e , 2e  and 3e  be the edge lengths of 

the triangle. Let ( )321 ,, pppF Δ=  be the corresponding triangle in texture space with texture coordinates ( )iii tsp ,= , 

for 3 and 2,1=i . 

1. Parameterize F 

(1) Assign ( )0,01 =p  and 





= 0,3

2 f
e

p . 

(2) Assign ( )333 ,tsp =  such that ( )321 ,, pppΔ  is similar to ( )321 ,, qqqΔ . 

(3) Based on point 1p , rotate ( )321 ,, pppΔ  with an angle α clockwise, where α is the angle between the vectors 

21,qq  and the projected field vector V counter-clockwise. 

2. Assign a texture memory T to F 

(1) Extract the bounding box T of the triangle ( )321 ,, pppΔ . 

(2) Move the bounding box T with ( )321 ,, pppΔ  such that its lower left corner is in coincident with the origin of 

the texture space. 

(3) Assign memory to T. 

 

 
 

Fig. 3. The procedure of the parameterization of F 
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After local parameterization, each face F has a corresponding texture memory T located at the lower left corner of the 

sample texture. The texture T will then be repositioned within the sample texture such that it would best match the 

texture of neighboring triangles that have been allocated earlier. In [14], finding a good match normally involves 

comparing some boundary region of the candidate texture T to the boundary region of the neighbors already textured. 

This is generally a time-consuming processing. Considering the type of texture to be synthesized and the next step for 

edge blending, we randomly set a place in the sample texture space for the texture T for every face F (see Fig. 3f), and 

then copy the texture patch to the texture memory T. This produces comparable quality results while eliminates the 

expensive process for texture comparison. 

 

3.4 Edge Blending 

After local parameterization, every face F has a texture T which is a portion of the original sample texture. In general, 

the textures of adjacent faces have edge discontinuities. To eliminate such visual artifacts, the pixels near the boundary 

edges should be blended. In [14], multi-texture was used when rendering each face. The blending process is 

straightforward and there is no need to pre-process the texture beforehand. In our case, as it is necessary to subdivide 

the mesh with texture in subsequent operations, an alternative approach is used to blend the texture off-line and store 

them in a texture atlas for further processing.   

We consider an arbitrary face ( )CBAF ,,Δ=  in 3D space and denote its texture patch as ( )',','' CBAF Δ=  in the 

sample texture space. For each edge of 'F , such as ''CB , we need to blend its adjacent neighborhood 3 to 7 pixels 

(blue blending area). The blending process is as follows (See Fig. 4  for an illustration):  

1. Given ( )CBAF ,,Δ=  in 3D and the corresponding texture patch ( )',','' CBAF Δ= . 

2. Find adjacent face 1F  of F  sharing the same edge BC  and get the corresponding texture patch '1F  of 1F . 

3. Determine "F  being the extension of '1F  in the parametric space and determine "1F  being the extension of 'F  

in the parametric space such that 'F  and "F  are similar triangles and so do '1F  and "1F .  

4. Modify the boundary texture of face ( )',','' CBAF Δ=  along boundary ''CB  3 to 7 pixels by blending the textures 

of 'F  and "F . In a similar way, the textures of '1F   should also be modified along boundary ''CB  3 to 7 pixels 

by blending the textures of '1F  and "1F .  

The blending for boundary texture modification is defined as a linear blending across boundary ''CB  such that the 

texture will be smoothly connected. 

 
 

Fig. 4. The blending process across an edge 
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3.5 Atlas Generation 

After edge blending, each face has its own rectangular texture, i.e. the minimum bounding box of triangular texture. In 

order to store the texture for further processing, such as for subdivision and texture mapping to the limit surface, we 

create a single texture bitmap called a texture atlas. To determine the size of the atlas, we use a method described in 

[7]. Let ∑= i iSR
 All

2  be the total area of all the bitmaps of individual faces and let L=l.2*R, the size of the atlas is 

then defined as L*L. To pack all individual textures in the atlas, the algorithm further sorts all bitmaps by their height, 

and lines them up horizontally. We then fold the line to fit the atlas within the L*L area. As the rendering function 

glTexImage2D() of OpenGL requires that the width and height parameters of the texture should not be greater than 

2048. We may need to use multiple 2048*2048 atlas in order to store all the textures for OpenGL rendering 

depending on the size of the target object for texture synthesis. 

  

3.6 Mesh Refinement with Texture 

After texture synthesis on the control mesh, one may map the synthesized texture to a refined mesh or a limit surface 

mesh using a method for texture mapping on subdivision surfaces reported in [2]. The method extends the coordinates 

[x, y, z] of vertices in 3D space to 5D space with coordinates [x, y, z, s, t], where [s, t] are the texture coordinates of the 

corresponding vertices. The texture on a coarse mesh can then be carried on to refined meshes by subdividing the 

mesh with texture coordinates in 5D with the same subdivision rule. For mapping the texture to any level of limit 

surfaces, one may first subdivide with texture coordinates to that level and then simply use the texture coordinates of 

the refined control mesh as that for the limit surface mesh.    

 

4. RESULTS AND DISCUSSIONS 

The proposed texture synthesis method works well for a variety of textures. Fig. 5 illustrates some sample textures used 

for testing the synthesis method [4]. These textures include isotropic texture patterns (Fig. 5(e)-(h)), anisotropic textures 

(Fig. 5(b)-(d)), and highly structured textures (Fig. 5(a)-(d)). Fig. 6 illustrates some examples in synthesizing highly 

structured and anisotropic textures on subdivision surfaces. Fig. 7 illustrates some other examples in synthesizing 

isotropic texture patterns on subdivision surfaces. As the entire texture synthesis approach involves only direct texture 

parametrization and linear edge blending, it is extremely fast. For all the presented examples, the CPU time is within 

one or a few seconds for processing and it is then on the fly for dynamic rendering. Fig. 8 illustrates an example using a 

bunny model for texture scale control. The scale used for the example of Fig. 8 are f=0.01, 0.005 and 0.00317 for (a), 

(b), and (c) respectively. In theory, one may apply an arbitrary scale for texture synthesis. Note that the actual selection 

of the scale depends on the size of the 2D texture, internal features and the size of the 3D model. Combined with 

methods for texture synthesis on 2D rectangular domains for texture extension and mesh subdivision before applying 

the texture synthesis algorithm, one may achieve arbitrary scale control for texture synthesis on subdivision surfaces.   

The texture synthesis method presented in this paper can be directly applied to face splitting subdivision schemes, 

such as Loop and Catmull-Clark surfaces [1, 13]. For triangle control meshes, the synthesis process is straight forward. 

For other type of meshes, one may first triangulate the faces for initial parameterization. When the atlas is ready, the 

step for texture mapping is the same for any kind of meshes. For all the examples shown in Figs. 6-8, Loop subdivision 

surfaces are used. For non-face-splitting subdivision schemes, such as Doo-Sabin, 2  and 3  subdivision surfaces 

[3, 9, 17, 22], the initial parameterization procedure is the same, but image processing techniques need to be used for 

texture decomposition and recomposition when performing subdivision with synthesized texture coordinates.  

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 5. Sample textures: (a)-(d) highly structured texture patterns; (b)-(d) anisotropic texture patterns; and (e)-(h) isotropic texture 

patterns 
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(a) (b) 

  
(c) (d) 

Fig. 6. Texture synthesis on subdivision surfaces with highly structured textures and anisotropic textures. 

 

 

 
 (b) 

 
(a) (c) 
Fig. 7. Texture syntheses on subdivision surfaces with isotropic textures 
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(a) (b) (c) 

Fig. 8. Scale control for texture synthesis  

 

5. CONCLUSIONS 

This paper proposes a general approach for texture synthesis on subdivision surfaces. The approach is based on 

techniques for texture synthesis on 3D mesh models and texture mapping to refined meshes using the same rule for 

geometry subdivision. The approach used in the paper falls in the class of patch-based texture synthesis on 3D surfaces 

and it is realized through direct image parametrization and linear edge blending, hence it is extremely fast. With the 

proposed method, one can work on a mesh with appropriate resolution for texture synthesis and there is no need to 

handle meshes with a large size at fine resolutions. By using a mesh with proper resolution and combined with texture 

synthesis on 2D rectangular domains, one can use an arbitrary scale for texture synthesis on subdivision surfaces. The 

method can be applied to most of the commonly used subdivision schemes. While all examples are produced using 

Loop subdivision surfaces with a triangle control mesh, the approach can be directly applied or extended for texturing 

other subdivision schemes. In case of an arbitrary control polyhedron, the mesh can be temporarily triangulated for 

texture parametrization, all other steps are then the same after initial parametrization. When performing subdivision 

with synthesized texture, the approach is straight forward for face-splitting schemes, such as Loop and Catmull-Clark. 

For non-face-splitting schemes, such as Doo-sabin, 2  and 3  subdivision surfaces, image processing techniques 

can be used for texture recomposition. In theory, most existing methods for texture synthesis may be extended for 

texturing subdivision surfaces. 
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