
 

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 439-448 

 

439 

Computation of Molecular Surface Using Euclidean Voronoi Diagram 

 
Joonghyun Ryu2, Donguk Kim3, Youngsong Cho4, Rhohun Park5 and Deok-Soo Kim1 

 
1Hanyang University, dskim@hanyang.ac.kr 

2Voronoi Diagram Research Center, jhryu@voronoi.hanyang.ac.kr 
3Voronoi Diagram Research Center, donguk@voronoi.hanyang.ac.kr 
4Voronoi Diagram Research Center, yscho@voronoi.hanyang.ac.kr 
5Voronoi Diagram Research Center, rhpark@voronoi.hanyang.ac.kr 

 

 

ABSTRACT 

 

Given a protein, analyzing the geometric structure of protein is fundamental for the study of a 

protein folding, docking, interactions between proteins, and so on. One of the important geometric 

analyses is computing the molecular surface of protein. Discussed in this paper is an efficient 

algorithm to compute such a molecular surface of protein via the concept of blending operation 

among atoms constituting the protein. To facilitate the decision for the existence of blending 

surface among atoms, we take advantage of the proximity information of Euclidean Voronoi 

diagram of atoms. The proposed algorithm initially detects topological locations where blending 

surface exist via both edge accessibility and face accessibility of Euclidean Voronoi diagram. 

 

Keywords: Protein structure, Molecular surface, Blending surface, Euclidean Voronoi diagram 

 

 

1. INTRODUCTION 

A protein consists of amino acids, and an amino acid consists of atoms. Hence, a protein usually consists of from 

thousands to hundreds of thousands of atoms. Fig.1 shows van der Waals surfaces of atoms for a synthetic human 

immunoglobulin VL lamda domain downloaded from Protein Data Bank (PDB) [18]. Each protein entry in PDB is 

associated with an id and the protein shown in the figure has an id of 1BH8 and consists of 1074 atoms. Given a 

protein, it is often necessary to study its geometric and physicochemical characteristics for the engineering of proteins. 

 

   
 

Fig. 1. Union of 3D spheres for molecules                                  Fig. 2. Solvent accessible vs. Molecular surface 

 

As we better understand the definition and manipulation of geometry using computers, there have been efforts to 

apply our knowledge on geometry to biosystems such as proteins, DNA, RNA, etc. It turns out that geometric 

molecular modeling plays important roles in the prediction of protein functions, drug design, simulation, etc.  

Discussed in this paper is an algorithm to compute molecular surfaces, which is known as one of useful geometric tools 

in molecules, assuming a convenient computational tool for the proximity among constituting atoms is available. The 

proposed algorithm initially identifies the appropriate topological locations where the molecular surface exists and then 

computes its surface equations. In our research, the Voronoi diagram is used for the efficient search for the 

neighborhood information. In particular, we have devised an algorithm and fully implemented the Voronoi diagram of 

atoms in Euclidean metric, Euclidean Voronoi diagram (EVD) for short [10], [11]. 
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2. PREVIOUS WORKS 

Due to its importance, there have been several researches on the geometric structure of proteins. Lee and Richards first 

defined the concept of solvent accessible surface to compute the free space that a probe, a sphere enclosing a small 

molecule, can move around during the small molecule interacts with a protein [12]. Among others, Connolly defined a 

molecular surface to calculate the volume of protein, electrostatic potential, interface surfaces in protein-protein, 

protein-ligand, etc [4], [7]. The initial algorithm by Connolly for computing molecular surface is to calculate the 

sampled points on molecular surface. The sampled surface was rendered as fields of dots because of the deficiency of 

computing power [6], [15]. The first analytic surface representation is also provided by Connolly [4]. He categorized 

the patches of molecular surface into three types: Convex spherical patch, saddle-shaped toroidal patch and concave 

spherical patch. The triangulation of the molecular surface is also discussed in [5], [7]. Seidl and Kriegel presented the 

algorithm for computing molecular surface by calculating and building up the multi-arc contours on the van der Waals 

spheres [21]. Varshney et al. discussed a fast computation of molecular surface so that the structure analysis can be 

done interactively [22]. The computation enhancement was due mainly to the efficient search of neighbors among 

atoms using the power diagram of atoms constituting the protein. 

Bajaj et al., on the other hand, presented a nice treatise for trimmed exact NURBS representation of molecular surface 

so that a standard graphics library such as OpenGL can be conveniently used without any additional effort [1]. It 

seems that NURBS representation may facilitate proteins to be modeled within contemporary commercial CAD/CAM 

softwares. Bajaj also used a power diagram for the efficient neighborhood search among atoms defining blending 

surfaces of probe sphere. Recognizing the limitation of power diagram, he discussed the conditions for the topology of 

power diagram to be fixed and an efficient update of correct topology of power diagram if needed, where the radius of 

solvent is continuously modified [1], [2]. Recently, Edelsbrunner et al. introduced the concept of molecular skin 

surface, which is the implicit surface defined by the envelope of an infinite family of spheres controlled by a finite 

collection of weighted points [3], [8]. They also presented the algorithm for triangulating the molecular skin surface in 

[3]. 

Review of literature reveals that there are two issues to be observed regarding on the molecular surface. Firstly, the 

mathematical and computational representation and manipulation of molecular surface itself. Secondly, the use of 

efficient data structure for the proximity or neighborhood information among atoms so that the queries about nearby 

atoms defining blending surfaces can be correctly and efficiently located. It seems that the first issue has been pretty 

much settled down in both implicit and parametric representation of the surface. Regarding on the second issue, 

however, researchers have mainly used either an ordinary Voronoi diagram of center points of atoms, power diagram 

of atoms, or α-hull. Considering the atoms constituting a protein may have varying sizes, these approaches only 

provide close approximations to what is actually and desperately needed: Euclidean Voronoi diagram of atoms, EVD 

for short. It should be noted that the computation of Euclidean Voronoi diagram for spheres could have been 

computed recently [10], [11]. Note that the discussions on the computation of a Voronoi cell of Euclidean Voronoi 

diagram for spheres is also provided by Will [23]. 

 

3. CONSTRUCTION OF MOLECULAR SURFACE 

 

3.1 Geometric Model of Molecular Surface 

A protein is usually modeled as a set of hard spheres representing atoms, which is called a space-filling or CPK-model, 

where radii are the van der Waals radii of atoms [6], [12]. Given a CPK-model, there are usually two kinds of surfaces 

involved as shown in Fig. 2: solvent accessible surfaces and molecular surfaces. A solvent accessible surface, which is 

first defined by Lee and Richards in 1971[12] and illustrated as a blue curve in the figure, is the set of centers of a 

spherical probe rolling around the protein. A probe is used for the computational convenience of a small molecule 

which interacts with the protein. Hence, the solvent accessible surface provides information on the free space that a 

small molecule can move without penetrating the protein [12]. Note that the notion of solvent accessible surface is 

similar to the concept of configuration space in robotics community [13] and in fact the solvent accessible surface is 

simply an offset surface of a given structure in the geometric modeling community [14]. A water molecule is frequently 

used as a solvent around a protein and the corresponding probe is approximated by a sphere with a radius of 1.4 A 

[6], [15], [19]. A molecular surface, which is also known as Connolly surface after the name of first researcher defined 

the surface[4], [7], consists of the most inward points on the probe toward the interior of protein when the probe is in 

contact with the protein [4], [6], [19]. In other words, the probe can be considered to roll over in any possible direction 

along the union of atoms without interfering the interior of atoms. The entire envelope created by this probe is, 

therefore, a molecular surface of the protein. Note that the locus by the centers of the probe contacting the protein is 

the solvent accessible surface.  



 

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 439-448 

 

441 

A molecular surface again consists of two further categorized surfaces: solvent contact surface and reentrant surface. A 

solvent contact surface consists of points on the van der Waals atoms which can be contacted by a probe while a 

reentrant surface is defined as a set of points on the inward part of the surface of a probe sphere, where the probe is 

located in tangential contact with atoms [19]. The red and green curves in the figure indicate both a solvent contact 

and a reentrant surface, respectively. 

It is quite well-known that atoms located in exterior part of a protein determine the function of the protein [4], [7]. 

Hence, a molecular surface is important in the study of functions of proteins since the surface has direct relation with 

exterior atoms. There are two major uses of molecular surface [4], [6], [7], [19]: it completely removes the van der 

Waals surfaces of interior atoms since these atoms are not directly involved in molecular interactions and most of the 

van der Waals surfaces of a protein are in the interior. Another use is the visual smoothing of crevices and pits. 

It turns out that a reentrant surface, which is a blending surface among atoms of possibly different sizes, again consists 

of two types of blending surface patches as we call: a rolling blending patch and a link blending patch. We can 

compute two types of blending surface patches by a ball of the given radius rolling along the union of sphere set in any 

possible direction with moving tangentially to the union of sphere set. A rolling blending patch is the surface patch 

generated by a probe rolling along two spheres with moving tangentially to both of them, which is called to be saddle-

shaped toroidal patch in the previous work [4], [7]. A link blending patch, denoted as a concave spherical patch [4], 

[7], is created in the positions where a probe tangentially touching three spheres. 

In addition, we define each surface patch constituting a solvent contact surface as an atomic contact patch, which is 

called convex spherical patch in the previous researches [4], [7]. Thus, a molecular surface consists of the above-

mentioned three types of surface patches, as illustrated in Fig. 3. If we roll over the union of same 3D sphere set with 

probes of different size, we will obtain the molecular surface with different shapes for each case. Note that the radius of 

the probe for Fig. 3 (c) is approximately ten times larger than that of the probe for Fig. 3 (b). 

 

                                         
 

(a)    (b)    (c) 
Fig. 3. Molecular Surfaces by different probes.(a) a molecule consisting of 15 atoms, (b) defined by smaller probe, (c) defined by  

 relatively larger probe. 

 

3.2 Euclidean Voronoi Diagram of 3D Spheres 

The proposed algorithm initially recognizes the topological locations where blending surface patches should appear via 

edge propagations, which use the accessibility of both edges and faces of EVD. Then, the algorithm computes the 

geometry counterpart of rolling blending and link blending patches exactly together with their trimming boundary 

curves. Since the algorithm needs to query neighborhoods of atom spheres to decide topological locations, we briefly 

describe Euclidean Voronoi diagram of spheres, which can provide us with the answers for such a topological inquiry 

efficiently. 

Despite of many important applications in various disciplines from science and engineering, Euclidean Voronoi 

diagram for 3D spheres, also known as an additively weighted Voronoi diagram, has not been studied as much as it 

deserves and its construction algorithm didn’t appear in the literatures until recently [10], [11]. 

The proposed algorithm employs Euclidean Voronoi diagram of 3D sphere set as a supplemental data structure. If 

Euclidean Voronoi diagram of 3D spheres is given, the various geometric processing such as the computation of 

molecular surface can be conveniently achieved. Fig. 4 (a) illustrates Euclidean Voronoi diagram of fifteen spheres with 

three different types of radii and Fig. 4 (b) shows another example for EVD of the same sphere set as in Fig.1. 

In this paper, we assume that Euclidean Voronoi diagram of sphere set is already computed and the proximity 

information is available from EVD of sphere set. In this subsection, we briefly describe the concept and a several basic 

properties of EVD of 3D spheres which are necessary to develop the proposed algorithm. Let 

{ }nssssS ,,,, 321 LL=  be a set of 3D spheres, which is called generators of Euclidean Voronoi diagram. 
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),,( iiii zyx=c  and ir  are the center and the radius of each sphere. Then, a Voronoi cell of each sphere is defined 

as { }ijforrrsV jjiii ≠−−≤−−= cxcxx)(  where Euclidean l2-norm is used for the distance between 

3D points. Then, Euclidean Voronoi diagram of 3D sphere set is the collection of Voronoi cells as follows: 

{ })(,),(),(),()( 321 nsVsVsVsVSVD LL=  

 

                                                                      
 

(a)                                    (b) 

 Fig. 4. Voronoi diagram of 3D spheres.(a) EVD for 15 spheres with 3 different types of radii, (b) EVD for spheres of Fig. 1 

 

We comment two basic assumptions and properties, whose some is necessary for defining each patch constituting 

blending surfaces and for deciding its topological locations. We assume that every Voronoi vertex in VD(S) has exactly 

four incident Voronoi edges and the number of the generators defining a Voronoi edge in VD(S) is three. According to 

the definition of VD(S), every Voronoi vertex in VD(S) is the center of empty 3D sphere tangent to neighboring four 

generators (spheres). Note that the empty tangent sphere of every Voronoi vertex is computed during the construction 

of VD(S). For detailed descriptions, refer to references [9], [11] and [16]. In addition, Voronoi edge is conic curve, 

which can be represented by rational quadratic Bézier curve and every Voronoi face is a hyperboloid. Note the 

number of the generators defining Voronoi faces of VD(S) is always two. 

 

3.3 Existence of Blending Surfaces 

Since the blending surface patches should be constructed not inside but only on the molecular surface, it is required to 

recognize the appropriate locations where blending surface patches are to create. The proposed algorithm locates such 

positions via edge propagations, which employs the accessibility of an edge and a face of VD(S). Two types of edge 

and face accessibility are defined as follows:  

 

Definition 1 Edge Accessibility 

If a probe with a fixed size can fly freely through all points on an edge with its center placed on the edge, the edge is 

called fully accessible for the probe. If an edge is partially accessible, the probe can fly through only the proper subset 

of the edge. The probe cannot be freely positioned on any point of a non accessible edge.  

 

Since there exist its defining three spheres around a Voronoi edge, the edge accessibility can be identified by 

comparing the radius of a probe with the radius of empty spheres simultaneously tangent to three spheres. Although 

the number of possible empty tangent spheres is infinite, we can locate empty tangent spheres whose radii are either of 

the maximum or of the minimum value among the possible empty spheres. Thus, the edge accessibility can be 

implemented by computing both minimum and maximum empty tangent spheres. Fig.5 (a) and (b) illustrate the 

possible locations of both maximum and minimum empty tangent spheres. In this figure, illustrated are also two types 

of Voronoi edges, which are both a monotonic edge and non monotonic edge with regard to the gradation of the 

radius of empty tangent spheres. Fig.5 (a) shows that a minimum empty tangent sphere occurs on one of intermediate 

points of the edge while a maximum empty tangent sphere appears on end vertex. Maximum and minimum empty 

tangent spheres appear on start and end vertex, respectively in Fig. 5(b). Note that such two types of spheres are 

already computed during the construction of VD(S). Therefore, if the radius of a probe is smaller than minimum value, 

the corresponding edge is called fully accessible. If the radius of a probe is larger than maximum value, the edge is non 

accessible. Otherwise, the edge is partially accessible. Note that a minimum empty tangent sphere can be placed on 
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either one of two vertices or one of intermediate points of the edge while a maximum empty tangent sphere can be 

placed on either a start or end vertices. 

 

 
 

       (a)                         (b) 
Fig. 5. Empty tangent spheres of an edge.(a) non monotonic edge case, (b) monotonic edge case w.r.t. the gradation of radii of empty 

tangent spheres 

 

The accessibility of a face is defined by both the accessibility of its boundary edges and the minimum Euclidean 

distance between its two defining generators (spheres) as follows:  

 

Definition 2 Face Accessibility  

If all of its boundary edges are fully accessible and the minimum distance between two spheres is larger than the 

diameter of a probe, the face is fully accessible. If either of two conditions is violated, the corresponding face is partially 

accessible. If all the boundary edges are non accessible, the face is non accessible.  

 

Starting at each unbounded Voronoi edge, we can determine the accessibility of every Voronoi edge via edge 

propagations, progressively. If the radius of a probe is smaller than minimum radius of current edge, the accessibility of 

the edge is recognized to be fully accessible and we continue to check the accessibility of incident edges of current edge 

via current edge propagation. Otherwise, after we determine the accessibility of current edge, where the accessibility is 

either partially accessible or non accessible, we do not check the accessibility of incident edges any more and terminate 

current propagation. If this procedure is repeated for each unbounded Voronoi edge, we can determine the 

accessibility of every Voronoi edge. After then, we can also determine the accessibility of faces based on that of its 

boundary edges and the minimum distance between its defining two spheres. 

 

Once the accessibility of every Voronoi edge and face is identified, it is possible to compute the precise locations where 

blending surface patches are defined and the following lemma holds (The proofs are obvious.).  

 

Lemma 1  

(Existence of Rolling Blending Patch) If a Voronoi face is partially accessible, there always exists a rolling blending 

patch between its two defining spheres. 

 (Existence of Link Blending Patch) If a Voronoi edge is partially accessible, there always exists a link blending patch 

among its three defining spheres. 

 

3.4 Rolling Blending Surface Patch 

A rolling blending patch is the blending surface patch generated by two spheres which define a partially accessible 

Voronoi face and is constructed by a probe rolling over a gap between two spheres with moving tangentially to both of 

them (from Lemma 1). A rolling blending patch is the saddle-shaped part of a toroidal surface, whose topology is 

rectangular. Fig. 6 and Fig. 8 show the constructed rolling blending patches, link blending patches and each atomic 

contact patch. Atomic contact patches are the remaining portions of spherical surfaces representing atoms from which 

all of the involved rolling blending patches are removed. Note that there always exist three rolling blending patches on 

the neighborhood of a link blending patch as shown in Fig.8.  

 



 

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 439-448 

 

444 

   
 

Fig. 6. Rolling blending patch   Fig. 7. Self-intersected rolling blending patch 

 

For each pair of spheres which define partially accessible Voronoi faces, the algorithm computes rolling blending 

patches. In this work, a rolling blending patch is calculated by the surface of revolution. Since the angle necessary for 

the probe to be rotated with moving tangentially to two spheres also can be computed, we can compute a rolling 

blending patch by revolving the arc, which is computed from contact points among the probe and two spheres and is 

denoted by generatrix in the literature [17], around the axis which is defined by connecting two centers of two spheres. 

The constructed rolling blending patch can be represented as NURBS surface only if we perform the revolution with 

the generatrix represented as NURBS curve [17]. If the above procedure is performed repeatedly for each pair of 

spheres defining a partially accessible Voronoi face, the construction of rolling blending patches is completed. Although 

the intersections between different rolling blending patches does not occur, the self-intersection is possible and in that 

case, we should compute two revolved surfaces, separately, as illustrated in  Fig. 7 [1]. 

 

3.5 Link Blending Surface Patch 

A link blending patch is the blending surface patch to be present among three spheres which define a partially 

accessible Voronoi edge and is created by making a probe touch three spheres tangentially and simultaneously (from 

assumptions of VD(S) and Lemma 1).  

If a link blending patch has no intersections with other link blending patches, its topological shape is triangular, as 

shown in Fig. 8 (a) and its boundary curves consist of three arcs of great circles on a probe sphere. The center of each 

arc is the center of the probe simultaneously tangent to three spheres (atoms) and two extreme points of each arc are 

two points among three contact points of a probe with three spheres.  

In fact, it is known that there exist no intersections between rolling blending patches and link blending patches or 

between link blending patches and atomic contact patches [1]. Furthermore, a link blending patch admits no self-

intersections [1]. Thus, it is sufficient that we should consider intersections between different link blending patches, 

which can be classified into two cases. Only if even one of its three neighboring rolling blending patches is self-

intersected, the topological shape of a link blending patch is no more triangular. According to the number of self-

intersected rolling blending patches, 3, 5, 7 and 9-sided link blending patches can be created as shown in Fig. 8. We 

can see the occurrence of intersections between the neighboring link blending patches with a self-intersected rolling 

blending patch. Another case is that a hole is created by the intersection between non-neighboring two link blending 

patches (Refer to Fig. 8 (e)). 

Since a rolling blending patch has only self-intersection without holes, it can be represented as NURBS surfaces without 

any additional efforts. A link blending patch can have various topological shapes and have even holes via intersections 

between different link blending patches. Thus, if the parametric representation is introduced, a trimming operation is 

inevitable and the handling of arbitrary topologies is also needed. In this work, we implicitly represent a link blending 

patch by maintaining only its boundary curves. Since link blending patches can be transformed to a single-valued 

function by projecting patches onto a plane defined by three contact points of a probe with three spheres, its 

tessellations for visualization is not so difficult. 

 

   
 

(a)           (b)             (c)            (d)               (e) 

Fig. 8. (a) 3-sided blending patch, (b) 5-sided blending patch, (c) 7-sided blending patch, (d) 9-sided blending patch (e) hollow patch 
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Let us consider the algorithm for calculating intersections between different link blending patches, which are spherical 

triangular patches, as previously described. Fig. 9 shows that the possible intersections between link blending patches. 

Note that an intersection curve is either a circular arc or a circle because the intersection between 3D sphere/3D sphere 

is a circle and the intersection between link blending patches is its subset. The proposed intersection algorithm 

maintains the boundary curves of a trimmed link blending patch, which consists of three great circular arcs and 

additional trimming arcs, by calculating the trimming arcs. At first, the algorithm locates all the relevant trimming arcs 

of the target link blending patch. Then, the final boundary curves are constructed by sorting three great circular arcs 

and trimming arcs. 

 

       
 

(a)     (b)     (c) 

Fig. 9. Intersections between link blending patches. (a) No intersection, (b) Intersection with circular arc boundary, (c) Single hole 

 

Let  iST  and jST  be two spherical triangles, which correspond to two link blending patches  and both iP  and jP  

be two instances of probes(spheres) which include both iST  and jST , respectively. Assume that iP  is the instance of 

the probe in which a target link blending patch to be trimmed is embedded. If φ≠ji PP I , we can find the plane, H 

such that HPPP iji II = . Then, our intersection problem between iST  and jST  is reduced to the intersection 

between iST  and H. Since the intersection between sphere and plane is a circle, we should calculate either a circle or 

a circular arc which is the subset of the intersection between iP  and H. If the intersection between iST  and jST  is 

not a hole inside iST , two extreme points of the intersecting circular arc always appear either on one or two among 

three great circular arcs. 

Thus, the problem is again simplified as the intersection between circular arcs and a plane, which can be formulated as 

a quadratic equation with both an implicit form equation of the plane and a parametric form equation of the arc. The 

real roots of the equation are the parameter values of intersection points. If the equation has no real root, we should 

check another possible case, where the intersection occurs inside the spherical triangle as a hole. To that end, we 

should check whether there exists an intersection between a triangle defined by three contact points of iST  and a ray 

defined by both the center of iP  and the center of  a hole or not. The existence of the intersection indicates a trimming 

circle inside iST  as a hole.  

Once all the relevant trimming arcs and circles of iST  are computed, we should orientate all the arcs consistently, as 

shown in Fig. 10. If this process is performed repeatedly for the entire possible intersecting link blending patches, the 

correct final boundary curves can be obtained. Note that both a trimming arc and a trimming circle (a hole inside the 

patch) appear in Fig. 10. In this case, CCW orientations are assigned for the outer loop boundary curves and CW for 

the inner loop (a hole). If we consider these situations in a parametric domain, which can be constructed based on a 

stereographic projection, the previous trimming process can be also explained as the problem to maintain a 2D 

dynamic union of balls [1]. 
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Fig. 10. Orientation of boundary curves of link blend   Fig. 11. Rolling blending patch centric topology 

 

3.6 Atomic Contact Surface Patch 

An atomic contact patch is the leftovers of a spherical surface from which the regions occupied by its involved rolling 

blending patches are removed as previously illustrated. Note that only one rolling blending patch is involved for each 

atom in both Fig. 6 and Fig. 7 and two rolling blending patches are involved for each atom in Fig. 8. 

An atomic contact patch is a convex spherical surface and its boundary curves are composed of a set of either circular 

arcs or circles, which are border between an atomic contact patch and an involved rolling blending patch. Note that the 

boundary curves of an atomic contact patch in Fig. 6 and Fig. 7 consist of a single circle and those of patches in Fig. 8 

consist of two circular arcs. In our approach, an atomic patch is represented implicitly by maintaining its boundary 

curves, which are locus by the extreme points of generatrix used for computing its involved rolling blending patches 

(See 3.4). 

 

3.7 Maintenance of Inter-patch Topology 

In the application of molecular biology such as protein docking, the local shape of 3D structure of the molecules as well 

as its physicochemical properties plays important roles for docking retrieval. In this case, the neighborhood query of the 

given patch is required for either the approximation of the local shape or the segmentation of a molecular surface [20]. 

The neighborhood query can be facilitated by maintaining the topological information among the surface patches of a 

molecular surface [20].  

A rolling blending patch is always created between two link blending patches and three rolling blending patches are 

connected to a link blending patch, as shown in Fig. 8. Given a rolling blending patch, there exist two related atomic 

contact patches, which are constructed on two spheres defining a partially accessible face. Thus, we can define and 

maintain the topology information among patches based on a rolling blending patch as illustrated in Fig. 11. In Fig.11, 

R, L and A symbolize a rolling blending patch, a link blending patch and an atomic contact patch, respectively. From 

the topological relationships among R, L and A, we can construct the planar graph, whose vertices and edges are link 

blending patches and rolling blending patches, respectively.  

In Fig. 11, if we consider R to be an edge which is defined by both Ls and Le as its two vertices, its incident four edges 

Rlh, Rrh, Rll and Rrl also can be defined. This situation is described by the dotted arrows in that figure. Since two 

neighboring atomic contact patches of R, Al  and Ar can be assumed to be left face and right face of R, following these 

analogues, we can store the inter-patch topology information into full winged edge data structure. Several alternatives 

for storing these topological information and the issue of storage requirement are discussed in [20]. 

 

4. FAST DETECTION OF INTERSECTIONS BETWEEN BLENDING PATCHES 

The naive approach for finding the intersections between link blending patches is to solve directly the intersection 

problems between all of the possible pairs of link blending patches. For reducing the redundant computational 

burdens, we can filter out non-intersecting pairs before we compute intersections. To that end the algorithm exploits a 

Voronoi diagram of the probes postured on their appropriate link blending positions [1]. Note that such positions were 

already identified via edge propagations.  

Suppose that we put the spheres of the same radius as that of a given probe on appropriate link blending positions 

obtained from edge propagations. Then, the Voronoi diagram of probes (spheres) can reduced to a point set Voronoi 

diagram, because the radius of the probe is fixed.  
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Let { }nLLLLL ,,,, 321 LL=  and { }
nLLLLL PPPPP ,,,,

321
LL=  be a set of link blending patches and a set of 

corresponding probe instances positioned at each link blending patch. Assume that iL  be current target link blending 

patch trimmed by its neighboring link blending patches. Suppose 
iL

P  and qP  to be a sphere including iL  and one of 

its neighboring spheres, respectively. For filtering out the non-intersection cases, the algorithm queries the neighboring 

spheres of 
iL

P based on a point set Voronoi diagram, VD( LP ). Then, for our intersection problem, we could exclude 

the spheres of the radius whose addition with the radius of 
iL

P  is smaller than the distance between two centers of 

iL
P and qP . In this way, we can screen out all of non-intersecting neighboring generators and reduce the computation 

cost. 

 

5. DISCUSSIONS AND CONCLUSION 

This paper discusses the construction of molecular surface with being supplemented with Euclidean Voronoi diagram 

of 3D sphere set. The algorithm initially finds the topological locations of blending surfaces via edge propagations. 

Then, the algorithm computes the geometry counterpart of rolling blending and link blending patches exactly. The 

geometry of rolling blending surface patch is represented by NURBS surface via the surface of revolution and that of 

link blending surface patch is represented implicitly by maintaining only boundary curves of the trimmed link blending 

patch. Finally, we discussed the maintenance of the inter-patch topology information for three types of constituent 

patches of a molecular surface. While Bajaj et al. point out the conditions where the additional computation for power 

diagram is necessary [2], the previous researches based on power diagram requires power diagram of molecules to be 

updated for reflecting changes in the radius of a probe. However, since the Euclidean Voronoi diagram of 3D spheres 

is fixed irrelevant to the size of a radius, our algorithm can efficiently compute a molecular surface even when the 

radius of a probe is continuously modified without updating EVD as illustrated in Fig. 12. 

 

                
 

        (a)                         (b)     (c)                        (d) 

Fig. 12.(a) original molecule and molecular surfaces for the probes with a diverse radius size, (b) 1.7 A
、
  (c) 4 A

、
 (d) 8 A

、
, respectively 
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