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ABSTRACT 

 

We present a flow-based method for finding minimum over constrained subgraphs in a geometric 

constraint graph. In 2D several different approaches have been implemented, while the 3D 

problem, in which the entities are points, lines and planes of a model, is much less investigated in 

the literature. We present a general algorithm for the problem both in 2D and 3D, show that the 

algorithm is correct and can be used to identify if there is an over constrained subgraph in a 

constraint graph. 
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1. INTRODUCTION 

Geometric constraint solving, especially in 3D, has many applications, such as in CAD, kinematics, reverse 

engineering, molecular modeling and robotics [1]. One active research area in CAD concerns computer-aided 

conceptual design, whereby a designer sketches a design in 2D, and a 3D model is recovered automatically from the 

sketch [2-4]. Such 2D sketches carry no dimensions, and the dimensions in the recovered 3D model are based on the 

pixel positions of the lines and vertices in the sketch, which are inaccurate. Usually such recovered dimensions bear no 

resemblance to the actual sizes the designer had in mind. Hence one key problem after the recovery of a 3D object is 

to give it proper dimensions. A similar problem arises in reverse engineering when a 3D model is recovered from a 

point cloud [5]. It is neither practical nor desirable to require the user to provide the dimension for every entity – 

vertex, edge or face – present. One solution is to set up the constraints between the entities, and resolve the dimensions 

based on these constraints computationally. Some of the constraints can be established automatically, but there will 

always be some that must be given by the user. Clearly, it is desirable to minimize the user input on such a potentially 

tedious and error-prone task. 

Whether assigned manually or automatically, it is necessary to determine if a set of constraints is sufficient for 

describing a model completely. There can be over constraint or under constraint, and there may also be redundancies, 

which include structural and numerical redundancies. A structural redundancy over constrains the system. For instance, 

the constraint f(x1, x2) = 0 which constrains two variables x1 and x2 in a system will lead to a structural redundancy if 

two other constraints g1(x1, x2) = 0 and g2(x1, x2) = 0 are present, since the values of x1 and x2 are implicitly 

determined already by g1 and g2. Constraints and the entities they constrain can be represented as a graph, and f, g1, 

and g2 result in an over-constrained subgraph. The problem can be rectified by discarding one of the constraints. A 

system can be numerically redundant or inconsistent. For example, two constraints expressed by x1+x2=1 and 

x1+x2=0 are inconsistent; x1+x2=1 and 2x1+2x2=2 are redundant. 
A constraint system can be expressed as a system of equations [6]. If structural redundancy exists in the system, then 

the Jacobian matrix of the system of equations is singular. Light [6] identified an invalid dimensioning scheme by 
singularity of the Jacobian matrix, but a singular Jacobian matrix could also be produced by structural or inconsistent 

redundancies. The complexity of the method to resolve the redundancy is O(N3) or worse [7]. Buchanan [8] 

determined whether a system of equations is inconsistent by using the Grobner basis. Gao [9] gave a complete method 

for deciding whether a set of constraints is independent and whether the constraint system is numerically inconsistent 

based on Wu-Ritt’s decomposition algorithm. Despite the advantages of the algebraic approaches using Grobner bases 

or the Wu-Ritt method, both of them require exponential time complexity. It is not uncommon for them to take some 

tens of minutes or even hours, which is not acceptable in a real time interactive system. 
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Numerous works have addressed the problem of structural redundancies. In 2D, the triangle decomposition method 

was used by many researchers in geometric constraint solving [9-11], so their methods for identifying over-constrained 

subgraphs were based on triangle decomposition too. For example, in Fudos’s method [13-15], if two well-constrained 

clusters share more than one geometric element, then over-constraint is detected. But the method can be used only 

within a limited domain, and cannot be applied in 3D. 
Latham [16] proposed a method based on the maximum b-matching algorithm to decompose a constraint problem 

into a sequence of solvable subgraphs. The crux of this algorithm is the detection and correction of over-constraints 

and under-constraints. But this method of detection does not work well in some cases. For example in the case 

depicted in Fig. 2(a), this method cannot detect the over-constrained subgraph p2p3p4p5. Maximum b-matching is a 

special case in generalized maximum matching (MM), of which Hoffmann stated [17], “the MM method may or may 

not detect over-constrained subgraphs, depending on the initial choice of vertices for reducing weights”. He proposed 

a method MM1 to correct this drawback, but did not deal with 3D cases. 
Li’s method can detect over-constraint in 3D cases [18], but all the entities in the constraint graph must have six 

degrees of freedom. So his algorithm cannot be used in cases where the entities are points, lines and planes, which do 

not have six degrees of freedom. Recently, Langbein [5] proposed a method of identifying over-constraint based on 

Kramer’s degree of freedom analysis [19] and Li’s method of analyzing dependencies between geometric objects. But 

his method did not have a rigorous proof, and he could not obtain the minimum over-constrained subgraph. Jermann 

proposed a new concept of extensive structure rigidity [20, 21], which is useful and will be used in our algorithm. His 

algorithm may find all the over-rigid subgraphs, but the number of sub-objects (called DOR-minimals in the paper) the 

algorithm has to deal with is large, even though it may stop early without utlising all the sub-objects. Jermann’s paper 

shows that Hoffmann’s algorithm for identifying dense subgraphs may fail because of geometric rigidity [22].  

Deciding whether a constraint system contains structurally redundant constraints and identifying over-constrained 

subgraphs are key problems in geometric constraint-solving. This paper presents a new algorithm to find the minimal 

over-constrained subgraph in a constraint system and identify the existence of structural redundancy, thus allowing the 

user to take action to keep the system properly constrained. The rest of this paper concentrates on structural properties 

of a constraint system and ignores numerical redundancy. 

 

2. FINDING OVER-CONSTRAINED SUBGRAPHS 

Finding over-constrained subgraphs in a constraint system is concerned with the association between geometric 

elements and their constraints. In this paper, the analysis is presented mainly in the 3D domain; 2D cases are simpler. 

This section presents the algorithm for identifying over-constrained subgraphs. But before that, there are some 

essential fundamental definitions. 

 

2.1 Definitions and graphical representation 

 

A geometric constraint system can be represented by a 

constraint graph G=(V, E), where V is the set of nodes 

representing the entities, including points, lines and planes. E is 

the set of arcs representing constraints between the entities. For 

example, Fig. 1(b) is the constraint graph of the constraint 

system shown in Fig. 1(a). The V of its constraint graph is 

composed of two planes f1, f2, two points p1, p2, and one line 

e1. The E of the constraint graph is composed of parallel and 

distance constraints between f1 and f2, the angle between e1 

and f1, the distance between p1 and p2, with p1 lying on f1, p2 

lying on f2, p1 lying on e1 and p2 lying on e1. 

Finding the over-constrained subgraph is a case of analyzing 

the degrees of freedom in the system.   

 

The weight of an entity is equal to the degrees of freedom (DOF) of the entity.  

As shown in Table 1, in 3D, the weight of a point is three, for the three translations in each of the three spatial 

dimensions x, y and z; i.e. the point is free to move in 3D. The weight of a line is four, for two translations along two 

axes orthonormal to the line, and two rotations about these two orthonormal axes. The weight of a plane is three, for 

one translation along the plane normal and two rotations about the axes orthonormal to the plane normal. 
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(a) An object (b) The constraint graph 

Fig. 1. A 3D example 
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Entity Local coordinate system Freedom of translation Freedom of rotation 

point 

 
x axis 

y axis 

z axis 

none 

line 

 
y axis 

z axis 

y axis 

z axis 

plane 

 

z axis 
x axis 

y axis 

 

Tab. 1. Freedoms of geometric entities in 3D 

 

The weight of a constraint is the number of DOF eliminated by the constraint, which is the number of equations 

required to define that constraint. For example, the constraint of distance between two points requires one equation 

that eliminates one degree of freedom, thus its weight is 1. 

The relationships between different pairs of basic geometric entities, the constraints between them and the degrees of 

freedom these constraints consume in 3D are listed in Table 2.  

 

Entity 1 Entity 2 Constraint type 
Constraint 

weight 

DOR of 

rigid graph 

point point distance between two points 1 5 

distance between point and line 1 6 
point line 

point lies on line 2 5 

distance between point and plane 1 5 
point plane 

point lies on plane 1 5 

angle between two intersecting lines 1 6 
line line 

parallel & distance between two lines 3  5 

parallel & distance between line and plane 2 5 

angle between line and plane 1 6 

line lies on plane 2 5 
line plane 

perpendicular between line and plane 2 5 

angle between two planes 1 5 
plane plane 

parallel & distance between two planes 3 3 

 
Tab. 2. Basic constraint types 

 

The DOF of a graph G is equal to the difference between the sum of the weights of the entities in the graph and the 

sum of the weights of its constraints. 

A rigid subgraph is a well-constrained subgraph, in which the relative positions of the entities are fixed. In Table 2, 

the entity-entity pair plus the constraint in each row forms a rigid graph. The degree of rigidity (DOR) of a 

subgraph is the number of independent displacements it admits, i.e. the DOF of the corresponding rigid subgraph. 

Hence the DOR of a rigid subgraph is the same as its DOF. DOR depends on the geometric properties of the entities 

and the constraints [21]. For example, the DOR of a line (a pair of points and the distance between them, which form 

a rigid subgraph) is 5 in 3D, and the DOR of two parallel planes in 3D is 3.  

In the case of 2D planar constraint problems, the entities are points and lines. The weights of all the entities are two, 

and all the constraints one.  

In Fig. 2(a), the constraint graph is composed of five 2D points and seven point-point distances identified by the lines 

between them. Subgraph p2p3p4 is rigid (see Fig. 2 (b)), and its DOF is 3, so the DOR of subgraph p2p3p4 is 3. In Fig. 

2(c), though the DOF of p2p3p4p5 is 2, the DOR of subgraph p2p3p4p5 is 3, because the DOF of its corresponding rigid 

subgraph p2
’p3

’p4
’p5

’
 is 3. In Fig. 2(d), the DOR of subgraph p1p2p5 is 3 though the DOF of p1’p2’p5’ is 4. 
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If the DOF of a subgraph is less than its DOR, the subgraph is over-constrained. 

In Table 2, all the subgraphs consisting of two entities and one constraint are rigid, since the relative positions between 

the two entities cannot be changed, i.e. the subgraphs are not deformable. 

 

2.2 Property of rigid subgraphs 

Property of DOR computation [21]: if O1 and O2 are two rigid subgraphs, and O1⊂O2, then DOR (O1) ≤DOR 

(O2). Because DOR represents the relative displacements allowed in a subgraph, and adding objects to it cannot 

remove the displacements, it means DOR may increase but cannot decrease with increasing number of objects. 

The section below analyses the DOF of different rigid subgraphs. The results will be applied to the algorithm of 

identifying over-constrained subgraphs.  

 

Theorem 1 In 3D cases, the DOR of any nontrivial subgraph is 3, 5 or 6. 

Proof 

Table 2 lists the types of constraint between two basic entities in 3D, and all of them are rigid. The DOF of the graphs, 

which consist of two entities and one constraint in the table are 3, 5 or 6. By adding entities and constraints to the basic 

graphs in Table 2, we can obtain new rigid graphs. If the basic graph contains two parallel planes and the distance 

between them, then the DOF of the rigid graph is 3. After adding another parallel plane and its distance from one of 

the existing planes, the DOF of the new rigid graph remains at 3, because in the new rigid graph the sum of the weights 

of the three nodes is 9 and the sum of the weights of the two constraints is 6 (parallel and distance constraints between 

two planes). So this gives DOF = 3 to the new rigid graph. This is the only case where the DOF of a new rigid graph is 

3. If we add other types of entity and constraint to a graph with DOF=3 to form a new rigid graph, the new graph then 

contains other types of subgraphs, whose DOR may be 5 or 6 (see Table 2). According to the property of DOR 

computation, the new graph’s DOR is 5 or 6.  

When the DOF of the basic graph in Table 2 is 5, after adding entities and constraints to the basic graph to obtain a 

new rigid graph, according to the property of DOR computation, we can only obtain a new rigid graph with DOR≥ 5, 

which means either 5 or 6. 

After adding entities and constraints to a basic graph with DOF=6, the new rigid graph’s DOR may be ≥ 6, according 

to property of DOR computation. However, the maximum number of displacements possible in a valid 3D model (i.e. 

a rigid graph) is 6. So the new rigid graph’s DOR has to be 6. 

From the analysis above, it is clear that the DOR of any rigid subgraph is 3, 5, or 6.  � 

 

It is easy to identify a rigid subgraph with DOR=3 in a constraint graph. The subgraph is a set of parallel planes with 

known distances between them. We will focus on identifying rigid subgraphs with DOR=5 in a constraint graph by 

analyzing the properties of its entities and constraints. There are four different types of rigid subgraph with DOF=5; 

they are discussed below. 

1. For a rigid subgraph with DOF=5 containing a point and a line, the point must lie on the line. 

As stated before, a point has DOF = 3 and a line has DOF = 4. A non-rigid graph containing a line and a point 

unconstrained will have DOF=7. If the distance between the line and the point is given, the system becomes a rigid 

graph with DOF=6.  For the DOF to be 5, we need to remove the rotational freedom of the point about the line by 

requiring that the point lies on the line. 

2. For a rigid subgraph containing one point, one plane and the perpendicular distance from the point to the plane, 

the DOR=5. In the case of multiple points and multiple planes, for DOR=5, all the planes must be parallel and the 

points must lie in one line perpendicular to the plane.  

vs. 

Fig. 2.  A 2D example on degree of rigidity 
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A plane has DOF=3 and a point also has DOF=3. An unconstrained system with a plane and a point has DOF=6. 

Specifying the distance between the plane and the point reduces the DOF by one, hence such a system has DOF=5. 

Adding another point to the system increases its DOF to 5+3=8. Fixing the distance between this new point and the 

plane reduces the DOF to 7. Further requiring that this point lies on the plane normal containing the first point reduces 

the DOF by another 2 (the distance between the two points and the rotation of the second point about the said 

normal). Hence, for a system with a plane and two points, the DOF=5 when the points lie in the same normal to the 

plane. The same is true when there are more than two points. Further it can be shown that if there are multiple planes, 

then they must be parallel to maintain DOF=5, since the DOF of a system of parallel planes with known distances 

between them is 3. 

3. For a rigid subgraph with DOF=5 containing a line and a plane, the line must be perpendicular to the plane or 

parallel and at a given distance to the plane. 

A line has DOF=4, and a plane has DOF=3; thus an unconstrained system with these two entities has DOF=7.  

Constraining the line to be perpendicular to the plane removes two freedoms: the rotation of the line about the plane 

normal through their point of intersection, and the translation of the line along this normal. Hence the DOF is reduced 

to 5. In the parallel case, the line being parallel to the plane and the distance between them reduce the DOF by 2, and 

hence the DOF of the resulting constraint system is also 5.  

4. Except for the cases listed in Table 2, there are no other rigid subgraphs with DOF=5 which have only points or 

lines or planes. 

Based on the discussion above, we can find a rigid subgraph with DOF=5 by the types of entity and constraint in a 

given graph.  The case of DOR=6 will not be discussed here as it is will be seen in the algorithms below that there is no 

need to deal with such cases directly. 

 

2.3 Algorithm for finding a minimum over-constrained subgraph 

The algorithm starts with a subgraph G’ of G; initially G’ includes only all the entities 

and no constraint. Therefore, we know G’ is under-constrained, and there is no over-

constrained subgraph in G’. We then add the constraints of G to G’ one by one. 

When a constraint e is added to G’, we attempt to find the over-constrained 

subgraph, starting from the two end points, a and b, of e.  

When the weight of e=1, if there is no rigid subgraph with DOF=5 or 6 in G’ (which 

does not contain e) including the two end points, then no over-constrained subgraph 

is found. Otherwise a subgraph G’’ would be identified by Algorithm 2, and {G’’, e} 

is the over-constrained subgraph. The DOF of G’’ may be 5 or 6 when the weight of e 

is 1, according to Theorem 1. Fig. 3 shows a sketch of the G’, G’’, base graph and a, 

b. The base graph begins with {a, b}; some of the elements of G may be added into it 

in Algorithm 1, then {base graph, e} represents an acceptable rigid subgraph whose 

DOF maybe 3 or 5. When the weight of e=2, Algorithm 2 will identify a subgraph G’’ with DOF 5, 6 or 7, if it exists. 

And when the weight of e=3, we need to find a subgraph G’’ with DOF less than 8. 

It is easy to detect a subgraph with weight 3, as only a series of parallel planes can have DOF=3. We can detect such a 

situation by searching the groups of parallel planes, two of which are end points of e. 
 

Algorithm 1: Finding a minimum over-constrained subgraph 
 

1. G’={V} 

2. for every constraint e in G do 

3.       base graph=e and a, b which are two end nodes connected by e in G’ 

4.       G’’={∅ } 

5.       if can identify a rigid subgraph G’’ with DOF=5 including base graph  

6.           go to line 19 

7.       if can identify a subgraph G’’ with DOF=6 including base graph 

8.           if {G’’,e} is one case of rigid subgraphs with DOF =5, and weight of e is 1 

9.               add G’’ to base graph, go to line 7  

10.           else go to line 19 

11.       if can identify a subgraph G’’ with DOF=7 including base graph and weight of e is 2 

12.           if {G’’,e} is one case of rigid subgraphs with DOF =5 

13.              add  G’’ to base graph, go to line 7  

G’’ 

G’ 

b a Base 

graph 

e 

Fig. 3. Variables in the algorithm  
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14.           else go to line 19 

15.       if can identify a subgraph G’’ with DOF=8 including base graph and weight of e is 3 

16.           if {G’’,e} is one case of rigid subgraphs of DOF =5 

17.              add  G’’ to base graph, go to line 7  

18.           else go to line 19 

19.       an over-constrained subgraph {G’’, e} is found ,break 

20.       no over-constrained subgraph exists, add constraint e to G’, 

21. endfor 

 

Algorithm 2, for identifying a subgraph with DOF=n, is based on the “maximum flow” algorithm of Ford-Fulkerson 

[23]. For a given graph G’, by distributing the weights of the constraints to the DOF of the entities, we can convert the 

structure graph G’{V, E} to a directed graph. 

A new constraint network graph (s, V*, t, E*, w) is constructed for finding the direction of the arcs in a constraint graph 

G(V, E). The vertices in V* include the vertices in V and the arcs in E. s is the source, connected to every constraint in 

E. The capacity of the arc (s, v), v∈E is equal to the weight of v in E. t is the sink connected to every node in V. The 

capacity of the arc (v, t), v∈V is equal to the weight of v in V. The capacity of the network arc (v1, v2), v1∈E, v2∈V, v2 

being constrained by v1, is infinite. The arcs in E* include the arcs between s and the vertices in V*, between t and the 

vertices in V*, and the arcs between the vertices in V*. w is the capacity of the arcs in E*. For example, Fig. 4(b) shows 

the associated network graph of the object in Fig. 4(a). The source can be viewed as a producer of some sort of fluid, 

and the sink as a consumer of the fluid. The maximum flow algorithm determines the largest possible amount of flow 

that can be sent from the source to the sink along each of the arcs in the constraint network graph. This maximum flow 

enables the conversion of the constraint graph into a directed graph via flow operations. In a network graph, for every 

arc (e, v), e∈E, v∈V, v is constrained by e. If the flow of e is not equal to zero, then the direction of e is directed to v in 

the constraint graph. 

In a graph with DOF=n, after adding n extra constraints to the graph, the weight of each entity is equal to the sum of 

the weights of the constraints directed to it. All the weights of the constraints are distributed to the entities connected by 

the constraints. If the weight of one constraint is increased by 1 in a graph with DOF=n, after distributing all the 

constraints, the flow going out from the source is less than the weight of the constraint, i.e. one of the constraints 

cannot be totally absorbed by the entities. 

Before adding the last constraint e, G’ is under or well constrained. To identify a subgraph with DOF=n including a, b, 

which are the two nodes connected by e, Algorithm 2 proceeds as follows: First, n extra constraints are added to the 

nodes a, b, where n is the DOF of the subgraph that we are finding. All the constraints in E’, which consists of the 

constraints connecting the entities in the base graph and other entities in G’, are deleted. Then the constraints in E’ are 

added one by one to G’. For every constraint in E’, the weight of the constraint is increased by one to check the 

existence of a subgraph with DOF=n in G’. By distributing all the constraints, if one weight of a constraint cannot be 

absorbed by the entities, then a subgraph with DOF=n exists. Now by doing a breadth-first search, beginning from the 

last added constraint in E’, we can identify a set of entities, in which the weight of every entity is equal to the sum of 

the weights of the constraints distributed to the entity. Then a subgraph G’’ can be found and identified by the set of 

entities. G’’ is a subgraph with DOF=n if we add n extra constraints on nodes a and b, so DOF of G’’ is n.  

When a new constraint is added in line 7 of Algorithm 2, the new maximum flow can be found more easily, because 

we only need to find the new argument path [23] for the newly added constraint. 

The technique here is similar to the one used by Hoffmann [22], but Hoffmann distributed arcs connected to an entity, 

our method distributes arcs connect to the base graph. In 3D cases, when the entities are points, lines and planes, 

Hoffmann’s method will stop at identifying every basic constraint types listed in Table 2 as dense subgraphs; a dense 

graph maybe well-constrained or over-constrained subgraph, so his method cannot identify a subgraph with certain 

DOF. 

Algorithm 2: Identifying subgraph with DOF=n 

Input (G’, base graph, n), where n is 5, 6, 7 or 8. 

1. int k=0 

2. set the weights of all the arcs in base graph to 0, and weights of all the nodes except for a, b to zero. 

3. add n extra constraints to the nodes a, b. 

4. delete all the constraints in E’ which connect the entities in base graph and other entities in G’ 

5. for every constraint e’ in E’ 
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6.      add e’ to G’ 

7.      increase the weight of e’ by 1 

8.      use maximum flow method to distribute all the constraints to the entities. The constraints include constraints in 

G’, n extra constraints and e’ 

9.      if one weight of a constraint cannot be distributed 

10.         { k=k+1;  obtain a subgraph Gk’’ } 

11.      decrease weight of e’ by 1.  

12. endfor 

13. if k=0 return G’’ 

14. else return no subgraph with DOF=n 

 

The two theorems below prove that an over constrained subgraph {G’’, e} is a minimal over-constrained subgraph in 

G, and it is correct. 

 

Theorem 2 The over-constrained subgraph in Algorithm 1 contains the last added constraint e. 

Proof 

Let A be an over-constrained subgraph that does not contain the constraint e. Then there should be an arc that was in 

an over-constrained subgraph before e was considered. This contradicts the assumption that all arcs in G’ have not 

been in an over-constrained subgraph.  � 

 

Theorem 3 The over-constrained subgraph {G’’, e} detected in Algorithm 1 is the minimal over-constrained 

subgraph. 

Proof 

If there is a smaller over-constrained subgraph G* inside G’’, for all the constraints connecting the nodes between G’’ 

and G*, the directions of the constraints are from G* to G’’, then it is impossible to find G’’ after G*, so {G’’, e} is a 

minimal over- constrained subgraph.  

Assume there is another minimal over-constrained subgraph which intersects the detected one. If the intersection 

contains  more than {a, b}, then {G’’, e} cannot be found as a minimal over-constrained subgraph. This can be 

proved by the method stated in the last paragraph.  

If the intersection is {a, b}, Algorithm 2 can detect more than one subgraph Gk’’. This special case is not dealt with in 

Algorithm 1, to keep it simple and easy to follow; we describe it here instead.  In line 19 of Algorithm 1, if more than 

two of {Gi’’, e} (i=0,1…k) are detected as over constrained subgraphs, the minimal over-constrained subgraph in 

Algorithm 1 is then set to {e} in this case. We will simply delete constraint e from the constraint graph to keep it from 

over-constrained. � 

 

In 2D, the entities are points and lines, and the weights of both of them are 2, and the weight of a constraint is 1; the 

DOF of all the rigid subgraphs in 2D are 3. So in the algorithm for finding a minimum over-constrained subgraph, for 

each e in G’, we need only to find if there exists a rigid subgraph with DOF=3  including the two end points of 

constraint e. If such a rigid subgraph exists, then G’’ is returned from Algorithm 2. 

 

3. COMPLEXITY ANALYSIS 

The complexity of Algorithm 2 is dominated by that of the Ford-Fulkerson algorithm, which is O(mn (n+m/2)), where 

n is the number of nodes and m is the number of constraints in a constraint graph. It can be shown that that on 

average, there are 4m/n constraints connected to a base graph, so the complexity of Algorithm 2 is O(m2 (n+m/2)). 

Then, the complexity of Algorithm 1 is O(m3 (n+m/2)).  

 

4. EXAMPLE OF APPLICATION 

In this section, we show three examples on how the algorithm of this paper can be used to identify the over-

constrained subgraphs in a constraint graph. 

 

4.1 A simple 2D example 

In Fig. 4, the constraint graph consists of five 2D points and seven point-point distances identified by the lines between 

them. 
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According to Latham’s method, if we add two extra constraints to point p1, and one extra constraint to point p2, shown 

in Fig. 4(c), then after the computation of maximal flow, there will not be any unsaturated constraint or unsaturated 

entity i.e. there will be no over-constraint and under-constraint in the example. But over and under constraint exist in 

the example: p2p3p4p5 is an over-constrained subgraph, and line p1p2 is under constrained, as it can rotate around p2. 

Our algorithm begins with G’ which contains all the entities, then the constraints are added one by one to G’. If the 

distance constraint between p2 and p4 is the last constraint added, by distributing the DOF of the constraints to the 

DOF of the entities, a directed graph is obtained, as shown in Fig. 4(d). The minimum over-constrained subgraph 

p1p2p3p4 can be deduced from it, because the graph G’’ p1p2p3p4 without the distance between p2 and p4 is a well-

constrained subgraph with DOF=3, which is identified by Algorithm 2. We can make p1p2p3p4 well constrained by 

deleting any constraint inside it or the distance constraint between p2 and p4. After deleting one constraint, the point p1 

is still unsaturated, so the under constraint still exists in the constraint graph. 

 
  

4.2 A simple 3D example 

Fig. 5 shows an example in 3D. The V of its constraint graph is composed of two planes f1, f2, two points p1, p2, and 

one line e1. The E of the constraint graph is composed of parallel and distance constraints between f1 and f2, the angle 

between e1 and f1, the distance between p1 and p2, with p1 lying on f1, p2 lying on f2, p1 lying on e1 and p2 lying on e1. 

 
At the beginning, G’ contains all the entities only, then the constraints are added to it one by one. If the angle 

constraint between e1 and f1 is the last constraint to be added, then Algorithm 1 proceeds as follows: firstly, identify 

rigid subgraphs with DOF=5 by calling Algorithm 2, which adds 5 extra constraints to e1 and f1. No rigid subgraph with 

DOF=5 is found. Next Algorithm 1 looks for subgraphs with DOF=6. Algorithm 2 similarly adds 6 extra constraints to 

e1 and f1, and a subgraph G’’, f1f2p2e1p1 is found. The DOF of the subgraph is 6, as shown in Fig. 5(d). Then, the 

minimum over-constrained subgraph is identified (see Fig. 5(c)), which includes f1f2p2e1p1 and the constraint between f1 

and e1. So, one of the constraints in the minimal over-constrained subgraph should be deleted. If we add the 

constraints into G’ from the beginning in a different sequence, the same over-constrained subgraph will be identified 

too. 
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4.3 Another 3D example 

Fig. 6 gives another example using a 3D pyramid. This pyramid contains four points, six lines, four planes and six 

distance constraints with a weight of value one each, which are the distances between the points. In the pyramid, the 

four points are each constrained to lie on three planes, and therefore there are 12 constraints of point on plane, with a 

weight of one each. Similarly, there are 12 constraints of point on line with a weight of two each. If a user tries to add 

another constraint denoted by the dash line in Fig. 6(b), say the angle between two planes f1 and f2, the graph would be 

over-constrained, then a minimal over-rigid subgraph would be detected (see Fig. 6(c)). The minimal over-rigid 

subgraph includes all the points, the distances between them, f1, f2 and the angle constraint. Then we get a well-

constrained system after deleting one constraint in the minimal over-constrained subgraph. 

 

 
The examples in this section are necessarily simple, because otherwise the constraint diagrams become too complex 

and unwieldy to show here. Nevertheless, they illustrate the way the algorithms work. 

 

5. CONCLUSION 

This paper describes a flow-based method for identifying over-constrained subgraphs in a constraint system. Basically, 

it exploits the degree of freedom and degree of rigidity properties of subgraphs, and its method of adding the 

constraints one-by-one to the entities in the graph allows all the over-constrained subgraphs to be identified and 

corrected, as the adding progresses.  

The algorithm has been implemented in our test system, and it works correctly. We are currently using the method to 

establish constraints automatically in 3D models reconstructed from 2D sketches. 

Experiments show that the algorithm can identify over-constraint both in 2D and 3D, which correct the mistake of 

Latham’s algorithm, and can handle 3D constraint problems where entities are points, lines and planes. 
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