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ABSTRACT 

 
For rapid prototyping of a heterogeneous attributed computer-aided design object, the continuous 
attributed object model has to be discretized by replacement with homogeneous attributes over 
spatial domain during the build path generation with the existing layered manufacturing 
technology. With this motivation, research is undertaken on re-designing heterogeneous 
continuous-attributed objects. The varying attributes of these objects are mapped into 
homogeneous attributes on finite spatial enumeration grids for attribute discretization. The 
methodology and mathematical study on heuristic searching of optimal grid configuration are 
presented in this paper. Essentially, this research addresses a core heterogeneous object modeling 
issue in CAD regarding the relationship between geometric spatial enumeration models and 
attribute field. 
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1. INTRODUCTION 

For Rapid Prototyping (RP) of a heterogeneous attributed Computer-Aided Design (CAD) object, the continuous 
attributed object model has to be discretized by replacement with homogeneous attributes over spatial domain during 
the build path generation with the existing layered manufacturing technology. As a result, an attribute approximation 
error exists in the fabricated prototypes. Since current RP research on CAD objects only focus on homogeneous solid 
models for the reduction in surface roughness, the research problem discussed here could be the essential complement 
to any work that addresses the need to preserve the attribute information in RP.  
 
2. REVIEWS ON RELATED WORK 

 
2.1 Heterogeneous Object Modeling 

Traditional CAD systems can only represent the geometry and topology of an object. No material information is 
available within the representation. Obviously, this poses a great limitation for the downstream applications of the 
representation. A modern day CAD system should therefore be able to model material information inside an object. 
Studies on Heterogeneous Object Modeling (HOM) have been a hotspot in recent years [1-7]. In contrast to traditional 
solid modeling which assumes the material inside a solid is homogeneous, HOM allows material definition and 
variation inside the solids. Heterogeneous objects are generally classified as objects with clear material domains and 
also those with continuous material variations. It has been widely accepted that heterogeneous components have some 
key advantages over homogeneous objects: anisotropic properties can be obtained; different combinations of various 
materials can be achieved; and traditional limitations due to material incompatibility (e.g. stress concentration, non-
uniform thermal expansion) can be solved by gradual material variations. 
 
Future CAD systems should then have to accommodate both material and structure data, including multiple materials 
within a given part and functionally gradient properties. Designers will then be able to design the geometry, material 
composition variations (e.g. Functionally Graded Material, FGM) and structure variation (e.g. laminates). Optimization 
may then be carried out not only on geometry design but also on material composition and micro-structure to achieve 
the desired part properties. This requirement is one of the primary drivers for developing the fabrication of functional 
prototype in Layered Manufacturing (LM).  
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2.2 Preservation of Surface Profile in Rapid Prototyping 

RP systems are usually based on LM technology, which fabricate 3-D parts by stacking 2-D layered contours. The 
Stereolithography Apparatus (SLA) is one of the most popular prototyping machines, which fabricates parts out of 
photo-sensitive polymeric resins directly from a CAD model without intermediate tooling by stacking thin layers of the 
parts’ cross-section on top of each other. Stair-stepping effect then occurs when an inclined surface is fabricated. Such 
effect is one of the major factors that worsen surface quality of parts fabricated in many RP systems such as SLA. Due 
to the poor surface quality, most parts so fabricated are not suitable for direct use in functionality testing and tool 
making. These parts require post-processing to improve surface roughness. Hence, there is a strong need to develop 
algorithms which reduce the post-processing times and costs. In most cases, the layer stacking direction is selected 
according to the machine operator’s experience and discretion.  
 
Some studies have been carried out either to find appropriate objective functions for optimization or to develop expert 
systems that can determine the optimal fabrication direction [8-10]. The simplest idea for reducing surface roughness is 
to reduce the layer thickness of a slice, which leads to better-finished parts but increases the build time. Several 
methods have been developed to improve the fabrication process such as meniscus smoothing, diagonal irradiation, 
and the adaptive layer thickness system [10].  
 

3 PROBLEM FORMULATION AND THE PROPOSED APPROACH 

This paper presents the concept of re-designing heterogeneous continuous-attributed objects with attribute 
discretization, by mapping the varying attributes of these objects into homogeneous attributes on finite geometric 
partitions.  Essentially, this research addresses a core heterogeneous object modeling issue in CAD regarding the 
relationship between geometric spatial enumeration models and attribute field.  
 
For practical applications, the output heterogeneous (multiple-material) objects [3] have to be functionally evaluated 
accounting for the adjustment in discretization. In the case when this requirement is not fulfilled, the re-design of CAD 
model’s shape and/or original continuous attribute are required such that the output multiple-material objects can be 
functionally “closely” equivalent to the CAD model. 
 
The spatial enumeration grid representations (e.g. pixel & voxel) are adopted in this study as the geometric partitions. 
For a specific shape/size of the meshing grid, an optimal meshing configuration(s) must exist among the bounded (i.e. 
available configurations within the object boundary) 6 Degree-of-Freedom (DOF) configuration space (3 for translation 
& 3 for rotation in 3-D geometric space) for the minimization of discretization/approximation error with or without 
other cost function constraint(s). For the case of a 2-D attributed object, the configuration space is in 3-DOF (Figure 1). 
Since it is computationally infeasible to check for too many configurations evenly over the entire configuration space 
for the solution(s) of optimal grid configuration, a heuristic search is adopted in this study. By calculating the first 
derivatives of the grid array’s total approximation error with respect to the array’s geometric coordinates at each 
candidate configuration as illustrated in the next section, the lowest value among the first derivatives of the voxel array 
in x- and y- translations and rotation is adopted for shifting [11] the array rigidly over the 6-DOF configuration space 
with finite small searching step size, and can iteratively shift to configurations with lower and lower total approximation 
error. Hence, the grid array will heuristically converge to the global or local optimization recursively, starting from any 
initial configuration(s). 
 

 
 
Fig. 1. The 3-DOF configurations of voxel array locate at a 2-D attributed object: translation (left & 

center) and rotation (right). 
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4. MATHEMATICAL STUDY ON GRID ARRAY 

 

4.1 Overall Approximation Error on Grid Array 

Let A(x), A(x, y) and A(x, y, z) be the explicit known values of scalar attribute in 1-D, 2-D and 3-D geometric space 
respectively. Also, let M be the averaged attribute value of a specific 1-D, 2-D or 3-D grid defined as: 
 
        M  =  ∫ A(x) dx / G                                                                                                                                                (1a) 

       (OR)  ∫∫ A(x, y) dx dy / G2                                                                                                                                      (1b) 

       (OR)  ∫∫∫ A(x, y, z) dx dy dz / G3                                                                                                                                (1c) 

 
Then, the overall approximation error (ERROR) in discretizing a 3-D continuous-attributed object into N voxels (for i = 
1, 2, …, N) is defined as: 
 
        ERROR  =  Σi  ∫∫∫ ||A(x, y, z) – Mi|| dx dy dz                                                                                                       (2) 
                                                

4.2 Shifting an Interval on 1-D Attribute 

With a graphic interpretation (Figure 2), we have the following findings in Eqs. (3) & (4) on the first and second 
derivatives of M with respect to the geometric coordinate x, expressed in terms of the attribute values A(P+G)  &   A(P)  
and their first derivatives with respect to the geometric coordinate x. 
 
dM/dx  =  (A(P+G)  –  A(P)) / G                                                                                                                                       (3) 

 
dM2/dx2  =  (dA(P+G)/dx  –  dA(P)/dx) / G                                                                                                                       (4) 
 
Also, with a graphic interpretation (Figure 3), the first derivative of M with respect to the geometric coordinate x can 
also be expressed in Eq. (5) below. The Lengthbelow and Lengthabove in Eqs. (5), (7) & (8) refer to the total lengths of the 
intervals which have the attribute values below and above the averaged value (M) respectively. The approximation 
error (D) of a single 1-D grid/interval is defined in Eq. (6) below, similar to the expression in Eq. (2). Hence, the first 
derivative of D with respect to the geometric coordinate x and/or M can be expressed in Eqs. (7) & (8). 
 
By Eq. (3), 

 
dM  =  dx*(A(P+G)  –  A(P)) / (Lengthbelow + Lengthabove)                                                                                                 (5) 

 

      

 

     Fig. 2. A graphic interpretation on shifting the region of a                     Fig. 3. A graphic interpretation on differentiating the 
          single meshing interval [P, P+G] on 1-D attribute                         approximation. error with respect to the region of a single 
                                                                                                                          meshing interval [P, P+G] on 1-D attribute  
 

For  D  =  ∫ ||A(x) – M|| dx                                                                                                                                                     (6) 
      

dD  =  (||A(P+G) – M|| – ||A(P) – M||)*dx + (Lengthbelow – Lengthabove)*dM                                                              (7) 
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By Eq. (5), 
 
dD/dx  =  2*(Lengthbelow*||A(P+G) – M|| – Lengthabove*||A(P) – M||) / (Lengthbelow + Lengthabove)                               (8) 

 
4.3 Shifting a Pixel Grid on 2-D Attribute 

 

4.3.1 Translational Shifting 

With a graphic interpretation illustrating the x-directional case (Figure 4), the first derivative of M with respect to the 
geometric coordinate x can be expressed in Eq. (9) below. The approximation error (D) of a single 2-D grid (pixel) is 
defined in Eq. (10) below, similar to the expression in Eqs. (2) & (6). Also, the Areabelow and Areaabove in Eqs. (11) & 
(12) refer to the total areas of the regions which have the attribute values below and above the averaged value (M) 
respectively. Hence, the first derivative of D with respect to the geometric coordinate x and/or M can be expressed in 
Eqs. (11) & (12). 
Integrating over [0, G], we have 
 
dM  =  dx*{∫ A(G, y) dy  –  ∫ A(0, y) dy} / G2                                                                                                                   (9) 
 
For  D  =  ∫∫ ||A – M|| dx dy ,                                                                                                                                (10) 
 
and by integrating over [0, G], we have 
 
dD  =  dx*{∫ ||A(G, y) – M|| dy  –  ∫ ||A(0, y) – M|| dy } + (Areabelow – Areaabove)*dM                                                (11) 
 
By Eq. (9),                                                           
                                                                                
 dD/dx  =  {∫ ||A(G, y) – M|| dy  –  ∫ ||A(0, y) – M|| dy }                                                                                                                       
                         + (Areabelow – Areaabove) *{∫ A(G, y) dy  –  ∫ A(0, y) dy} / G2                                                                        (12) 
 

                 
 
            Fig. 4. A graphic interpretation on translational                         Fig. 5. A graphic interpretation on rotational 
            shifting of a single pixel grid on 2-D attribute in                         shifting of a single pixel grid on 2-D attribute  
                              positive x-direction.                                                              in counter-clockwise. 

 
4.3.2 Rotational Shifting 

With a graphic interpretation (Figure 5), the first derivative of M with respect to the geometric coordinate Ø can be 
expressed in Eq. (13) below. A1(x, y), A2(x, y), …, A8(x, y) in the following equations below refer to the specific attribute 
values along the segments of pixel boundary illustrated in Figure 5. Also, s1, s2, …, s8 in the following equations below 
refer to the integral variables corresponding to the A1(x, y), A2(x, y), …, A8(x, y) respectively. The approximation error (D) of 

 

 

 
. 
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a single 2-D grid (pixel) is defined in Eq. (10) previously. Moreover, the Areabelow and Areaabove in Eqs. (14) & (15) refer 
to the total areas of the regions which have the attribute values below and above the averaged value (M) respectively, 
having the same definitions in the Subsection 4.3.1.  Hence, the first derivative of D with respect to the geometric 
coordinate Ø and/or M can be expressed in Eqs. (14) & (15). 
  
Integrating over [0, G/2], we have 
 
 dM  =  {[∫(A1*s1*dØ)ds1  +  ∫(A3*s3*dØ)ds3  +  ∫(A5*s5*dØ)ds5  +  ∫(A7*s7*dØ)ds7]   
           –  [∫(A2*s2*dØ)ds2  +  ∫(A4*s4*dØ)ds4  +  ∫(A6*s6*dØ)ds6  +  ∫(A8*s8*dØ)ds8]} / G2                                                                        
                                                                                                                                                                                 (13) 
With Eq. (10), and by integrating over [0, G/2], we have 
 
  dD  =  dØ*{[∫(||A1 – M||*s1)ds1  +  ∫(||A3 – M||*s3)ds3  +  ∫(||A5 – M||*s5)ds5  +  ∫(||A7 – M||*s7)ds7]  
                   –  [∫(||A2 – M||*s2)ds2  +  ∫(||A4 – M||*s4)ds4  +  ∫(||A6 – M||*s6)ds6  +  ∫(||A8 – M||*s8)ds8]}   
             +  (Areabelow – Areaabove)*dM                                                                                                                                         (14)       
                                                            
By Eq. (13),  
                                             
dD/dØ  =  {[∫(||A1 – M||*s1)ds1  +  ∫(||A3 – M||*s3)ds3  +  ∫(||A5 – M||*s5)ds5  +  ∫(||A7 – M||*s7)ds7]  
                  –  [∫(||A2 – M||*s2)ds2  +  ∫(||A4 – M||*s4)ds4  +  ∫(||A6 – M||*s6)ds6  +  ∫(||A8 – M||*s8)ds8]}   
                  +  (Areabelow – Areaabove)* {[∫(A1*s1)ds1  +  ∫(A3*s3)ds3  +  ∫(A5*s5)ds5  +  ∫(A7*s7)ds7]   
                                                              –  [∫(A2*s2)ds2 + ∫(A4*s4)ds4  +  ∫(A6*s6)ds6  +  ∫(A8*s8)ds8]} /G2              (15)    
                     
The above established findings Eqs. (12) & (15) can be used for heuristic searching in the solution configuration space 
for the optimal/sub-optimal grid configuration(s) on 2-D attributed objects.  Similar expressions can be derived for the 
shifting of voxel grid on 3-D attribute. 
 
5. DISCUSSIONS AND FUTURE WORK 

Currently, an array of voxels is adopted for attribute meshing for RP. For more generic manufacturing conditions, the 
study may be generalized as the discretization of continuous heterogeneous-attributed CAD object into (i) a collection 
of shells with uniform or non-uniform thickness, each shell is homogeneous with geometry to be calculated and 
optimized, and (ii) arbitrary volumetric parts, each of which is homogeneous with geometry to be calculated and 
optimized. When the available number of homogeneous attributes is limited with quantization, the optimization criteria 
have to be adjusted correspondingly. Besides, adaptive meshing techniques might be adopted for faster RP fabrication. 
 
For a more general setting of the heuristic search, a complete 6-DOF configuration space can be searched with the 
optimization cost function involving (i) constraint on the object’s surface smoothness, and (ii) with or without locally 
weighting on approximation error over the attribute domain. Moreover, a set of independent attributes can also be 
considered as an extension of the current scalar attribute. In addition, more candidate optimization criteria might be 
considered such as (i) reduction in center-of-gravity offset, and (ii) reduction in the change in object’s Poisson’s ratio.  
 

6. CONCLUSION 

This paper presents a research applicable to practical manufacturing systems, such as the RP fabrication. The research 
problem approached here could be the essential complement to any work that addresses the need to preserve the 
attribute information in RP. The work is undertaken on re-designing heterogeneous continuous-attributed objects. The 
methodology and mathematical study on heuristically searching optimal grid configuration are presented in this paper. 
Essentially, this research addresses a core heterogeneous object modeling issue in CAD regarding the relationship 
between geometric spatial enumeration models and attribute field. 
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