

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 301-308

301

Computing the Minimum Enclosing Circle of a Set of Planar Curves

Gill Barequet1, Gershon Elber1 and Myung-Soo Kim2

1Technion—Israel Institute of Technology, {barequet|gershon}@cs.technion.ac.il

2Seoul National University, mskim@cse.snu.ac.kr

ABSTRACT

The problem of computing the minimum enclosing circle of a point set is a classical problem in
computational geometry. It is known to be an LP-type problem, hence it has a very efficient
algorithm whose running time on average is linear in the number of points. In this paper we
generalize this approach to smooth curves in the plane. We prove the LP characteristics of the
problem and provide details of our implementation of the algorithm.

Keywords: Algorithms, planar curves, minimum spanning circle, LP-type problems.

1. INTRODUCTION

Computing the minimal enclosing circle of a given set of points in the plane is considered a classic problem of
computational geometry [3]. (The original reference goes back to [11].) The optimal solution (a minimum-radius
circle) can be found in Θ(n) expected time, where n is the number of points. In fact, the minimum enclosing sphere of
n points in any dimension can be found in expected Θ(n) time by using the same method. Sharir and Welzl [10]
further generalized the technique and introduced the notion of LP-type (linear-programming-like) problems. In a
nutshell, one can apply the technique to an optimization problem in which adding a new constraint C does not change

the solution P , or the new solution P ’ is partially defined by C, thereby reducing the number of possible configurations

of constraints defining P ’. Amenta [2] later showed that special properties of these problems imply so-called Helly-

type theorems. Fischer et al. [6, 7] analyzed minimum enclosing balls and how they can be computed. For example,
the sphere tree supports a hierarchical modeling of complex 3-dimensional scenes using bounding spheres of various
3-dimensional objects in a scene [8]. It has been extensively used in 3-dimensional computer games [1, 5].
In this paper we show that the generalized problem, in which one aims to find the minimum enclosing circle of a set of
smooth curves in the plane, is also an LP-type problem. (By smooth curves we mean polynomial curves of bounded
degree.) This type of problem usually arises when there is a need to design efficient hierarchical data structures for
storing a large amount of objects. These data structures support fast clipping, searching, collision detection, and other
operations.
The paper is organized as follows. In Section 2 we prove the LP characteristics of the problem. We provide the full
details of the algorithm in Section 3, and analyze its complexity in Section 4. We
provide some experimental results in Section 5, and terminate with some
concluding remarks in Section 6.

2. LP CHARACTERISTICS OF THE PROBLEM

We need the following central definition:
Definition 1 A circle touches a curve that it fully encloses if either the circle is
tangent to some internal point on the curve, or it contains either an endpoint of the

curve (if it is open) or a C1-discontinuity point of the curve.
See Fig. 1 for a few touching examples.
We will now show that computing the minimum enclosing circle of a set of smooth
curves is LP-type. To do this we need to prove that given the minimum enclosing
circle of a set of curves, if a new curve is entirely or partially outside the circle, then
the minimum enclosing circle of all the curves (including the new one) is partially
defined by the new curve. In other words, the new circle touches the curve at, at
least, one point.
More formally, we prove the following:

Fig. 1. A circle tangent to a closed
curve, tangent to an open curve,
touching an endpoint of an open
curve, and touching a C1
discontinuity of a curve.

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 301-308

302

Theorem 1 Let S be a set of curves in the plane, and let C(S) be the minimum enclosing circle of S. Also, let c ∉
S be an additional curve. Then, either

1. The curve c is completely inside (possibly touching) C(S), in which case C(S ∪ {c}) = C(S); or
2. The curve c is partially or completely outside C(S), in which case c touches C(S ∪ {c}).

The proof follows step by step the proof of Lemma 4.15 in [3], which makes the same assertion for points.
Proof:

1. C(S) fully contains c. Assume to the contrary that some circle a whose radius is less than that of C(S)

contains S ∪ {c}. In particular, a contains S, which contradicts the minimality of C(S).
2. Clearly, C(S ∪ {c}) ≠ C(S) and the two circles must intersect;

see Fig. 2. Let a0 = C(S) and a1 = C(S ∪ {c}) with the
respective center points P0 and P1. Denote by Q one of the
intersection points of a0 and a1. Define a continuous
deformation between a0 and a1 as follows: the center of at (for 0

≤ t ≤ 1) is Pt = (1-t)P0 + t(P1), and its radius is D(Pt,Q), where
D(·,·) is the Euclidean distance. Since c is partially or fully
outside a0, and c is fully contained in a1, by continuity there
must be some 0 < t* ≤ 1 such that at* contains c and touches it.
The set S is contained entirely in both circles a0 and a1,

therefore, S is contained in a0 ∩ a1, which, by definition, in turn
is contained in at (for any 0 ≤ t ≤ 1). Also, the radius of any
circle at (for any 0 < t < 1) is strictly less than that of a1.
Therefore, we must have t* = 1; otherwise, we have a
contradiction to the minimality of a1.

Note: The uniqueness of the minimum enclosing circle of the set S is
shown by a similar argument of a continuous family of circles. The reader is referred to [3, §4.7, Lemma 4.15] for the
exact details.

3. THE ALGORITHM

3.1 High-Level Description

After establishing the LP characteristics of the problem, we apply the well-known machinery to solve it in a time that is
linear in n, the number of curves. We use the randomized algorithm of [3, §4.7, pp. 85—88] that originally finds the
minimum enclosing circle of a planar point set. Assume for the moment that the minimum enclosing circle of the set of
curves is defined by points that belong to different curves.
In the upper level of the algorithm, we iteratively compute the minimum enclosing circle of the first i curves, where i
goes from 2 to n (see function MinCircle in Fig. 3). The minimum enclosing circle a1 of the curve c1 either touches it at
two diametrical points or at three points. In the ith step, we check whether the curve ci lies inside ai-1, the minimum
enclosing circle of the first i-1 curves. (The description of this “black box” is found in Section 3.2.) If so, then ai = ai-1.
Otherwise, if ci lies partially or entirely outside ai-1, we need to re-compute ai, but now it is guaranteed by Theorem 1
that ai touches ci.
Accordingly, we now invoke a secondary function that performs the same task (namely, finding the minimum enclosing
circle of a set of curves), with the only restriction that the sought-after circle touches one specific curve q (see function
MinCircleWithCurve in Fig. 3). Again, we add one curve at a time, and check whether the newly-added curve is
contained in the previously-computed circle. If this is not the case, we need to re-compute the circle, but this time we
are guaranteed that the new circle touches both q and the newly-added curve.
Finally, we invoke a tertiary function that performs the same task, this time with the restriction that the sought-after
circle touches two specific curves q1, q2 (see Function MinCircleWithTwoCurves in Fig. 3). Again, we add one curve at
a time, and check whether the newly-added curve is contained in the previously computed circle. If not, we need to
re-compute the circle, this time with the knowledge that the new circle touches all of q1, q2, as well as the newly-added
curve. We compute this circle with a “black box” that is described in Section 3.2.
We do not need to alter the algorithm to accommodate cases in which the minimum enclosing circle is defined by two
or three points that lie on the same curve. The invariant of Theorem 1 remains true. That is, if the ith curve lies
(partially or entirely) outside the minimum enclosing circle of the first through the (i-1)st curve, then the new enclosing
circle must touch the ist curve. The algorithm only needs to consider all possible multi-touching cases.

Fig. 2. LP-type characteristics of the problem
(see Theorem 1).

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 301-308

303

Algorithm MinCircle (S)
Input: A set S of n curves in the plane.
Output: The minimum-radius circle that fully contains S.

begin

Compute a random permutation c1, …, cn of the curves in S.
Let a1 be the smallest circle enclosing c1.
for i = 2, …, n do

if ci ∈ ai-1
then ai := ai-1;
else ai := MinCircleWithCurve ({c1, …, ci-1}, ci).

end if

end for

return an.
end MinCircle

Function MinCircleWithCurve (S, q)
Input: A set S of n curves in the plane and a curve q, such that there exists an enclosing circle of S that

touches q.
Output: The minimum-radius circle that fully contains S and that touches q.

begin

Compute a random permutation c1, …, cn of the curves in S.
Let a1 be the smallest circle enclosing {c1,q}.
for i = 2, …, n do

if ci ∈ ai-1
then ai := ai-1;
else ai := MinCircleWithTwoCurves ({c1, …, ci-1}, q, ci).

end if

end for

return an.
end MinCircleWithCurve

Function MinCircleWithTwoCurves (S, q1, q2)
Input: A set S of n curves in the plane and two curves q1, q2, such that there exists an enclosing circle of

S that touches q1 and q2.
Output: The minimum-radius circle that fully contains S and that touches q1 and q2.

begin

Compute a random permutation c1, …, cn of the curves in S.
Let a0 be the smallest circle enclosing {q1,q2}.
for i = 1, …, n do

if ci ∈ ai-1
then ai := ai-1;
else ai := the minimum enclosing circle of q1, q2, and ci.

end if

end for

return an.
end MinCircleWithTwoCurves

Fig. 3. Computing the minimum-radius enclosing circle of a set of curves in the plane (following closely the algorithm of [3] for

enclosed points).

The entire algorithm is shown in Fig. 3. The algorithm was broken into three levels only for clarity of exposition. In
fact, the three functions can be implemented as a single function, which also receives an input parameter that specifies
how many curves are known to be touched by the enclosing circle at the current level of calling to the function.

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 301-308

304

In the above description of the algorithm we neglected two possible cases:

1. The minimum enclosing circle is defined by two curves, in which case it either touches one of the curves at
two different points, or it touches each curve once and the touching points are diametrical;

2. The minimum enclosing circle is defined by one curve, in which case it either touches the curve at three
different points, or it touches the curve at two diametrical (and hence distinct) points.

To accommodate all possible cases, the primitive “black box” that computes the enclosing circle must check all cases in
increasing order of complexity. First, it checks for a tri-tangency (a circle defined by one curve), then a bi-tangency (a
circle defined by two curves), and finally, a simple tangency (a circle defined by three curves). Naturally, the circle
needs to enclose the defining curves. The correctness of the algorithm follows directly from the LP characteristics of the
problem.

3.1 Primitive Functions

We now describe the functions that the algorithm employs to operate on curves.
• CurveInCircle: Answers whether a curve C(t) is inside a circle (P, R), centered at P and having a radius R.

• MinEncCircleTan2Curves: Computes the minimum enclosing circle (P, R) of two given curves C1(t) and
C2(r), if it exists. (Such a circle does not exist if the minimum-radius circle that encloses both curves touches
only one of them.)

• MinEncCircleTan3Curves: Computes the minimum enclosing circle (P, R) of three given curves C1(t), C2(r),
and C3(s), if it exists.

The details of these functions are given below.

3.2.1 Is a curve inside a circle?

Consider a parametric curve C(t) and a circle (P, R), centered at P and of radius R. C(t) is inside the circle if and only
if

,,||)(|| tRPtC ∀≤−

or

.,0||)(||)(22
tRPtCtF ∀≤−−= (1)

Given a piecewise rational curve C(t), Eqn. (1) is also rational, and hence one can examine all the coefficients of F(t).
If all the coefficients are nonpositive, then, due to the convex-hull property of the NURBs representation, F(t) must be
nonpositive as well. Otherwise, one needs to compute the zero set of F(t). If the zero-set is empty, then the curve is
either completely inside or completely outside the circle, in which case a single curve evaluation could reveal its
inclusion status.

3.2.2 Minimum enclosing circle defined by two points

The enclosing circle can be defined by two touching points. Assume first that both points are tangency points (see, for
example, Fig. 4(a)). In such cases, and due to the minimality of the circle, it is tangent to the curves at two antipodal
points. Hence, given two curves C1(t) and C2(r), the minimal enclosing circle (P, R), which touches the two curves, if it
exists, must satisfy the following constraints:

.0
2

)()(
)(),(

,0
2

)()(
)(),(

21
2

'

2

21
1

'

1

=
+

−

=
+

−

rCtC
rCtC

rCtC
tCtC

 (2)

Having the two tangencies at antipodal points, Eqn. (2) ensure that the circle and the curves are indeed tangent.
Having two equations in two unknowns (t and r), Eqn. (2) can be solved using the multivariate piecewise-rational
solver described in [4]. For all solution pairs (ti, ri) of Eqn. (2), we examine whether the circle C i, centered at

(C1(ti)+C2(ri))/2 and of radius ||(C1(ti)-C2(ri))/2||, contains the two curves.
If one tangency constraint is replaced by a real touching constraint (that is, that the enclosing circle passes through an
endpoint or a C1-discontinuity point of a curve), then we have one equation in one unknown. For example, let C2(r0)
be such a touching point on the second curve. Then, we need only solve

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 301-308

305

,0
2

)()(
)(),(021

1

'

1 =
+

−
rCtC

tCtC

and check, for each solution ti, the validity of the circle centered at (C1(ti)+C2(r0))/2 and of radius ||(C1(ti)-C2(r0))/2||.
Likewise, if we have two real touching constraints, say, at C1(t0) and C2(r0), we need not solve any equation but only
check the validity of the circle centered at (C1(t0)+C2(r0))/2 and of radius ||(C1(t0)-C2(r0))/2||.
Note that MinEncCircleTan2Curves can easily identify cases in which the two touching points are contributed by
the same curve. This is accomplished by invoking this function with the same parameter twice, namely, using C1(r)
instead of C2(r). In such a case the function makes sure that the two tangency points are distinct, namely, by requiring
that t ≠ r.

3.2.3 Minimum enclosing circle defined by three points

The enclosing circle can be defined by three touching points. Assume first that all three points are tangency points
(see, for example, Fig. 4(b)). Hence, given three curves C1(t), C2(r), and C3(s), the minimum enclosing circle (P,
R), if exists, must satisfy the following constraints:

,)(),()(),(

,)(),()(),(

3311

2211

sCPsCPtCPtCP

rCPrCPtCPtCP

−−=−−

−−=−−
 (3)

making sure that the center of the circle, P, is at the same distance from the three touching points.
Eqn. (3) is equivalent to the following linear equations in P = (Px, P y):

.||)(||||)(||)()(,2

,||)(||||)(||)()(,2

2

3

2

131

2

2

2

121

sCtCsCtCP

rCtCrCtCP

−=−

−=−

Using Cramer's rule, one can symbolically solve for Px(t,r,s) and Py(t,r,s) as rational functions of t, r, and s. We then
substitute the rational trivariate expression P(t,r,s) into the following orthogonality constraints at the circle-curve
tangency points:

.0)(),(

,0)(),(

,0)(),(

'

33

'

22

'

11

=−

=−

=−

sCsCP

rCrCP

tCtCP

 (4)

Now we have three equations in three variables and we get discrete solutions of (t,r,s) in general. Once again,
Equations [4] can be solved using the multivariate piecewise-rational solver of [4]. All the solution circles are tested to
see if they contain all of the three curves and the minimum of all valid solutions is chosen. Note that this circle is not
necessarily the real minimum since the latter can be tangent to only two of the curves while strictly containing the third
curve.
As with antipodal points, one, two, or three tangency constraints can be replaced by real touching constraints. The
effect on Equations (3) will simply be the substitution of the known endpoint or a C1-discontinuity point of a curve
(C1(t0), C2(r0), and/or C3(s0)) for the respective unknown. This does not affect our ability to solve these equations
symbolically. In addition, each replacement of a tangency constraint by a real touching constraint will result in losing
one equation out of Equations (4), so that we will have k equations in k unknowns, for 0 ≤ k ≤ 3. The validity of all the
solution circles (only one circle in the special case of three real touching constraints and hence no equations) needs, as
above, to be verified.
Note that MinEncCircleTan3Curves can easily identify cases in which the three touching points are contributed by
only one or two curves. This is accomplished by invoking this function using the same curves repeatedly. In such a
case the function makes sure that the three tangency points are distinct.

4. COMPLEXITY ANALYSIS

Denote by n the number of curves, by m the maximum number of segments of a single curve, and by d the maximum
degree of the polynomials describing the curves. Let I(m,d) be the time needed to decide whether or not such a curve
is fully contained in a given circle, and let M(m,d) be the time needed to compute the minimum enclosing circle of one,
two, or three such curves.

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 301-308

306

The main algorithm, MinCircle, performs n iterations, in each of which it either decides in I(m,d) time whether or not
the minimum-radius circle (computed so far) has to change. Occasionally, it will also call the function

MinCircleWithCurve. In the worst case, the main algorithm can call the latter function Θ(n) times, in case all of the
second through the nth curves require an update of the enclosing circle. Similarly, the function MinCircleWithCurve
performs k = O(n) iterations (where k is the size of the curve set it receives as a parameter). In each iteration it decides
in I(m,d) time whether or not to re-compute the enclosing circle by calling the function MinCircleWithTwoCurves. As

in the main procedure, calling the latter function can occur in Θ(k) iterations. The same holds for the function
MinCircleWithTwoCurves. Its running time is, therefore, Θ(k (I(m,d)+M(m,d))) = O(n (I(m,d)+M(m,d))), where k is
the size of the curve set it receives as a parameter. Overall, in the worst case, the entire algorithm requires Θ(n3
(I(m,d)+M(m,d))) time. Note that I(m,d) and M(m,d) do not depend at all on n. These are the running times of “black
boxes” that solve the respective problems in numerical methods. Their time complexities depend solely on m, d, and
on the convergence parameters. When the latter are fixed or assumed constant, we have I(m,d) = O(m d2) and
M(m,d) = O(m d6). If we further fix m and d, then I(m,d) and M(m,d) can be regarded as constants. Even if we take
into consideration curve endpoints and C1-discontinuity points, the asymptotic running time of the algorithm will still
not change. Hence, the worst-case running time of a practical implementation of our algorithm will be Θ(n3).
The average case is much more favorable. We will now show that the expected number of invocations of the primitive
black boxes is only Θ(n). For the following analysis assume that both I(m,d) and M(m,d) are constant, ignoring the
multiplicative factor of (I(m,d) + M(m,d)) in the running times. We already know that the expected running time of the
lowest-level function MinCircleWithTwoCurves is Θ(k), where k is the size of its first parameter (the set of curves). Let
us then estimate the expected running time of the function MinCircleWithCurve. Assume that its first parameter is also
a set of k curves. Then it performs k-1 steps, in each of which it either spends a constant time on checks and
assignments, and optionally calls the function MinCircleWithTwoCurves. At the ith step (for 1 ≤ i ≤ k) the probability of
the latter event occurring is at most 2/i. This is verified by a simple backward-analysis argument: Let ai be the circle
after the ith step. Discard the curve ci and run the algorithm backward. The circles ai and ai-1 are different only if ci was
one of the at-most three defining curves of ai. One of the at-most three curves is known (q), so the probability of the
event is at most 2/i. (If only one or two curves defined ai, then the probability of the event ai ≠ ai-1 would be strictly less

than 2/i.) Now, the total expected running time of the function is at most ∑
=

k

i 2

((2/i) O(i)) = O(k).

A similar analysis holds for the expected running time of the main algorithm, MinCircle. This time the probability of
calling the function MinCircleWithCurve at the ith step is at most 3/i, following a similar argument. The total expected

running time of the algorithm is, thus, at most ∑
=

n

i 2

((3/i) O(i)) = O(n).

Taking into account the time needed to execute the two black boxes, one that checks whether a curve is contained in a
circle, and the other that computes the minimum enclosing circle of at most three curves, we conclude that the

expected running time of the entire algorithm is O(n). A trivial matching lower bound of Ω(n) time is obviously
required for just reading n curves. Therefore, the expected running time of the algorithm is Θ(n), which is optimal.
The amount of space used by the algorithm is clearly Θ(n m d), which is the space needed to store all the curves. At all
times the algorithm holds no more than a constant number of circles needed to decide whether the minimum enclosing
circle of three curves touches one, two, or all the three of them.

5. EXPERIMENTAL RESULTS

We have implemented the algorithm described in this paper (see Fig. 3) for computing the minimum enclosing circle of
a set of curves. The software was implemented in IRIT [9]. It consists of about 600 lines of code built over the
functionality of this library. Our initial implementation assumes that the curves are closed and C1 continuous
everywhere. That is, the software does not check cases in which the enclosing circle touches endpoints or C1-
discontinuity points of the curves. Extending our software to cover these cases is straightforward since these points can
be pre-computed before running the main algorithm. Fig. 4 provides some examples of our rather comprehensive
experimentation with the algorithm. The respective experimental data are summarized in Tab. 1. The running times
were measured on a modern PC workstation.

6. CONCLUSION

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 301-308

307

In this paper we present an optimal (expected) solution for the problem of computing the minimum-radius enclosing
circle of a set of curves in the plane. The solution is inherently the same as for computing the minimum spanning circle
(or sphere) of a set of points; however, the implementation details of our solution are significantly more complicated.
The expected running time of the algorithm is linear in the number of input curves, but also contingent on the number
of segments per curve and their maximum degree.

Number
of Curves

Degree
of Curve

Number of
Control Points

Number of
Curve-in-
Circle Tests

Number of
2-Cirlce

Touching Tests

Number of
3-Circle

Touching Tests
Running Time
(Min:Sec)

(a) 56 3 3 2,968 29 34 11.6

(b) 16 3 4 3,412 17 25 15.5

(c) 12 3 4 4,546 16 26 20.6

(d) 13 3 3 2,259 21 23 9.3

(e) 15 3 5 8,795 18 27 39.7

(f) 35 3 3 421 5 3 1.3

(g) 35 3 5 9,277 28 36 46.7

(h) 22 4 5 3,083 20 22 56.5

(i) 23 4 5 8,597 32 49 2:15.0

(j) 35 3 5 278 11 7 3.7

(k) 43 4 5 952 8 6 15.6

(l) 25 5 5 5,322 28 35 3:31.3

Tab. 1. Statistics of the test cases shown in Fig. 4.

6. ACKNOWLEDGEMENTS

Work on this paper by all authors has been supported in part by Israel's Ministry of Science Infrastructure Grant 01-01-
01509. Work on this paper by the first and second authors has been supported in part by AIM@SHAPE, a grant of the
European Commission 6th Framework. Work on this paper by the second author has been supported in part by the
Israel Science Foundation Grant 857/04. Work by the first and third authors has been supported in part by a grant for
Korean-Israeli Research Cooperation.

7. REFERENCES

[1] Akenine-Moeller, T. and Haines, E., Real-Time Rendering, 2nd Ed., A.K. Peters, Natick, MA, 2002.
[2] Amenta, N., Helly-type theorems and generalized linear programming, Discrete & Computational Geometry,

Vol. 12, 1994, pp. 241-261.
[3] de Berg, M., van Kreveld, M., Overmars, M., and Schwarzkopf, O., Computational Geometry, Algorithms, and

Applications (2nd ed.), Springer-Verlag, Berlin, 2000.
[4] Elber, G., and Kim, M.-S., Geometric constraint solver using multivariate rational spline functions, Proc. 6th

ACM/IEEE Symp. on Solid Modeling and Applications, Ann Arbor, MI, 1-10, June 2001.
[5] D.H. Eberley, 3D Game Engine Design, Morgan Kaufmann, San Francisco, CA, 2001.
[6] Fischer, K., and Gärtner, B., The smallest enclosing ball of balls: Combinatorial structure and algorithms, Proc.

19th ACM Symp. on Computational geometry, San Diego, CA, 292-301, June 2003.
[7] Fischer, K., Gärtner, B., and Kutz, M., Fast smallest-enclosing-ball computation in high dimensions, Proc. 11th

Ann. European Symp. on Algorithms, Budapest, Hungary, Lecture Notes in Computer Science, 2832, Springer-
Verlag, 630-641, September 2003.

[8] Hubbard, P.M., Approximating polyhedra with spheres for time-critical collision detection, ACM Trans. on
Graphics, 15 (1996), 179-210.

[9] IRIT 9.0 User's Manual, The Technion—IIT, Haifa, Israel, 2002. Available at http://www.cs.technion.ac.il/~irit .
[10] Sharir, M., and Welzl, E., A combinatorial bound for linear programming and related problems, Proc. 9th Symp.

on Theoretical Aspects of Computer Science, Cachan, France, Lecture Notes in Computer Science, 577,
Springer-Verlag, 569-579, February 1992.

[11] Welzl, E., Smallest enclosing disks (balls and ellipsoids), in: New Results and New Trends in Computer Science
(H. Maurer, ed.), Lecture Notes in Computer Science, 555, Springer-Verlag, 359-370, 1991.

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 301-308

308

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 4. Minimum enclosing circles of planar C1 curves.

