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ABSTRACT 
 

Catmull-Clark subdivision scheme provides a powerful method for building smooth and complex 
surfaces. But the number of faces in the uniformly refined meshes increases sharply with respect to 
subdivision depth. This paper presents an adaptive subdivision technique as a solution to this 
problem. Instead of subdivision depths of mesh faces, the adaptive subdivision process is driven by 
labels of mesh vertices, which can be viewed as subdivision depths of the surface in the vicinity of 
the mesh vertices. Smooth transition between faces with different subdivision depths is provided by 
an unbalanced-subdivision process. The resulting meshes are crack-free, and all the faces are 
quadrilaterals. Limit surface of the resulting meshes is the same as the original limit surface. Test 
results show that the number of faces generated in the adaptively refined meshes is one order less 
than the uniform approach. The proposed technique works for cubic Doo-Sabin subdivision 
surfaces, non-uniform cubic subdivision surfaces and combined subdivision surfaces as well. 
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1. INTRODUCTION 
Subdivision surfaces have become popular recently in graphical modeling, animation and CAD/CAM [7] [18] because 
of their stability in numerical computation, simplicity in coding and, most importantly, their capability in 
modeling/representing complex shape of arbitrary topology. Research work for subdivision surfaces has been carried 
out in several important areas such as surface evaluation [22], surface trimming [18], Boolean operations [2], and 
mesh editing [24]. However, the work is far from being complete yet; for instance, research work is still needed for 
surface tessellation and shape design. The purpose of this paper is to study subdivision surface tessellation problem. A 
new technique that will significantly reduce the number of faces in the resulting meshes will be presented. The new 
technique improves the efficiency of subsequent data communication, surface operations (trimming/intersection), 
rendering and finite element analysis for subdivision surfaces significantly. 

Research work for reducing the number of faces in a mesh can be classified into three directions. Mesh 
simplification [1] [9-12] [17] [et al] is the most popular among the three directions over the past decade. The aim is to 
remove over-sampled vertices and produce approximate meshes with various levels of detail. The second direction 
focuses on approximating the limit surface by surfaces that we know of, such as a displaced subdivision surface [15] or 
Nurbs patches [19]. The third one is to apply adaptive or local refinement schemes to areas specified by the user or 
determined by the application. The resulting mesh should be crack-free and have the same limit surface as the 

uniformly refined mesh. Kobbelt has presented a red-green triangulation based adaptive refinement scheme for 3 -

subdivision surfaces [14], and Velho and Zorin have presented a bisection based adaptive refinement scheme for 4-8 
subdivision [23]. As far as quadrilateral meshes are concerned, Kobbelt has a Y-element based adaptive refinement 
scheme for interpolatory subdivision surfaces [13] and Sederberg et al. have a T-junction based local refinement 
scheme for non-uniform rational Catmull-Clark surfaces (NURCCs) [21]. However, Kobbelt's technique [13] may fail 
to obtain balanced nets for several search attempts, and the resulting mesh in [21] does not maintain a quadrilateral 
structure. 

The technique presented in this paper belongs to the third direction. A label-driven adaptive subdivision 
technique is presented here. The technique will be presented for the Catmull-Clark subdivision process [3]. But it can 
be used for cubic Doo-Sabin [8], non-uniform cubic [20], and combined [16] subdivision surfaces as well. One only 
needs to replace the Catmull-Clark vertex-computing formulas with the corresponding vertex-computing formulas of 
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these schemes. The reason that we use the Catmull-Clark subdivision scheme here is because it is a frequently used 
subdivision surface generation technique and it is simple for presentation. 

Our work is inspired by [4] and [13] which use similar techniques: unbalanced subdivision and “Y”-element, to 
avoid crack, respectively. The idea of label-driven subdivision [4] is followed here, that is, labels are assigned to 
vertices of control mesh and used to control the subdivision process. Illegal faces are removed from the initial mesh 
using a greedy algorithm. Two subdivision techniques are used in the adaptive subdivision process. The standard 
Catmull-Clark subdivision (B_sub) is used to reach the desired subdivision depth and an unbalanced subdivision 
(U_sub) is used to provide smooth, crack-free transition between regions with different subdivision depths. Hence, 
there is no need to perform unnecessary subdivision on regions that are already flat enough, as the ordinary Catmull-
Clark subdivision scheme would do. The adaptively refined meshes converge to the same limit surface as the meshes 
generated by the standard Catmull-Clark subdivision scheme, but the number of faces in the adaptively refined mesh 
is one order less than that in the mesh generated by the standard Catmull-Clark subdivision scheme. Therefore, the 
adaptive refinement scheme can reach the same precision requirement with significantly less faces in the refined mesh. 
This makes Catmull-Clark subdivision surfaces a practical option in animation, modeling and CAD/CAM applications 
because the memory problem is no longer an issue when dealing with rendering and tessellation (including finite 
element generation). 

The remaining part of the paper is arranged as follows. A brief review of the Catmull-Clark subdivision scheme 
and the definitions of subdivision depth and labels are given in Section 2. The label-driven subdivision process, 
including B_sub and U_sub, is presented in Section 3. The illegal face elimination process is presented in Section 4. 
The proof that the adaptively refined meshes converge to the same limit surface is shown in Section 5. Implementation 
issues and test results are shown in Section 6. Concluding remarks are given in Section 7. 
 
2. PROBLEM FORMULATION AND DEFINITIONS 
Given a control mesh of arbitrary topology, the goal here is to construct a sequence of adaptively refined meshes that 
would converge to the same Catmull-Clark subdivision surface, but with much fewer vertices and faces than what one 
would get in the traditional Catmull-Clark subdivision process. The mesh refining process will be driven by labels of 
mesh vertices. We need a few definitions first. 
 
2.1 Catmull-Clark Subdivision Surfaces 
Given a control mesh, a Catmull-Clark subdivision surface (CCSS) is generated by iteratively refining the control mesh 
[3]. The iteratively refined control meshes converge to a limit surface. The limit surface is called a subdivision surface 
because the mesh refining process is a generalization of the uniform bicubic B-spline surface subdivision technique. 
Therefore, CCSSs include uniform B-spline surfaces and piecewise Bezier surfaces as special cases. It is known now 
that CCSSs include non-uniform B-spline surfaces and NURBS surfaces as special cases as well [20]. The Catmull-
Clark mesh refining process will also be called the Catmull-Clark subdivision, or simply the subdivision step 
subsequently. The valence of a mesh vertex is the number of mesh edges adjacent to the vertex. A mesh vertex is 
called an extra-ordinary vertex if its valence is different from four. 

Mesh faces of a CCSS generated after one iteration of the subdivision step are always quadrilaterals. The number 
of extra-ordinary vertices remains the same after one iteration of the subdivision step as well. Therefore, after at most 
two iterations of the subdivision step, each face has at most one extra-ordinary vertex. We shall assume that all the 
mesh faces considered subsequently are quadrilaterals and each of them has at most one extra-ordinary vertex. A 
mesh face with an extra-ordinary vertex will be called an extra-ordinary face. 

 
2.2 Subdivision Depth and Labels 

The given control mesh will be referred as M0 and the limit surface of M0 will be referred as S. For each positive integer 
k, Mk refers to the control mesh obtained after applying the Catmull-Clark subdivision k times to M0. For each interior 
face f of Mk, there is a corresponding patch s on the limit surface S. f and S can be parametrized on the same 
parameter space D=[0,1] X[0,1] [22]. f is a bilinear rule surface and s is a uniform bicubic B-spline surface patch. The 
error of a mesh face f is defined by 

ξ f=max(u,v)∈D || f(u,v) - s(u,v) ||, 

where s is the corresponding patch of f on the limit surface S. 
Given an ε >0, we shall assume that each interior face f of M0 has been assigned a subdivision depth df so that if 

f is recursively subdivided df times, then errors of the resulting mesh faces are all smaller than ε . The subdivision 
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depth of an interior face of M0 can be computed using a technique presented in [5] [6]. The label of an interior vertex 
v of M0, denoted L(v), is defined as the maximum of adjacent interior faces' subdivision depths, i.e., 

L(v)=max{ df | f is an interior face of  M0 and v is a vertex of f }.                                         (1) 
Figure 1(a) shows subdivision depths of interior faces of a control mesh and (b) shows corresponding labels of the 
interior vertices. 
 

 

Fig. 1. (a) Subdivision depths of interior faces and (b) labels of interior vertices. 
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3. LABEL-DRIVEN ADAPTIVE SUBDIVISION 
The adaptive subdivision process is driven by vertex labels and is performed on individual mesh faces. After each 
subdivision step, labels are assigned to the newly generated vertices so they can drive the next subdivision step. The 
adaptive subdivision process stops when labels of all the mesh vertices are zero. In the following, Mk, k=1, 2, ..., stand 
for the meshes generated by the adaptive refinement process Variables without a bar refer to those of Mk-1, and 
variables with a bar refer to those of Mk. 
 

Fig. 2. Balanced subdivision: (a) before; (b) after. Labels: (c) before; (d) after. 
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3.1 B_sub: Balanced Catmull-Clark Subdivision 

The adaptive subdivision of Mk-1, k≥ 1, is performed as follows. If a given face has two or more positive vertex labels, 

a balanced Catmull-Clark subdivision, called B_sub for short, is performed on that face. A B_sub is a standard Catmull-
Clark subdivision, but only those new vertices that are directly associated with the given face are used to construct new 

faces for that face. For instance, in Figure 2(a), if v1, v2, v3, and v4 are the vertices of a face f in Mk-1, then nine of the 

new vertices created by a standard Catmull-Clark subdivision are directly associated with this face. These nine vertices 

include a face point v 9, four vertex points v 1, v 2, v 3, v 4, and four edge points v 5, v 6, v 7, v 8. A B_sub uses 

these nine points to form four new faces f 1, f 2, f 3, and f 4 (see Figure 2(b)). However, the creation of the new 
vertices and faces is symbolic only, coordinates of the new vertices will not be computed at this moment yet These new 
vertices will be marked with an “UPDATE” to indicate that they will be computed at a later stage. 

A label will be assigned to each of the new vertices. The label of a new vertex point is defined as follows:  

L( v i)=max{ 0, L(vi )-1 },                       i=1,2,3,4, 

i.e., if label of the original vertex is positive, label of the new vertex point is one less than the label of the original vertex. 
Otherwise, label of the new vertex point is set to zero. The label of a new edge point is equal to the minimum of 
adjacent vertex points' labels. That is, 

L( v i)=min{ L( v i-4), L( v i-3) },                   i=5,6,7,8, 

where i-3 is modulo 4 when i=8. Label of the new face point depends on labels of adjacent edge points. If the labels of 
the adjacent edge points are all zero, label of the new face point is set to zero. Otherwise, label of the new face point is 
set to the minimum of the positive edge point labels, i.e., 
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L( v 9)=0,        if L( v 5)=L( v 6)=L( v 7)=L( v 8)=0, 

or 

L( v 9)=min { L( v ) | v  ∈  { v 5, v 6, v 7, v 8 } and L( v )≠0 },    otherwise. 

If the labels of vertices v1, v2, v3, and v4 in Figure 2(a) are 1, 2, 3 and 4, respectively (Figure 2(c)), then labels of the 
new vertices after a B_sub are the ones shown in Figure 2(d). 

Note that if the label of a new vertex point is zero then labels of adjacent edge points are both zero, and label of 
the new face point is zero only if labels of all the adjacent edge points are zero. Therefore, a new face can never have 
two positive labels and two zero labels, be the positive labels next to each other or not. The label pattern of a new face 
is either all-positive, all-zero, one-zero, or one-positive. 
 
3.2 U_sub: Unbalanced Catmull-Clark Subdivision 
If a face has only one positive vertex label, an unbalanced Catmull-Clark subdivision, called U_sub for short, is 
performed on that face with respect to the vertex with positive label. A U_sub generates three new faces, instead of 
four, using six of the nine vertices used by B_sub and an old vertex. The six new vertices include a new face point, two 
new edge points and three new vertex points. 

 

Fig. 3. Unbalanced Catmull-Clark subdivision with respect to v1: (a) before subdivision; (b) auxiliary structure stored 

after subdivision; (c) structure output after subdivision. Labels: (d) before; (e) after. 
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In Figure 3(a), if label of v1 is the only positive label of face f, then the new face point v 9, the new vertex point 

v 1 and adjacent vertex points v 2 and v 4, and the adjacent new edge points v 5 and v 8 are used with v3 to form 

three new faces f 1, f 2 and f 3, as shown in Figure 3(c). The new edge points v 6 and v 7 are not used in the new 

face construction process. But these points and the auxiliary structure shown in Figure 3(b) will also be computed and 

recorded; these points are not only needed in the computation of the new vertex points v 2 and v 4, they are needed 

in the computation of the vertices of Mk+1 as well. However, coordinates of these points and the other six new points 
will not be computed at the moment yet. Like in a B_sub, these vertices, except v3, will be marked with an “UPDATE” 

to indicate that they will be evaluated later. For consistency of notation, we will use v 3 to represent v3 in Mk 

subsequently. This will not cause any problem at all because v 3=v3 will not be marked with an “UPDATE” and, 

consequently, will not be evaluated as a “vertex point” at a later stage. Labels of all the new vertices are zero except 

v 1 whose label equals the old label minus one. Namely, 

L( v i)=0,        if i=2, 3, 4, 5, 8, 9, 

and 

L( v i)=L(vi )-1,              if i=1. 

If labels of vertices v1, v2, v3, and v4 in Figure 3(a) are 3, 0, 0 and 0, respectively (Figure 3(d)), then labels of the new 
vertices after a U_sub with respect to v1 are the ones shown in Figure 3(e). B_sub with respect to other vertices can be 
defined similarly. 

After all the faces of Mk-1 are processed, vertices marked with an “UPDATE” in Mk are computed using the 

Catmull-Clark subdivision scheme to find their new coordinates in Mk. Vertices of Mk not marked with an “UPDATE” 

will be inherited from Mk-1 directly. Note that the vertices of Mk-1 required in the computation process for the new 

vertices are available because they are either explicitly generated in a B_sub or a U_sub, or are stored with an auxiliary 
structure for some U_sub (see Figure 3(b)). Setting up the status of a vertex with the mark “UPDATE” is necessary 
because whether a vertex should be inherited or updated depends on all its adjacent faces. 
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The adaptive subdivision process stops when labels of the mesh vertices are all zero. The resulting mesh not only 
satisfies the required precision for each face without doing excessive refinement, but also provides smooth, crack-free 
transition between faces with different subdivision depths. An example is shown in Figure 4(b). The input faces and 
their labels are shown in 4(a). 
 
4. ELIMINATION OF ILLEGAL FACES 
A mesh face f of M0 is called an illegal face if two adjacent vertices of f have positive labels and the other two adjacent 
vertices have zero labels. For instance, in Figure 4(c), two adjacent faces of the extra-ordinary vertex are illegal faces. 
A mesh refined by the adaptive subdivision process is not guaranteed to be crack free if it contains illegal faces. 
Consider again the case depicted in Figure 4(c). If the adaptive subdivision process is performed on this mesh then a 
crack would be generated between each illegal face with an adjacent face once the new face points and edge points 
are connected with the corresponding vertex points (see Figure 4(d)). Note that the adaptive subdivision process does 
not generate new illegal faces in the refining process. This is because if the label of a new face point or a new vertex 
point is zero then labels of its adjacent vertices in the refined mesh are all zero. Therefore, to avoid cracks in the 
refined meshes, one only needs to make sure illegal faces contained in the initial mesh M0 are removed before the 
adaptive subdivision process starts. 

 

Fig. 4. (a) A mesh without illegal faces, (b) smooth, crack-free transition provided by U_sub, (c) a mesh with illegal 

faces, (d) cracks resulted from subdivision (only one iteration of subdivision is carried out). 
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The easiest way to remove illegal faces in M0 is to set all the zero labels to 1. But this would unnecessarily increase 

the number of faces generated in the final mesh. A better way is to eliminate all the illegal faces with as few zero labels 
changed to 1 as possible. This is in general not easy to achieve because although the process of changing the label of a 
vertex from 0 to 1 can make some illegal faces legal, it also can make some legal faces become illegal. Therefore, back 
tracking is constantly needed in the illegal face elimination process. An illegal face elimination technique for 
rectangular grids is presented in [4]. It removes the illegal faces by setting zero labels on every other diagonal line to 1. 
This approach does not work for meshes of arbitrary topology. In the following, a greedy algorithm is presented. 

The algorithm eliminates the illegal faces via a connection supporting graph G. The vertices of G are those of the 
illegal faces whose labels are zero, called illegal vertices for short. The edges of G are those of M0 that connect vertices 
of G, i.e., illegal vertices. The algorithm repeatedly selects a vertex from G, changes its label to 1 and then updates G 
accordingly. This process continues until G is empty. The updating process includes removing vertices from G which 
are no longer illegal and adding new illegal vertices into G. During each cycle, the greedy algorithm will try to remove 
as many old vertices from G and introduce as few new vertices into G as possible. This is achieved by using the 
following rule in selecting a vertex from G to change label. Let D(v) denote the degree of v in G and let N(v) be the 
number of new vertices introduced into G if the label of v is changed from 0 to 1. If the number of D(v )=1 vertices is 
not zero then, in the pool of vertices which are adjacent to a D(v)=1 vertex, select any one with a minimum N(v) 
among those with maximum D(v). Otherwise, select any vertex with a minimum N(v) among vertices of G with 
maximum D(v). 
 
5. LIMIT SURFACE OF ADAPTIVELY REFINED MESHES 
We prove in this section that the adaptively refined meshes converge to the same lime surface as the uniformly refined 
meshes. We need a few properties in the proof. 

First note that, from Figures 2 and 3, a face in Mk (k≥ 1) that requires further refinement, be it a B_sub or a 
U_sub, is always defined by a vertex point, two edge points and a face point. Such a face can be illustrated by the 

example given in Figure 5. Figure 5(a) shows faces in Mk-1 and Figure 5(b) shows the result after a B_sub on the face 

v1 v4 v5 v6 in Figure 5(a). If a U_sub is performed on v1 v4 v5 v6, the example shown in Figure 5(b) is the auxiliary 
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structure. The difference between the auxiliary structure and the output structure is, in the output structure, there is a 
diagonal edge (see Figure 3(c)). But such edge does not affect the analysis of the convergence to the limit surface. It 
should be pointed out that Figure 3 can be used for both ordinary faces and extraordinary faces. If N=4, the face is an 
ordinary face. Otherwise, it is an extraordinary face. According to the rules of adaptive subdivision process, a vertex 
marked with “UPDATE” is either a vertex in a balanced Calmull-Clark subdivision structure or a vertex in an 
unbalanced Calmull-Clark subdivision structure. Therefore, we only need to consider faces where a B_sub or a U_sub 
is to be performed. 

Two properties of vertex labels will be proved below. These properties are quite obvious. But since they are 
needed in the proof of the theorem, we name them as lemmas for convenience of reference. 

Fig. 5. Ordering of control points of a CCSS patch [22] (a) before subdivision, (b) after subdivision. 
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Lemma 1: Let v 1, v 4, v 5 and v 6 be the vertices of a mesh face in Mk (k≥ 1), as the one shown in Figure 5(b), 

where a B_sub is to be performed. If v 1 is generated as a vertex point during the kth subdivision step, then the label 

of v 1, L( v 1), must be positive. 

Proof. A B_sub is performed on a mesh face only if at least two of its vertex labels are positive. Therefore, at least two 

of the given face's labels: L( v 1), L( v 4), L( v 5) and L( v 6), are positive. Besides, this face must be the result of a 

B_sub. Consequently, v 4 and v 6 must be edge points generated during the kth subdivision step. Since the label of 

an edge point is smaller than or equal to the label of its adjacent vertex point, we must have L( v 1)≥ L( v 4) and 

L( v 1)≥ L( v 6). Hence, we must have L( v 1)>0 for, otherwise, we would have L( v 1)=L( v 4)=L( v 6)=0, conflicting 

to the fact that the face has at least two positive labels. This completes the proof of Lemma 1. 

Lemma 2: Let v 1, v 4, v 5 and v 6 be the vertices of a face in Mk (k≥ 1), as the one shown in Figure 5(b), where a 

U_sub is to be performed. If v 1 is a vertex point generated during the kth subdivision step, then we must have 

L( v 1)>0 or L( v 5)>0. 

Proof. Since a U_sub is to be performed on this face, one of the labels of the face: L( v 1), L( v 4), L( v 5) or Lv( v 6), 

must be positive. Suppose the face is the result of a subdivision performed on the face v1 v4 v5 v6 as the one shown in 

Figure 5(a). Then v 4 and v 6 must be edge points and v 5 must be a face point generated during the subdivision 

process. Note that no matter the subdivision performed on v1 v4 v5 v6 is a B_sub or U_sub, we have L( v 1)≥ L( v 4) 

and L( v 1)≥ L( v 6). Consequently, we can not have L( v 4)>0 or L( v 6)>0. This completes the proof. 

We are ready to prove the main result of this section now. 
Theorem 1: The adaptively refined meshes converge to the same limit surface as the meshes uniformly refined by the 
standard Catmull-Clark subdivision scheme. 
Proof. Since the adaptive subdivision scheme uses the same formulas as the standard Catmull-Clark subdivision 
scheme to calculate new vertices, to prove this theorem, we only need to prove that, in the adaptive subdivision 
process, the vertices required in the new vertex computing formulas are always available and valid. The proof will be 
based on mathematical induction. For the first subdivision step, vertices required in the new vertex computing 
formulas are vertices of the initial mesh. Therefore, the induction is obviously satisfied. Assume the induction holds for 
the (k-1)st subdivision step, i.e., all the vertices required in the new vertex computing formulas for the (k-1)st 
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subdivision step are available and valid. We need to prove that all the vertices needed in the new vertex computing 
formulas for the kth subdivision step are available and valid as well. 

The new vertices that have to be computed in the kth subdivision step are those marked with “UPDATE” in the 
subdivision process. Each of such vertices is the result of a B_sub or a U_sub, as shown in Figures 2 and 3. Consider a 

new vertex generated by subdividing the face f = v 1 v 4 v 5 v 6, as the one shown in Figure 5(b) (Figure 5(b) now 

acts as Mk-1), where v 1 is a vertex point and v 5 is a face point generated in the previous subdivision step. The 

corresponding vertex of v 1 in Mk-2 is v1 in Figure 5(a). If the subdivision process performed on f  is a B_sub, then 

before the subdivision we must have Lv( v 1)>0, according to Lemma 1. However, the condition that L( v 1 ) is 

positive means that a subdivision, B_sub or U_sub, has been performed on all the adjacent faces of v1 in the (k-1)st 

subdivision step, and f  is the result of a B_sub. Therefore, vertices v i, i=1, 2, ..., 2N+8, would be marked 

“UPDATE” and computed in the (k-1)st subdivision step. But these are the vertices required in the new vertex 

computation process for the face f  in a B_sub. Therefore, all the vertices required in the new vertex computation 

process for f  in a B_sub are available and valid. 

If the subdivision process performed on f  is a U_sub, then according to Lemma 2, we know that either 

L( v 1)>0 or L( v 5)>0. If L( v 1)>0 (i.e., L( v 5)=0), then all the adjacent faces of v1 in Figure 5(a) would be 

subdivided by a U_sub or a B_sub and f  is the result of a U_sub or a B_sub. No matter the subdivision process 

performed on face v1 v4 v5 v6 in Figure 5(a) is a U_sub or a B_sub, vertices v i, i=1, 2, ..., 2N+1, 2N+3, 2N+4, ..., 

2N+8, would be marked “UPDATE” and computed. These are the vertices required in the new vertex computation 

process for a U_sub performed on f  with respect to v 1. 

If L( v 5)>0, then f  is the result of a B_sub in the (k-1)st subdivision step. Since L( v 1)=0, a subdivision might 

not be performed on the adjacent faces v1 v8 v9 v10, ..., v1 v2N v2N+1 v2 of v1 in Figure 5(a), but a subdivision would be 

performed on the two adjacent faces v1 v6 v7 v8 and v1 v2 v3 v4 in the (k-1)st subdivision step to ensure v 4 and v 6 are 

shared by faces on both sides the shared edges. Therefore, vertices v i, i=1, 2, ..., 7, 8, 2N+2, 2N+3, ..., 2N+8, 

would be marked “UPDATE” in the (k-1)st subdivision step and computed at the end of the (k-1)st subdivision step. 

But these are the vertices one needs in computing the new vertices for a U_sub on f  with respect to v 5. Hence, in 

either case, we have shown the vertices required in the new vertex computation process for f  in a U_sub are 
available and valid. Thus, the theorem is proved. 
 
6. IMPLEMENTATION AND RESULTS 

For a given initial mesh M0, the label-driven adaptive subdivision method proposed in this paper calculates the 
subdivision depth for each face in M0. And then, labels are assigned to all vertices in M0 according to Equation (1). 
The labels may lead to some illegal faces in M0, so the greed algorithm is used to remove the illegal faces. The 
adaptive subdivision process begins once all the illegal faces are removed from M0. The adaptive subdivision process 
stops when all labels are zero. Our adaptive subdivision process guarantees that all faces in M0 are subdivided in no 
less than the required subdivision depths, and the smooth transition between faces with different subdivision depths 
does not have any crack. 
 

Fig. 6. Adaptive subdivision of a marker cap: (a) input mesh, (b) limit surface, (c) uniform subdivision, (d) adaptive subdivision.

(a) (b) (c) (d) 
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Two examples shown in Figures 6 and 7 are used to compare the performance of adaptive subdivision with 
uniform Catmull-Clark subdivision. The first example is a marker cap. For an error tolerance of 0.1, the maximum 
subdivision depth of the mesh faces in the input control mesh is 3. Uniform Catmull-Clark subdivision (Figure 6(c)) in 
this case generates 273,398 vertices, 546,816 edges and 273,408 faces As shown in Figure 6(c), the edges are too 
crowded to be distinguished. The label-driven adaptive subdivision (Figure 6(d)) leads to 15,086 vertices, 30,192 
edges and 15,096 faces only, an eighteen times improvement on the total number of vertices, edges and faces. 

The second example is a rocker arm. For an error tolerance of 0.25, the maximum subdivision depth is 2. 
Uniform Catmull-Clark Subdivision (Figure 7(c)) leads to 22,656 vertices, 45,312 edges, and 22,656 faces; while the 
label-driven adaptive subdivision (Figure 7(d)) generates 2,706 vertices, 5,412 edges, and 2,706 faces only, i.e., only 
3/25 of the total vertices, edges and faces required in the uniform case. When the error tolerance is 0.2, the maximum 
subdivision depth is 4. Uniform Catmull-Clark subdivision in this case leads to 362,496 vertices, 724,992 edges and 
362,496 faces; while the label-driven adaptive subdivision generates 9,022 vertices, 18,044 edges and 9,022 faces 
only, a forty times improvement on the total number of vertices, edges and faces. As one can see in these figures, the 
unbalanced subdivision provides a way to build a smooth, crack-free transition between faces with different 
subdivision depths, therefore, avoids the need of performing the same level of subdivision on all the faces. 

 

Fig. 7. Adaptive subdivision of a rocker arm: (a) input mesh, (b) limit surface, (c) uniform subdivision, (d) adaptive subdivision.

(a) (b) (c) (d) 

 
 
7. CONCLUSIONS 
This paper presents an adaptive mesh refinement technique for cubic subdivision surfaces. The adaptive refinement 
process is driven by labels of mesh vertices instead of subdivision depths of the mesh faces. Smooth and crack-free 
transition between mesh faces with different subdivision depths is provided by an unbalanced subdivision process. The 
strengths of the new technique include: (1) significantly reduce the number of faces in the refined meshes in just a few 
(3-5) subdivision steps, (2) conformity (crack-free condition) of the resulting mesh is automatically guaranteed, (3) the 
refined meshes converge to the same limit surface, and (4) the input mesh can have arbitrary topology. 

The limitation of this work is that the proposed adaptive subdivision technique currently work on subdivision 
surfaces of the Catmull-Clark style only. A future work is to extend the new technique to cover quadratic Doo-Sabin 
subdivision surfaces and subdivision surfaces with triangular mesh faces. 
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