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ABSTRACT 

 

In this paper, a local surface interpolation scheme for triangle meshes based on a quartic triangular 

Bezier patch is presented. This work extends previous research in surface interpolation to cater for 

any arbitrary node configuration with special focus on feature retention. The approach involves a 

hierarchical feature identification process which extracts all the feature edges and nodes. Based on 

this feature hierarchy, the nodal normal and tangent vectors are defined and used as input 

parameters for the surface interpolation. Finally, the control points of the Bezier patch is calculated 

by modifying the Walton scheme. Results show that the geometrical approximation is significantly 

improved using this surface interpolation scheme in a remeshing context. Strict feature retention is 

also achieved with good shape approximation.  
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1. INTRODUCTION 

Computer Aided Engineering (CAE) processes have primarily been relying on geometric models as the basis to 

generate the analysis model for simulation. However, due to the evolution of the simulation problem and the 

methodology of data acquisition, an underlying geometry might not be always available. For example, data acquisition 

using range scanners and extracting isosurfaces from volume datasets generally produce polygonized models rather 

than geometric models. Also, due to the large physical deformation associated with some dynamic analysis, the original 

geometry becomes inappropriate should the need for remeshing arise. 

 

 

Fig. 1. Example of a torus showing (a) the base mesh, (b) result of remeshing using simple projection and (c) result of remeshing using 

surface interpolation 

 

It was not surprising that various commercial CAE solution providers began to introduce meshing algorithms that 

utilizes triangulated data as pseudo geometry for mesh generation. For example, MSC.Patran [9] has introduced a 

remeshing code, called the mesh-on-mesh method, as a beta feature in its 2001 release. This has been subsequently 

included as one of the mainstream mesh generation feature in its later releases. However, a common problem 

associated with this method is in the creation of new nodes which is based on normal projection onto the original 

triangulated geometry. This simplistic approach is sufficient if the underlying geometry is planar, but high geometrical 

inaccuracy can be introduced if the curvature is high. In Fig. 1(a), a coarse base mesh of a torus is used to illustrate 

this. Using a simplistic projection approach, visual faceting is observed in Fig. 1(b) as the resulting mesh approximates 

the original geometry badly. It would, thus, be desirable that the underlying geometry is approximated from the base 

mesh so that a mesh with better geometrical conformity can be obtained, as shown in Fig. 1(c).  

(b) (c) (a) 
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One way to achieve this is by employing surface interpolation techniques. There are a variety of computationally light-

weight surface fitting algorithms proposed by Vlachos et al. [17], Lee and Jen [6,7] and van Overveld and Wyvill [16]. 

While these are suitable in the field of computer graphics where special display techniques are used to conceal the lack 

of G1 continuity, a more stringent criterion is often required for CAE applications. In this work, we consider the quartic 

Bezier patch as a viable candidate for surface interpolation as it has been established that for G1 continuity, the 

minimum degree of the triangular Bezier patch is 4 [11]. Walton and Meek [19] has initiated work in this area, which 

assumes that the triangles transit smoothly across every edge. This is not realistic for engineering purposes where hard 

edges and features are commonplace. A later development by Owen et al. [10] extends the scheme to include sharp 

edges but this is restricted to nodes which are of degree 2. Again, this is rather restrictive where engineering modeling is 

concerned. 

 

In our work, the objective is to extend the surface interpolation scheme to include nodes of any arbitrary degree. 

Essentially, this would generalize the surface interpolation scheme to cater to any geometric configuration. The focus 

here is to ensure that there are smooth transitions across every non-feature edge while the variations of tangent along 

connected feature edges are smooth. This principle forms the basis of feature retention. 

 

The rest of the paper is organized as follows: Section 2 gives the overview of the methodology used to perform the 

surface fitting based on a quartic Bezier patch. A robust treatment of feature edges and vertices is detailed in the next 

section. The derivations of the unique nodal normal and tangent vectors are also described here. This is followed by a 

presentation of the modified Walton scheme, given the additional input parameters. Section 5 presents some examples 

and results of the algorithm before concluding in Section 6. 

 

2. METHODOLOGY 

The new proposed scheme to fit a quartic triangular Bezier patch over a triangle face presented here is an extension of 

the theorem established by Walton and Meek [19], which assumes G1 continuity across every edge. In the subsequent 

work by Owen et al. [10], special treatment is administered to define the parameters at feature edges. However, the 

case is only confined to nodes with degree 2. The contribution of our work generalized the surface interpolation 

scheme so that features of the mesh are modeled accurately for any arbitrary configuration.  

 

There are 3 main steps involved in the feature retaining surface interpolation scheme: 

(1) Feature extraction. This involves querying the model for edges and nodes that form the features of the model, and 

classifying them in a hierarchical manner. 

(2) Definition of normal and tangent vectors. This involves calculating the 3 nodal normal vectors and the 6 nodal 

tangent vectors based on the feature hierarchy of the entity. 

(3) Surface interpolation. This involves calculating the control points for the quartic triangular Bezier patch based on a 

modification of the Walton scheme. 

The subsequent sections detail how these steps are performed. 

 

 

Fig. 2. Input parameters for surface interpolation based on (a) Walton’s scheme and (b) new proposed scheme 
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3. FEATURE RETENTION 

Careful treatment of feature edges is vital to ensure that the shape is modeled accurately and that there are no gaps 

along these edges as a result of the surface fitting. Essentially, G1 conditions are required across non feature edges 

whereas tangents are modeled continuously along feature edges. In order to achieve this, additional input parameters 

are included in the formulation of the Bezier patch, namely, the inclusion of six nodal tangent vectors for each triangle 

face. This is contrasted with the input parameters required for Walton’s patch fitting procedure, as shown in Fig. 2. In 

order to derive these input parameters, a feature extraction procedure is performed. 

 

3.1 Feature extraction 

The key to feature retention in our surface interpolation scheme lies in the appropriate definition of nodal normal 

vectors and nodal tangent vectors at the vertices of the edges. With this in view, a feature extraction routine is required 

to determine all the feature edges and feature nodes of the mesh. The heuristics are summarized as follows: 

(1) An edge is considered a boundary feature if it is only associated to one adjacent face. 

(2) An edge is considered an internal feature if the faces adjacent to it form an interior angle smaller than a given 

angular tolerance θe. 
(3) An edge is considered non-feature otherwise.  

 

After the classification of the edges, the corresponding nodes are classified based on the following: 

(1) A node is an interior node if there are no associated feature edges connected to it. 

(2) A node is a feature node if it is connected to at least one feature edge. 

(3) A node is considered a vertex node if  

• it is connected to only one feature edge (i.e. degree = 1), or 

• it is connected to more than two feature edges (i.e. degree = 2), or 

• it is connected to two feature edges with an angle less than a given angular tolerance θe. 
(4) An interior node is considered an apex node if it does not satisfy the angle deficit criteria [8], that is, the sum of 

angles about the node is less than a prescribed limiting apex angle θα.  
 

3.2 Approximation of nodal normal vectors  

As mentioned, the necessary input parameters are the three nodal coordinates Qi, the three nodal normal vectors Ni 

and the six tangent vectors Ti,j where i = {0,1,2} and j = {0,1}, as shown in Fig. 2(b). Note that the tangent vector at 

the node is unique with respect to each edge.  

 

The nodal nodal normal vector (see Fig. 3) is determined based on the following three cases: 

(1) If the node is an interior node or if the node is a feature node with degree one, the nodal normal vector N is the 
average of the normal vectors of its associated face weighted against the incident angle 

  

∑

∑

=

==
n

i

i

n

i

iiN

N

1

1

α

α

              (1) 

 where Ni is the face normal vector and αi the incident angle.  
(2) If the node is a feature node with degree greater than one, the nodal normal vector N is the average of the 

normal vectors of a subset of its associated face weighted against the incident angle. This subset is such that the 

faces do not traverse across a feature edge, as shown in Fig. 3(b). 

(3) If the node is an apex node, the nodal normal vector N is simply the normal of the face under consideration, as 

shown in Fig. 3(c). 

 

3.3 Approximation of nodal tangent vectors 

As the nodal tangent vectors are calculated with respect to the edges, the consideration of the edge type is crucial. The 

following heuristic is used to determine the nodal tangent vectors Ti,j of Face F: 
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(1) If the edge is a non-feature edge, or if it is a boundary edge, or if it is an internal feature edge and the node in 

consideration is of degree 1, the nodal tangent is merely the edge vector such that 
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(2) If the edge is a boundary edge and the node in consideration is of degree 2, the nodal tangent is the average of 

the edge vectors of the 2 boundary edges. 

(3) If the edge is an internal feature edge and the node in consideration is of degree greater than 1, the nodal 

tangent is obtained from the cross product of the normal vector of F with the normal vector of the adjacent face 

Fadj sharing this edge such that 
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Since the tangents vectors are obtained from information provided from the adjacent faces, the control polygon for the 

boundary curve representing the feature edge is the same for both faces F and Fadj, thus ensuring C
0 continuity.  

 

 

Fig. 3. Determining the nodal normal vector 

 

4. SURFACE INTERPOLATION  

The procedure to derive a suitable surface interpolation is generalized into two parts. Firstly, the edges of the triangular 

face are approximated using quartic Bezier curves. Secondly, the interior control points of the quartic Bezier patch are 

determined. Fig. 4(a) illustrates the control points of the Bezier patch. Once all the control points Pi,j,k are determined, 

the patch can be described by  
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Fig. 4. Control points of (a) a quartic triangular Bezier patch and (b) a boundary cubic Bezier curve 

 

4.1 Approximating boundary curves 

The control vertices of the cubic Bezier boundary curve 
3
Ci(t) can be obtained using a point normal interpolation [18]. 

To ensure that the feature edges are modeled correctly, modifications are made to Walton’s formulation to reflect the 

usage of unique nodal tangent vectors at the vertices of each boundary curve. Given that iii QQd −= +1 , 

1+⋅= iii NNa , 0,0, iii TNa ⋅=  and 1,11, iii TNa ⋅= + , the control vertices 
3
vi,j (see Fig. 3(b)) are calculated based 

on the following equations: 
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Since the interest is to approximate the triangle with a quartic triangular Bezier patch, the degree of the cubic boundary 

curve 
3
Ci(t) must be elevated to form a quartic Bezier curve 

4
Ci(t) with control vertices given by  
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where j = {0, 1, 2, 3, 4}. Then, the control points of the boundary curves of the quartic triangular Bezier patch are 

given by 
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4.2 Determining interior control points 

Next, to define the interior control points P1,1,2, P1,2,1 and P2,1,1 of the quartic triangular Bezier patch, the control points 
adjacent to a boundary curve are derived by imposing tangential continuity constraints across that boundary. Since 

each interior control point is associated with two boundary curves, it is determined twice, yielding two different 
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locations Gi,1 and Gi,2. These are then blended to give the interior control point by ensuring tangential plane continuity 

across each associated boundary. The locations of Gi,1 and Gi,2 are obtained by 
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The parameters λ and µ are calculated from 
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for {j = 0, 3}. 

 

Finally, the interior control points for the quartic triangular Bezier patch are given by 
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Now that all the control points are determined, the quartic triangular Bezier patch can be obtained from Eqn. (4). 

 

5. RESULTS AND DISCUSSIONS 

In this section, a study is performed to verify the improvement in the geometric fit when our surface interpolation 

scheme is employed in a remeshing algorithm. In order to have a quantifiable means to conduct an error analysis, a 

geometric model of a curved panel is used. As shown in Fig. 5, this model consists of a set of trimmed free-formed 

surfaces with concave and convex features, as well as hard vertices. From this model, an initial base mesh is 

constructed to act as the input to the remeshing routine.  

 

The comparison is made between the mesh-on-mesh feature of MSC.Patran [9], which is a commercial 3D mechanical 

computer-aided engineering (MAE) software package, and the same remeshing engine but with our surface 

interpolation capability. The remeshing routine is basically an advancing front algorithm which uses an existing mesh 

as the underlying geometry. For readers who are interested, the authors recommend [1-4]. While there are other 
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remeshing schemes available [5,12-15], we use the advancing front method in this paper for the sake of comparison 

and for the fact that quadrilateral elements are supported. It is observed that the former produces a mesh with visually 

faceted regions owing to the fact that the new nodal points are projected onto the planar faces of the base mesh. The 

faceting effect is more pronounced when the area of the base triangle is larger than the target mesh size. Also, the mesh 

along the boundary edges is poor due to linear interpolation. However, with surface interpolation, the new mesh 

conforms to a smoothly varying profile which matches that of the original geometry. Fig. 5 also illustrates that at curved 

boundary edges, the mesh conforms smoothly even though the base mesh was modeled with poor resolution.  

  

 

Fig. 5. Comparison of mesh-on-mesh operations on panel model 

 

To further quantify the results, an error analysis is performed by calculating the absolute normal projected distance of 

the new nodes to the original geometry. In Fig. 6, it was observed that the geometric error is significantly greater 

without using the surface interpolation scheme. At regions with high curvature and low base mesh resolution, the error 

tends to be much higher. However, using surface interpolation, the geometric error is significantly reduced. Fig. 7 plots 

the histogram of the geometric errors.  Note that with surface interpolation, 98% of the nodes have geometric error of 

less than 1.0. This is significantly better as compared to the case without surface interpolation, where only 86% of the 

nodes have geometric error of less than 1.0. Also, the maximum error for the scheme without surface interpolation is 

4.14 as compared to 3.26 for the case using interpolation. 
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Fig. 6. Plot of geometric errors for panel meshes 
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Fig. 7. Error analyses of remeshing schemes 

 

Next, an example of a coarse aerofoil mesh is used to illustrate the ability of the surface interpolation scheme to model 

nodes with degree greater than 2. As shown in Fig. 8, the vertex of the trailing edge of the aerofoil is of degree 3. Note 

that the mesh conforms smoothly along the feature edges and terminates at the sharp vertex. Given that the profile of 

the base mesh is of an overly coarse resolution, a finer mesh with better geometrical fit can be obtained with strict 

feature retention using our surface interpolation scheme. It is also worthy to mention that the remeshing scheme with 

surface interpolation is not restricted to triangular elements but also quadrilateral. In fact, higher order elements can be 
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similarly used for the remeshing process, like quadratic triangular and quadratic quadrilateral elements.  Lastly, a more 

complex model of a cutter is used to illustrate the robustness of our method, as shown in Fig. 9. 

 

 

Fig. 8. Example of aerofoil model 

 

 

Fig. 9. Example of cutter model 

 

6. CONCLUSIONS 

In this work, an improved surface interpolation scheme based on a quartic triangular Bezier patch is proposed which 

has robust feature retaining capability. The key to approximating a polygonized model lies in the appropriate 

definitions of nodal normal and tangent vectors based on the feature hierarchy presented. Using such an approach 

allows smooth transitions across non-feature edges while the mesh along connected feature edges are smoothly 

modeled. In a remeshing context, our surface interpolation scheme achieves significant improvement in terms of 

geometric approximation and shape conformity. 
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