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ABSTRACT 

 

Stamped automotive sheet metal parts must be measured for correct part shape, as well as for 

compliance to forming strain limits.  Despite recent technological advances, use of non-contact, 

optical measurement techniques still has not replaced conventional touch probe and manual 

methods.  This paper reports our recent laboratory experiences using two different non-contact 

solutions for sheet metal and grid digitizing.  In the first solution, an electrochemically etched circle 

grid is first applied to the blank part.  After forming, a CMM mounted triangulation laser digitizer 

measures the part coordinates and gray level.  A parallel computer is used to accelerate data 

processing.  The second solution begins with a square grid, and uses close-up passive stereo CCD 

cameras for digitizing.  Both tailer-welded and constant thickness steel blanks are measured, and 

the resulting data is graphically presented in an easily interpreted format.  
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1. INTRODUCTION 

To be acceptable, an automotive sheet metal part must: 1) have the correct geometric shape; and 2) remain within 

acceptable strain forming limits.  An incorrect geometric shape results when the die shape is out of tolerance, or has 

not been corrected for material spring back.  If excessive strain has occurred, the material may crack, buckle, or be too 

thin to meet in service strength requirements.  Hence, during initial die tryout, as well as regularly during production, 

parts should be measured so that successful achievement of the above quality requirements can be confirmed.  In 

conventional practice, the shape is digitized using a Coordinate Measuring Machine (CMM) equipped with a slow 

touch trigger probe.  Strain is determined by electrochemically etching the part blank with a regular circle or square 

grid pattern, and then manually measuring the change in grid shape using a ruler and dividers or Mylar® tape.   

Recent advances in sensor technology and computer processing speeds provide opportunities for substantial 

improvement over the prior practice.  This paper reports our recent laboratory experiences in using both a laser 

triangulation digitizer and stereo Charge Coupled Device (CCD) cameras as sensors.  A parallel computer is used to 

accelerate data processing for the circle grid, and the watershed algorithm is used to automate processing of the square 

grid.  The remainder of the paper is organized as follows.  In Section 2 automotive sheet metal stamping analysis 

requirements, including previous work, is reviewed.  Section 3 describes the laser digitizer based solution.  Section 4 

describes the stereo CCD camera solution.  A discussion and comparison of the two alternatives is contained in 

Section 5, followed by conclusions in Section 6. 

 

2. SHEET METAL STAMPING ANALYSIS REQUIREMENTS AND PREVIOUS WORK 

The shape of automotive sheet metal body panels is produced using a stamping die and press.  As the die closes on the 

material, it experiences first elastic and then plastic deformation.  When the die reopens, only the plastic component of 

the deformation is retained, and the relaxed elastic deformation results in the part returning to a shape that differs from 

the die.  Although this elastic spring back can be estimated using numerical simulation, actual geometric measurement, 

and final modification of the die shape, is usually required to achieve the part design shape.  Conventionally, these 

measurements are performed using a touch trigger probe (Fig. 1) equipped CMM, with an average data collection rate 

on the order of one point per second.  The plastic deformation results in a permanent material strain, and, for 

acceptable parts, must be less than the material forming limit [9,16] (Fig. 2).  That is, the strain achieved must be in 



 

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 134-144 

 

136 

region A below the Forming Limit Curve (FLC).  Strain in region B is considered marginal, and strain in region C 

represents either fracture (in stretching) or wrinkling (in drawing) failure.   

Experimentally, the strain is measured by electrochemically etching a dark circle or square grid on the undeformed 

material, forming it, and then manually measuring the change in shape using a ruler and dividers for square grids, or 

Mylar® tape for circle grids (Fig. 3) [4].  These conventional approaches are slow, tedious, and have low accuracy and 

repeatability.  Typically they are performed only when conspicuous problems are observed, rather than as a regular 

process monitoring activity. 

Recognizing the conventional approach limitations, a number of optical digitizer solutions for sheet metal and grid 

digitizing have been proposed.  A number of laser digitizers are now commercially available, and are reviewed in [1].  

Many of these have been adapted for use with CMMs that are commonly available at metal forming facilities.  For 

strain analysis, single element systems use one CCD camera that is used to image a single grid element at a time 

(Fig. 4) [6].  The system is handheld and hence very portable.  However, there is no correction for surface curvature, 

and the grid location on the part surface is not available.  By taking images from two or more locations, stereo 

triangulation systems can simultaneously measure both the part geometry and the strain.  Relatively accurate rotary 

table systems (Fig. 5) [25] move the part between images, but part volume is restricted to small laboratory sized 

specimens.  Alternatively the part can remain stationary and the camera and tripod can be moved, but in this case 

accuracy is significantly reduced. 

The research reported herein describes two practical sheet metal and grid digitizing solutions.  The first solution exploits 

the capability of many CMM mounted laser digitizers to report, in addition to the 3-D part geometry coordinates, the 

surface reflected light intensity or gray level.  Using a parallel computer to accelerate data processing speed, the gray 

level is automatically thresholded and used to separate the darker circle grid from the light metal background.  

Orthogonal data fitting is then used to determine the deformed circle axis lengths, and Forming Limit Diagrams (FLDs) 

as well as three dimensional colour thickness strain plots are prepared.  The second solution uses a CMM mounted 

dual CCD camera sensor that can be articulated using a standard Renishaw plc PH10 probe head [20].  Vertices are 

triangulated to obtain the 3-D part geometry coordinates with no human intervention.  Accurate strain plots are also 

prepared. 

 

3. LASER DIGITIZER SOLUTION 

For the laser digitizer solution, a circle grid was electrochemically etched onto the blank part.  Circles were spaced on 

regular 3.175 mm centers, with a diameter of 2.54 mm.  The circle circumference thickness was 0.254 mm.  After 

forming, the part was measured using a Hymarc Hyscan 45C laser digitizer, mounted on a bridge style CMM (Fig. 6).  

This digitizer collects up to 1024 points per scan line, and at a rate of 3.3 scan lines per second.  Over a small area, 

laboratory experience has determined a 1σ  3-D accuracy of approximately 10 mµ .  The gray level is simultaneously 

recorded with 12 bit resolution.  By controlling the CMM speed and digitizer height above the part, points were 

collected at a nominal 0.1 mm square spacing. 

 
Fig. 1.  Touch Trigger Probe Equipped CMM. 

 
Fig. 2.  Material Forming Limit Diagram and Curve [16]. 



 

Computer-Aided Design & Applications, Vol. 2, Nos. 1-4, 2005, pp 135-144 

 

137 

3.1 Data Processing 

Digitizer point data processing consisted of four procedures: 1) noise reduction; 2) thresholding; 3) grid element 

grouping; and 4) orthogonal least squares ellipse (deformed circle) fitting and strain calculation. 

3.1.1 Noise Reduction 

A survey of vision noise reduction algorithms is contained in [15].  For this work, a Gaussian filter was used, with a 

3 3×  pixel square mask.  The mask component values were calculated using the formula 
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3.1.2 Thresholding 

Thresholding is used to separate the dark coloured grid elements from the light coloured metal background.  Because 

the part surface is generally not normal to the laser digitizer, the background intensity is highly variable (Fig. 7), making 

it difficult to distinguish from the grid.  To address this problem, an adaptive technique was implemented based on 

previous research published by Yang and Yan [26], and is described below.   

Let ( , )g x y  be the intensity level at the centre pixel of a window f  having size (2 1) (2 1)+ × +sw sw , where 3=sw  

is the circle circumference width in pixels.  Based on the 8 neighbouring window pixels ,  0...7
i
P i = , the current pixel 

is set to a value ( , )b x y  using the following formula 
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B P  is a Boolean operation that is TRUE if ( ) ( , )iP g x y T− >ave , and FALSE otherwise. Pixels are labeled 

counterclockwise from the 3 o’clock position, ∨  denotes logical or, ∧  denotes logical and, and subscript i  arithmetic 

is modulo 8.  The value for ( )iPave  is calculated using the formula  
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and the adaptive thresholding value T  is calculated using the algorithm: 

1) Calculate ( )f f=max MAX , ( )f f=min MIN  and ( )f f=ave ave  

 
Fig. 3.  Graduated Mylar® tape circle grid measurement [4]. 

 
Fig. 4.  Handheld CCD camera grid measurement [6]. 

 

 
Fig. 5.  Rotary table with fixed camera grid measurement [25]. 

 
Fig. 6.  Laser digitizer sheet metal grid measurement. 
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2) Calculate f f−max ave  and f f−min ave  

3) If f f f f− < −max ave min ave , 
1 2

3 3
T f f α = + 

 
�min ave , if 

max ave min ave
f f f f− < − , 

1 2

3 3
T f f α = + 

 
�min ave  

4) If f f f f− = −max ave min ave , increase the window size to (2 3) (2 3)+ × +sw sw  and repeat from Step 1.  

If f f f f− = −max ave min ave  again, T f α= �ave . 

The correction factor α  is defined as 

{ }1 90; 0.33 130; 0.2 170; 0.1 170f f f fα = < ≤ < ≤ < ≥ave ave ave ave if     if 90       if 130       if                     (4) 

Sample results are shown in Fig. 8. 

3.1.3 Grid Element Grouping 

Points are next grouped into grid elements.  For the circle grid, the shortest possible distance between two adjacent 

circumferences is 0.381 mm, and the distance between points within a single grid element is nominally 0.1 mm.  Based 

on these observations, points were grouped together if they were separated by 0.3 mm or less.  The group centre was 

then estimated by projecting the points onto an orthogonal least squares best fit plane, using a non-iterative algebraic 

ellipse fitting algorithm [12].  Groups with nearly identical centers were merged.  After this step, any groups containing 

less than half of the 200 expected points were discarded.        

3.1.4 Least Squares Ellipse Fitting and Strain Calculation 

In order to perform strain analysis, the difference between the original circle diameter 0L , and the ellipse major 1L  and 

minor 2L  axis lengths, must be determined.  Beginning with the algebraic fit from the previous step, a more accurate 

orthogonal least squares ellipse fit is obtained using the Orthogonal Distance Regression method [8].  The local surface 

curvature is used to correct the plane axis lengths back to the actual part surface. 

The surface true strains are calculated using the formulae 
1 2
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Because the total volume of the part does not change during the forming process, the third or thickness strain can then 

be calculated using the simple formula 
3 1 2

ε ε ε= − − .  By creating a colour 3-D plot of this scalar quantity, a 

convenient interpretation of the forming severity can be obtained.  

 

3.2 Parallel Computer Implementation 

The processing algorithms described above were implemented using the standard Message Passing Interface (MPI) [11] 

on the Shared Hierarchical Academic Research Computer Network (SHARCnet) Compaq Alpha parallel computer 

[21].  Actual implementation uses a master/slave strategy in which the master process reads all image data, partitions it 

into equally sized slices, and transmits it, with specific processing instructions, to the individual slave process.  The 

result of each slave process is sent back to the master process for merging.   
 

3.3 Experimental Results 

The procedures described above were experimentally carried out using a galvanized tailor welded steel blank. (Fig. 9). 

The left side undeformed thickness is 0.64 mm. The right side undeformed thickness is 1.14 mm.  Approximately 6 

million laser digitizer points were collected.  A total of 900 ellipses, each containing approximately 200 points, were 

automatically thresholded, grouped, and fitted.  Using the true thickness strain equation, a 3-D colour thickness plot 

 
Fig. 7.  Laser digitizer gray level. 

 
Fig. 8.  Grid elements after grouping. 
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was automatically created (Fig. 10). Such a plot, along with Forming Limit Diagrams (also automatically created), can 

be quickly interpreted and acted upon by manufacturing engineers.  For serial processing, the elapsed computer 

processing time was 12 minutes.  Using 7 parallel slave processors, this time was reduced to 2 minutes.  Reported 1σ  

strain calculation accuracy for competing systems has been reported in the range of 2-5% [17].  Accuracy of the laser 

digitizer system depends on the location and orientation of the actual ellipse (circle) centre with respect to the nominal 

0.1 mm sample spacing.  Using mathematical simulation on a perfect grid image, the translation based uncertainty for 

a 2.54 mm diameter circle was 0.5 %.  Using a 3 mm by 2.54 mm ellipse, the orientation uncertainty for each axis was 

found to be 0.9 %, and hence the combined ( 1k = ) uncertainty is 1.1 % [14].  Imperfections in actual grids will 

increase this slightly, but, nonetheless, the laser digitizer solution compares very well to previous methods.   

 

4. STEREO CCD CAMERA SOLUTION 

The complete vision system is shown in Fig. 11 and consists of two Point Grey Dragonfly [19] 1024 768×  8 bit gray 

level CCD board mount cameras attached to the CMM PH10 probe head that can be repeatably articulated in 7.5 

degree pan or tilt steps.  Each camera uses a 12 mm fixed focus Cosmicar/Pentax lens with an additional 1 mm lens 

spacer, and communicates with the data processing computer using the IEEE 1394 protocol.  The mechanical mount 

provides electrical isolation from the CMM, yet includes a switch for latching the current CMM scale position.  Overall 

mass is less than 300 g to avoid exceeding the PH10 torque limitations.  Ambient room lighting, with an additional 

indirect incandescent light, was used for illumination. 

 

4.1 Calibration 

The camera calibration procedure is based on Zhang [27].  A 30 mm ×  20 mm reference plane with a near perfect 
2.54 mm pitch lithographically produced grid was used.  The grid plane was oriented to 9 different positions, and was 

simultaneously imaged by both cameras.  The grid line intersections (vertices) were detected and used to determine 

two Homogeneous Transformation Matrices (HTMs) that relate each Camera Coordinate Systems (CCS) to an overall 

sensor Stereo Coordinate System (SCS).   

The cameras are translated by CMM axis motion, and rotated using the PH10 pan and tilt capability.  Hence, the SCS 

point coordinates must be translated yet again into a Global Coordinate System (GCS) using registration.  For any pair 

of PH10 poses, the registration transformation that accomplishes this consists of the rotation matrix 3 3×R  and 

translation vector 3 3×T  that minimizes 

( ) ( ) 22

1

1
,

n

i i

i

e
n =

= − +∑R T y Rx T          (6) 

where  is the usual Euclidean distance, the ,3 1i ×x  are the point coordinates in one pose, and the ,3 1i ×y  are the 

coordinates of the corresponding points in the second pose.  A closed form solution using the Singular Value 

Decomposition (SVD) has been reported in [23].  Pennec’s iterative mean shape method [18] was used to minimize 

the accumulated error for 2N >  poses.  Laboratory calibration was carried out using a 150 mm diameter dome shape 

part having the same lithographically produced grid described above. 

 
Fig. 9.  Laser digitizer sample part.  Left 0.64 mm thick, right 

1.14 mm thick. 
 

Fig. 10.  Laser digitizer colour 3-D thickness plot. 
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4.2 Grid Intersection Detection 

Grid intersection detection for the stereo CCD camera solution was implemented in 4 sequential steps: 1) noise 

reduction and gradient image calculation; 2) region segmentation and merging; 3) boundary processing; and 4) 3-D 

Reconstruction.   

4.2.1 Noise Reduction and Gradient Image Calculation 

As with the laser digitizer solution, the first image processing step was to remove high frequency noise using a Gaussian 

filter.  To emphasize the grid edges, a 3 3×  Sobel mask is then used.   

4.2.2 Region Segmentation 

To detect the grid intersection vertices, the images must be segmented into separate regions corresponding to each 

individual grid element.  This task was attempted using both the watershed algorithm [24], and circular disk dilation 

[10] methods.  

4.2.2.1 Watershed Algorithm Method 

The watershed algorithm uses the image gray level as a measure of altitude.  Conceptually, the algorithm can be 

visualized as filling a topological terrain with water.  Region boundaries are constructed along the dikes that represent 

the highest altitudes remaining just prior to when the water would spill over and combine the regions.  Because of 

varying image brightness, the regions will tend to be smaller than a complete grid square, and were therefore merged 

using the iterative algorithm described in [13] until their area is approximately 60 % of the grid square.  Additional 

merging was performed if the resulting region compactness ( )/C P A= 2
region region region  (where Pregion  is the length of 

the region perimeter and Aregion  is the region area) is less than that of the two original regions.  Representative results 

are shown in Fig. 12. 

4.2.2.2 Circular Disk Dilation Method 

The circular disk dilation method begins by removing small (<300 pixel), noisy areas (Fig. 13(a)), and then dilating the 

remaining boundaries outward using a circular disk (radius 15 pixels) (Fig. 13(b)).  Circular disk erosion (radius 15 

pixels) is then performed to restore the original boundaries, but with the effect of filling in small missing portions 

(Fig. 13(c)).  Black/white complementing is then performed, and regions that are too small (<2000 pixels) or too large 

(>6500 pixels) are eliminated (Fig. 13(d)).   

4.2.3 Boundary Processing  

The remaining steps are illustrated using the Circular Disk Dilation method, but the steps are identical for the 

Watershed Algorithm method.  After merging, the region boundaries are traversed with the highest curvature (k-

curvature) being used to locate the 4 boundary points [15] (Fig. 13(e)).  The centerline of the edge between regions, 

and between boundary points, is then computed using the Chamfer 3-4 distance metric [2] (Fig. 13(f)).  Finally, the 

vertices of 4 adjacent regions are used to define a local coordinate system, and parabolas are then used to refine the 

vertex intersection coordinates to sub-pixel accuracy (Fig. 13(g,h)). 

 
Fig. 11.  Stereo camera vision system. 

 
Fig. 12.  Watershed algorithm [24] and parabola fitting. 
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4.2.4 3-D Reconstruction 

After all of the above 2-D steps have been completed, vertices in the left and right images must be matched using 

triangulation to obtain the corresponding 3-D SCS vertex.  Images are then rectified [7] to reduce the matching search 

space to one dimension.  For the square grid, the ambiguous discrete and regular spacing of the vertices makes 

ordinary correlation based [15] selection of the correct match unreliable.  To overcome this problem, image warping 

 
Fig. 13(a).  Stereo Vision image after removal of noisy areas. 

  

 
Fig. 13(b).  Circular disk dilation. 

  

 
Fig. 13(c).  Circular disk erosion. 

  

 
Fig. 13(d).  Black/white complementing and removal of too 

small/too large regions. 
  

 
Fig. 13(e).  Corner detection using k-curvature [15]. 

  

 
Fig. 13(f).  Centerline calculation [2]. 

  

 
Fig. 13(g).  Parabolic construction and intersection. 

 
Fig. 13(h).  Extracted intersection point. 
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[3] was used to estimate the vertex surface normals.  Candidate point matches with significantly different normals were 

automatically discarded.   

 

4.3 Strain Analysis 

Strain analysis for the square grid can then be carried out using the procedure described in [22].  In short, each square 

is divided into 2 separate triangles, with a local coordinate system origin established at the middle vertex.  On the 

undeformed sheet, the edge vertices will be located at coordinates ( )1 1,X Y  and ( )2 2,X Y .  After forming, the middle 

vertex is maintained at the origin, and, applying a constant, second order tensor 2 2×F  to the edge vertices results in the 

linear systems 

  1 11 12 1 2 11 12 2

1 21 22 1 2 21 22 2

;   
x F F X x F F X

y F F Y y F F Y

           
= ⋅ = ⋅           

           
           (7) 

 
Fig. 14.  3-D stereo vision reconstructed grid plot. 

 

 
Fig. 15.  3-D stereo vision thickness strain plot. 
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where ( )1 1,x y  and ( )2 2,x y  are the deformed edge vertex coordinates.  Rearranging 

   

1 1 1 11

2 2 2 12

1 1 1 21

2 2 2 22

0 0

0 0

0 0

0 0

x X Y F

x X Y F

y X Y F

y X Y F

     
     
     = ⋅
     
     
     

         (8) 

can now be solved for F .  The eigenvalues 1,2λ  of F  can be computed using the Singular Value Decomposition 

(SVD), and satisfy the relationship ( )1,2 1,2lnε λ=  where, as before, 1ε  and 2ε  are the surface true strains. 

 

4.4 Experimental Results 

The stereo CCD camera solution was tested on a steel sheet that was electrochemically etched with a 2.54 mm pitch 

square grid.  In total 25 orientations of the PH10 probe head were used, and 170 separate stereo views of the part 

were captured.  Using an Intel 1.6 GHz computer, approximately 19 hours was required for the Watershed Algorithm 

method, and 40 hours was required for the Circular Disk Dilation method.  Over half of the time was spent on iterative 

orthogonal least square parabola fitting, and this is due to the very high resolution of pixels.  To reduce processing 

time, the pixels could be thinned with an expected small effect on accuracy.  A 3-D plot of the reconstructed grid, 

containing approximately 6,000 matched vertices, is shown in Fig. 14.  After global registration, the maximum distance 

between corresponding points was less than 20 µm .  Less than one minute of additional computer processing time 

was required for the strain analysis step, and the plotted results are shown in Fig. 15.    

 

5. DISCUSSION 

Sheet metal strain analysis is a problem that can significantly benefit from modern digitizing technologies.  Because 

using Mylar® tape it is the easiest manual method, many companies continue to grid using circles.  CMMs are also 

widely available at stamping facilities, and hence it was natural to consider this approach for the laser digitizer based 

solution.  Through informal conversation, the authors have learned that many laser digitizers can provide gray level 

information, but this capability is not supported in commercial software.  Our suggestion to vendors is to provide 

access to it so that third parties can further develop applications such as strain analysis.  Even for regular geometric 

digitizing, the gray level provides additional feature information that can be exploited to improve accuracy.   

One difficulty with laser digitizers is that they are line acquisition devices, and must be moved under computer control 

to acquire evenly spaced points.  Motorized orthogonal axis CMMs support this, but installation on a manual portable 

arm CMM, such as a FARO [5], does not.  For these devices, the stereo CCD camera solution, which records an area 

with each acquisition, is preferred.  With suitable lens choices and a robust mounting enclosure, installation on a 

FARO arm or even an industrial robot would be very practical.  These devices tend to have larger intrinsic geometric 

errors, and using the square grid vertex pattern makes it very easy to implement global registration.  However, the high 

resolution laser digitizer curvature information is lost. 

The large number of digitized points requires significant data processing times.  For the laser digitizer solution this was 

improved by using parallel computing, and similar approaches, including optimized algorithm design, can be 

developed for the stereo CCD camera solution.  Such improvements are necessary before online process control can 

be attempted.  As well, it is recognized that representation and visualization, particularly including gray level, may be 

more appropriate using a polygon instead of a NURBS based modeler.  Specular reflection from shiny metal surfaces 

is often an issue.  For the work reported herein the steel was galvanized and this was not a significant problem.  

Polarizing filters, and careful control of ambient lighting for the stereo CCD camera solution, are topics for further 

research.  For geometric digitizing applications other than strain analysis, structured light could also be used instead of 

etching a grid onto the part.      

 

6. CONCLUSIONS 

In this paper, two separate solutions for automotive sheet metal and grid digitizing were examined – one based on a 

laser digitizer, and one based on stereo CCD cameras.  Both solutions were implemented on an orthogonal 

Coordinate Measuring Machine, and both methods achieved comparable accuracy.  Although it is easier to manually 

measure circle grid, vertices of the square grid are more easily processed by computer.  The large volume of data 

requires significant computer processing time, but it is expected that this can be significantly reduced through parallel 

processing and optimized algorithm design. 
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