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ABSTRACT 

 

Ribs and fans are interesting geometric entities that can be derived from a Bézier curve or surface. 

A rib is a Bézier curve whose control points are linear combination of the given curve. A fan is a 

vector field defined between two ribs. The degree of ribs and fans are lower than the given curve. 

The ribs and fans of a Bézier surface can be similarly derived as linear combinations. We present 

methods to transform the control points of a given Bezier curve or surface into the control points 

and vectors of its ribs and fans. Then, we show that a Bézier curve of degree n is decomposed into 

a rib of degree (n-1) and a fan of degree (n-2). We also show that a Bézier surface of degree (m, n) 

is decomposed into a rib of degree (m-1, n-1) and three fans of degrees (m-1, n-2), (m-2, n-1), and 

(m-2, n-2), respectively. We also illustrate some of design examples. 

 

Keywords: rib, fan, Bézier curve and surface, decomposition 

 

1. INTRODUCTION 

Bézier curves and surfaces are one of the most basic and widely accepted theories of CAGD. We find numerous 

implementations of this theory in almost any GUI-based software application and versatile devices: from a professional 

CAD modeling tool running on a grid-computing environment to a trendy Flash[5] viewer running on mobile devices. 

(Bézier is ubiquitous!) This kind of popularity is far surpassing its powerful siblings such as NURBS due to its relatively 

rich expressiveness and structural elegance based on numerous nice properties found through extensive previous 

research works. To name a few, we can list famous properties such as affine invariance, convex hull property, variation 

diminishing property [1-2],[4]. In this paper, we present new properties of Bézier curves and surfaces: ribs and fans. 

Then, we show that a Bézier curve or surface can be decomposed into ribs and fans based on the theorems proposed 

in the paper. 

 

A rib itself is a Bézier curve or surface with a lower degree than the given curve or surface. A fan is a vector field whose 

degree is lower than its origin, and defined between two ribs of different degrees. We present methods to transform the 

control points of the given curve or surface into rib control points and fan control vectors. Then, we show that a Bézier 

curve of degree n can be decomposed into a rib of degree (n-1) and a fan of degree (n-2). We also show that a Bézier 

surface of degree (m, n) is decomposed into a rib of degree (m-1, n-1) and three fans of degrees (m-1, n-2), (m-2, n-1), 

and (m-2, n-2), respectively. The lengths of the fans are further controlled by scalar functions. We present relevant 

notations and definitions, introduce theories, and illustrate some of design examples. 

 

We organize the rest of this paper as follows. In Section 2, we first review the definitions of Bézier curve and surfaces, 

and some properties of Bernstein polynomials. In Section 3, we describe the ribs and fans of Bézier curves and surfaces 

in detail. In Section 4, we illustrate some of design examples showing the geometric features of ribs and fans. In 

Section 5, we conclude this paper with short remarks. 

2. PRELIMINARIES 

A Bézier curve ( )tb  of degree n is defined as a parametric linear combination of control points 
ib  at t: 

0

( ) ( )
n

n

i i

i

t B tb b
=

=∑  where weighting factors ( )n

i
B t  are i-th Bernstein polynomials of degree n. A Bézier surface ( , )u vb  of 
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degree ( , )m n  is defined as a tensor product interpolant as follows [1]: ,

0 0

( , ) ( ) ( )
m n

m n

i j i j

i j

u v B u B v
= =

=∑∑b b  where u and v are 

two independent parameters defined over real numbers. Each Bernstein polynomial is recursively expressed as follows: 
1

1
( ) (1 ) ( ) ( ),n n n

i i i
B t t B t tB t+

−= − +              (1) 

Eqn. (1) states the recursion relation between two set of Bernstein polynomials of degrees different by one. If we want 

a recursion formula for bigger differences, we can repeatedly apply Eqn. (1) to the terms of lower degrees. For example, 

we can get the relation between 1

*
( )nB t+  and 1

*
( )nB t− , whose degrees are different by two, by applying one more 

recursion step as follows: 

2
1 2 1 1 2 1 2 1

1 2

0

( ) (1 ) ( ) 2(1 ) ( ) ( ) ( ) ( ).n n n n n

i i i i j i j

j

B t t B t t tB t t B t B t B t+ − − − −
− − −

=

= − + − + =∑  (2) 

We introduce two additional recursion relations between two set of Bernstein polynomials of degrees different by one 

as follows [1],[3]: 

1( ) (1 ) ( ), 0 .  n n

i i

n
B t t B t i n

n i

−= − ≤ <
−

  (3) 

1

1( ) ( ), 0 .  n n

i i

n
B t tB t i n

i

−
−= < ≤   (4) 

3. RIBS AND FANS  

3.1. Curve Case 

We introduce the concept of ribs and fans of a Bézier curve, and describe the definitions of rib control points and fan 

control vectors. Then, we present a method to decompose a given Bézier curve into a rib and a fan. 

3.1.1. Rib and Its Control Points 

Let (0 ) n
i i

i n≡ ≤ ≤b r  be the control points of the given Bézier curve ( )tb  of degree n. We recursively define rib control 

points of degree k  as follows: 

1 1

1

( )
  for  1 1k k k

i i i

k i i
k n

k k

+ +
+

−
= + ≤ ≤ −r r r   (5) 

These rib control points define a rib as a Bézier curve of degree k: 

0

( ) ( )  for 1 ,
k

k k k

i i

i

t B t k nr r
=

= ≤ ≤∑   (6) 

Hence, a rib ( )
k
tr  is a Bézier curve that is defined by a rib ancestor (or a higher rib) 1

( )
k
tr

+  for (1 )k n≤ <  and the 

transformation rule in Eqn. (5). See Fig. 1. The rib of the lowest degree is a line segment 1
( )tr  passing through two rib 

control points 1

0 0
r b=  and 1

1 n
r b= . For convenience, we define that the given Bézier curve itself is the rib of the highest 

degree: ( ) ( ).
n
t tr b≡ Note that any rib of degree k (1 k n≤ < ) always connects the two ends of the ( )tb . 

3.1.2. Fan and Its Control Vectors 

We define a fan control vector k

i
f of degree k using three consecutive rib control points of degree (k+2): 

( )2 2 2

1 2

1
  for 0 2.

2

k k k k

i i i i k n
+ + +
+ += − + ≤ ≤ −f r r r   (7) 

Now, we define a fan using fan control vectors (0 ) k
i

i k≤ ≤f  as follows: 

0

( ) ( ) (0 2).
k

k k k

i i

i

t B t k nf f
=

= ≤ ≤ −∑   for   (8) 
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A fan has the form of a Bézier curve. However, it is not the combination of points but the vectors that have special 

geometric meanings. See Fig. 2. Note that, basically, we can derive a fan ( )
k
tf  from a rib 

2 ( )k tr
+

. The fan 0
( )tf of the 

lowest degree is a fixed vector defined by three control points. 

3.1.3. Theory 

Before presenting the general theory, we explain how ribs and fans are defined for a cubic Bézier curve 3( ) ( )t tb r≡  in 

Fig. 1(a). Using Eqn. (5), we can define control points for three ribs in Fig. 1(b): 3{ }
i i
r b≡  in blue, 2{ }

i
r  in purple, and 

1{ }
i
r  in red. Specially, ( )2 3 3

1 1 2 2r r r= +  in purple. Using Eqn. (6) and rib control points, we can draw three rib curves in 

Fig. 1(c): 3( )tr  in blue, 2( )tr  in purple and 1( )tr  in red. Fig. 1(d) illustrates sampled vectors from a sequence of scaled 

fans 12 (1 ) ( )t t tf−  and 02 (1 ) ( )t t tf− . (It is equal to overlap of Fig. 2(d) and 2(h). Details are explained below) Circles are 

points placed on a rib and represents end points of scaled fan vectors. In Fig. 1(e), the internal curves are fan curves 

whose control polygon corresponds to a sequence of sampled fan vectors at the same value of parameter t: i.e., 
3( )jtr , 2( )jtr , and 1( )jtr . 

     
(a) (b)  (c) (d) (e) 

Fig. 1. Generation of ribs and fans for a cubic Bézier curve. Read above for details. 
 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Fig. 2. Detailed procedures for generation of fans for a cubic Bézier curve in Fig.1. Read below for details. 

 

Fig. 2 summarizes procedures to generate fan vector field ( )k tf . First, in Fig. 2(a)-(d), we show procedures to get a fan 

from the rib 3( )tr . Using Eqn. (7), we derive two fan control vectors (in red) 1

0
f and 1

1
f  from the rib control points 3

i
r  

as shown in Fig. 2(a). (For example, ( )1 3 3 3

0 1 0 2 2f r r r= − + .) Using Eqn. (8), we generate a fan 1( )tf  by interpolating the 

fan control vectors. (Here, 1 1 1

0 1
( ) (1 )t t tf f f= − + .) The sampled vectors (in black) of 1( )tf  is shown in Fig. 2(b). If we 

scale 1( )tf  by 2 (1 )t t− , we get 1
2 (1 ) ( )t t tf−  as in Fig. 2(c). According to the Theorem 1 (below), the scaled fan 

1
2 (1 ) ( )t t tf−  is equal to the difference between ribs 3( )tr  (in blue) and 2( )tr  (in red.): i.e., 3 2 1( ) ( ) 2 (1 ) ( )t t t t tr r f− = − . 

Hence, as in Fig. 2(d), if we add the scaled fan to the lower rib 2( )tr , the sum coincide with the upper rib 3( )tr . In Fig. 

2(e)-(h), we show similar procedures to get a simpler fan of the rib 2( )tr . Fig. 2(e) shows the single fan control vector 

0

0
f using 2

i
r . As in Fig. 2(f), the fan is constant: 0 0

0
( )tf f= . If we scales it as 0

2 (1 ) ( )t t tf− , the sampled vectors are 

collinear as in Fig. 2(g). As in Fig. 2(h), 2 1 0( ) ( ) 2 (1 ) ( )t t t t tr r f= + − . (We recommend more examples in the web site[6].) 
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Now, we present a general method to decompose an arbitrary Bézier curve into a rib and a fan. Specially, we show 

that the sum of lower rib and the scaled fan is equal to the upper rib or the given Bézier curve. 

 

Theorem 1. (Rib and Fan of Bézier Curve) A Bézier curve ( ) ( )
n

t tb r≡ of degree 2n ≥  is decomposed into a rib 
1
( )

n
tr

−  of degree (n-1) and a fan 2
( )

n
tf

−  of degree (n-2) as follows: 
1 2

( ) ( ) ( ) 2 (1 ) ( ).
n n n

t t t t t t
− −= = + −b r r f   (9) 

 

Proof> We prove the theorem by showing the equality in Eqn. (9) holds generally, based on mathematical induction. 

As a base step, when 2n = , the given control points of 2
( )tr are given as{ }2i i=b r  for (0 2)i≤ ≤ . By Eqn. (5), the 

control points { }1ir  of the rib 1
( )tr  are expressed as follows: 1 2

0 0
=r r and 1 2

1 2
=r r . Thus the base rib 1

( )tr can be 

expressed as follows: 
1

1 1 1 2 2

0 2

0

( ) ( ) (1 ) .
i i

i

t B t t t
=

= = − +∑r r r r   (10) 

By Eqn. (7), the fan control vector of degree 0 is defined as follow: ( )0 2 2 21
0 1 0 22
= − +f r r r . Hence, the fan of degree 0 is 

identical to the control vector itself: 

( )0 0 2 2 2

0 1 0 2

1
( )

2
t = = − +f f r r r .  (11) 

By applying Eqns. (10) and (11) to Eqn. (9), we can show that the theorem holds for the base step: 

( )
2

1 0 2 2 2 2 2 2 2 2 2 2 2 2 2

0 2 1 0 2 0 1 2

0

1
( ) 2 (1 ) ( ) (1 ) 2 (1 ) (1 ) 2 (1 ) ( ) ( )

2
i i

i

t t t t t t t t t t t t B t t
=

 + − = − + + − − + = − + − + = = 
 

∑r f r r r r r r r r r r  (12) 

Now, we assume that the induction hypothesis holds for n k=  as follows: 
1 2( ) ( ) 2 (1 ) ( ).k k kt t t t t− −= + −r r f   (13) 

In the below, we show that the induction hypothesis of Eqn. (13) also holds for 1n k= +  as follows: 
1 1( ) ( ) 2 (1 ) ( ).k k kt t t t t+ −= + −r r f   (14) 

Note that we can represent a Bézier curve of degree ( 1)k +  using the Bernstein polynomials of degree ( 1)k −  based on 

the property expressed in Eqn. (2). Hence, a rib 1( )k t+
r of degree (k+1) can be expressed as follows: 

1 1 2
1 1 1 1 2 1

0 0 0

( ) ( ) ( ) ( )
k k

k k k k k

i i i j i j

i i j

t B t B t B t
+ +

+ + + + −
−

= = =

 
= =  

 
∑ ∑ ∑r r r .  (15) 

Using the definition of rib control points of Eqn. (5) and the properties of Bernstein polynomials in Eqns. (3) and (4), a 

rib ( )k tr of degree k can be expressed using the control points of 1( )k t+
r of degree (k+1) and Bernstein polynomial of 

degree (k-1):  

( )( ) ( )

( )

1 1 1 1

1 1

0 0 0 0

1
1 1 1 1 1 1

1 1

0 1

1 1 1
( ) ( ) ( ) ( ) ( )

1 1
(1 ) ( ) ( ) (1 ) (

k k k k
k k k k k k k k k k

i i i i i i i i i

i i i i

k k
k k k k k k

i i i i i i

i i

t B t k i i B t k i B t i B t
k k k

k k
k i t B t i tB t t B

k k i k i

+ + + +
+ +

= = = =

−
+ − + − + −

+ −
= =

   
= = − + = − +   

   

   
= − − + = −   −   

∑ ∑ ∑ ∑

∑ ∑

r r r r r r

r r r

( )

1 1
1 1

2

0 0

1
1 1 1

2

0

) ( )

(1 ) ( )

k k
k k

i i

i i

k
k k k

i i i

i

t tB t

t t B t

− −
+ −
+

= =

−
+ + −

+
=

+

= − +

∑ ∑

∑

r

r r

 (16) 

Using the definitions in Eqns. (7) and (8), the expression of a fan 1( )k t−
f in Eqn. (14) can be expanded as follows: 

( )
1 1

1 1 1 1 1 1 1

1 2

0 0

1
( ) ( ) ( )

2

k k
k k k k k k k

i i i i i i

i i

t B t B t
− −

− − − + + + −
+ +

= =

 = = − + 
 

∑ ∑f f r r r .  (17) 

Eqns. (16) and (17) state that both a rib curve of degree k and a fan of degree ( 1)k − can be expressed using the 

Bernstein polynomials of the same degree ( 1)k −  and the same set of rib control points of degree ( 1)k + . We can apply 

Eqns. (16) and (17) to Eqn. (14) and evaluate it as follows: 
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( ) ( )

( )

1 1
1 1 1 1 1 1 1 1

2 1 2

0 0

1 1 2
2 1 1 2 1 1 1 2 1

1 2

0 0 0

1
( ) 2 (1 ) ( ) (1 ) ( ) 2 (1 ) ( )

2

(1 ) 2 (1 ) ( ) ( ) ( )

k k
k k k k k k k k k

i i i i i i i

i i

k k
k k k k k k

i i i i i j j i

i i j

t t t t t t B t t t B t

t t t t t B t B t B t

− −
− + + − + + + −

+ + +
= =

− −
+ + + − + −

+ + +
= = =

 + − = − + + − − + 
 

 
= − + − + =  

 

∑ ∑

∑ ∑ ∑

r f r r r r r

r r r r .

 (18) 

We can further expand the last term of Eqn. (18) as follows: 
1 2

1 1 2 1

0 0

1 2 1 1 2 1 1 2 1

0 0 0 1 1 0 2 2 0

1 2 1 1 2 1

1 0 1 2 1 1

1 2 1

2 0 2

1 2

1 2

( ) 2 (1 ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( )

k
k k k k

i j j i

i j

k k k k k k

k k k k

k k

k

k

t t t t B t B t

B t B t B t B t B t B t

B t B t B t B t

B t B t

B t

−
− + −

+
= =

+ − + − + −

+ − + −

+ −

+
−

 
+ − =  

 

+ +

+ + +

+ +

=

+

∑ ∑r f r

r r r

r r

r

r

L

L

O

L
1

3

1 2 1 1 2 1

1 1 2 2 2

1 2 1 1 2 1 1 2 1

1 0 1 1 1 1 2 1

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

k

k

k k k k

k k k k

k k k k k k

k k k k k k

B t

B t B t B t B t

B t B t B t B t B t B t

−
−

+ − + −
− − −
+ − + − + −
− − − + −

 
 
 
 
 
 
 
 
 + +
 

+ + + 

r r

r r r

L

 (19) 

Observation of the 3rd and 4th columns of the right hand side of Eqn. (19) leads to the simplification as follows: 
2 2 2

1 1 2 1 1 2 1 1 2 1

0 0 1 1

0 0 0

2 2
1 2 1 1 2 1

1 1

0 0

1

( ) 2 (1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

k k k k k k k k

j j j j i j i j

j j j

k k k k

k j k j k j k j

j j

k

i

t t t t B t B t B t B t B t B t

B t B t B t B t

B

− + − + − + −
− − −

= = =

+ − + −
− + + −

= =

+

     
+ − = + + + +     

     

   
+ +   

   

=

∑ ∑ ∑

∑ ∑

r f r r r

r r

r

L L

1 2
2 1

0 0

( ) ( )
k

k

j i j

i j

t B t
+

−
−

= =

 
 
 

∑ ∑

 (20) 

This derivation is based on the fact that Bernstein polynomials of indices outside the proper range vanishes: i.e., 

( ) 0k

i
B t =  if [ ]0,i k∉ . Finally, if we apply Eqn. (2) into Eqn. (20), we get the equality of the induction step in Eqn. (15): 

1 2 1
1 1 2 1 1 1 1

0 0 0

( ) 2 (1 ) ( ) ( ) ( ) ( ) ( ).
k k

k k k k k k k

i j i j i i

i j i

t t t t B t B t B t t
+ +

− + − + + +
−

= = =

 
+ − = = = 

 
∑ ∑ ∑r f r r r        (21) 

Hence, we can conclude that the induction hypothesis of Eqn. (13) holds for 1n k= + . Q.E.D. 

 

Corollary 1. A Bézier curve ( ) ( )
n

t tb r≡ of degree 2n ≥ can be decomposed into a single rib of degree l  and a 

sequence of ( )n l− fans of degrees from ( 2)n − to ( 1)l − as follows: 

2

1

( ) ( ) ( ) 2 (1 ) ( ), 1 1.    
n

n l k

k l

t t t t t t l n
−

= −

= = + − ≤ ≤ −∑b r r f   (22) 

 

We can derive Corollary 1 by repeatedly applying Theorem 1 to the subsequent ribs. (We skip the rigorous proof.) For 

example, ( )
n
tr  can be decomposed in various ways according the degree of the rib chosen: 

( ) ( )1 2 2 2 3 3 2 3 4( ) ( ) 2 (1 ) ( ) ( ) 2 (1 ) ( ) ( ) ( ) 2 (1 ) ( ) ( ) ( )n n n n n n n n n nt t t t t t t t t t t t t t t t− − − − − − − − −= + − = + − + = + − + +r r f r f f r f f f  (23) 

Specially, the given curve can be decomposed into a line segment 1
( )tr  and a sequence of ( 1)n − fan vectors. We 

have shown this example in Fig. 2 for the cubic case. 

3.2. Surface Case 

Now, we introduce the concept of ribs and fans of a Bézier surface. First, we define some notations and transformation 

rules of control points to derive rib control points and fan control vectors. Then, we present a method to decompose a 

given Bézier surface into a rib and three fans. 
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3.2.1. Notations and Transformation Rules 

First, control points of a Bézier surface are placed in a ( 1) ( 1)m n+ × +  mesh (or a control net), and denoted as 
,

, ,

m n

i j i j≡r b , where 0 i m≤ ≤  and 0 .j n≤ ≤  Then, a Bézier surface of degree ( , ) m n is denoted as follows: 

, ,

,

0 0

( , ) ( , ) ( ) ( )
m n

m n m n m n

i j i j

i j

u v u v B u B v
= =

≡ = ⋅ ⋅∑∑r b r .   (24) 

With these new notations, we express the decomposition of Bézier curves that belong to the given Bézier surface. A 

Bézier curve defined by the control points { }, ,

0, ,, ,m n m n

j m jr rK in the j-th row of the given control net is denoted 

as , ,

, ,

0

( ) ( )
m

m n m n m

j i j i

i

u B u
=

≡ ⋅∑r r
�

. Similarly, a curve defined by the control points { }, ,

,0 ,, ,m n m n

i i nr rK in the i-th column is denoted 

as , ,

, ,

0

( ) ( )
n

m n m n m

i i j j

j

v B v
=

≡ ⋅∑r r
�

. Hence, Eqn. (24) can be expanded as follows: 

, , , ,

, , ,

0 0 0 0

( , ) ( ) ( ) ( ) ( ) ( ) ( )
m n n m

m n m n m n m n n m n m

i j i j j j i i

i j j i

u v B u B v u B v v B u
= = = =

= ⋅ ⋅ = ⋅ = ⋅∑∑ ∑ ∑r r r r
� �

. (25) 

The rib and the fan of the curve ,

, ( )
m n

j ur
�

 are denoted as 1,

, ( )m n

j u−r
�

 and 2,

, ( )m n

j u−p
�

, respectively. According to Theorem 1, 

we can decompose the curve ,

, ( )
m n

j ur
�

 as follows: 

, 1, 2,

, , ,( ) ( ) 2 (1 ) ( ).m n m n m n

j j ju u u u u− −= + −r r p
� � �

  (26) 

Based on Eqn. (5), the control points of the rib 1,

, ( )m n

j u−r
�

is expressed using the control points of the higher rib ,

, ( )
m n

j ur
�

 as 

follows: 

( )( )1, , ,

, , 1,

1
1    for  0 1.

( 1)

m n m n m n

i j i j i j
m i i i m

m

−
+= − − + ≤ ≤ −

−
r r r    (27) 

Based on Eqn. (7), the control vectors of the fan 2,

, ( )m n

j u−p
�

is expressed as follows: 

( )2, , , ,

, 1, , 2,

1
   for  0 2.

2

m n m n m n m n

i j i j i j i j i m−
+ += − + ≤ ≤ −p r r r   (28) 

The rib and fan of the curve ,

, ( )
m n

i vr
�

 is denoted as , 1

, ( )m n

i v−r
�

and , 2

, ( )m n

i v−q
�

, respectively. Hence, the following 

decomposition is possible similarly with Eqn. (26): 
, , 1 , 2

, , ,( ) ( ) 2 (1 ) ( ).m n m n m n

i i iv v v v v− −= + −r r q
� � �

  (29) 

The control points and vectors of the rib and fan are defined similarly with Eqns. (27) and (28) as follows: 

( )( ), 1 , ,

, , , 1

1
1    for  0 1

( 1)

m n m n m n

i j i j i j
n j j j n

n

−
+= − − + ≤ ≤ −

−
r r r   (30) 

( ), 2 , , ,

, , 1 , , 2

1
   for  0 2.

2

m n m n m n m n

i j i j i j i j j n−
+ += − + ≤ ≤ −q r r r           (31) 

In the above, we considered a single transformation of control points along a certain parameter direction, either u or v. 

However, a successive transformation is possible to the previously transformed result regardless of parameter directions 

chosen. Specially, we are interested in following composite transformations that are necessary to derive the ribs and 

three types of fans of a tensor product Bézier surface:  

1. 

rib 1, rib

, 1, 1

rib , 1 rib

m n

m n m nu v

m n

v u

−
− −

−

 → → 
→ → 
→ →  

r
r r

r
         (32) 

2. 

fan 2, rib

, 2, 1

rib , 1 fan

m n

m n m nu v

m n

v u

−
− −

−

 → → 
→ → 
→ →  

p
r p

r
          (33) 

3. 

rib 1, fan

, 1, 2

fan , 2 rib

m n

m n m nu v

m n

v u

−
− −

−

 → → 
→ → 
→ →  

r
r q

q
         (34) 

4. 

fan 2, fan

, 2, 2

fan , 2 fan

m n

m n m nu v

m n

v u

−
− −

−

 → → 
→ → 
→ →  

p
r f

q
         (35) 
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where each arrow means a transformation of control points into those of lower degrees. The transformation type is 

shown above the arrow, and transformation direction below the arrow. Note that the sequence of transformations does 

not affect the result of a composite transformation. The first composite transformation defines a rib and the others 

define three types of fans of a given Bézier surface, which are u-directional, v-directional, and bidirectional fans. An 

example of the composite transformation in Eqn. (32) is applying Eqn. (30) to Eqn. (27). By combining Eqns. (28) and 

(30), Eqns. (27) and (31), and Eqns. (28) and (31), we can get examples of Eqns. (33), (34), and (35), respectively. 

3.2.2. Rib and Its Control Points 

For a given Bézier surface ,
( , ) ( , )

m n
u v u v≡b r , we define the rib control points { },,k li jr of degree (k, l) by transforming the 

control points of the higher degree as follows: 

( ) ( )( ) ( )( )( ), 1, 1 1, 1 1, 1 1, 1

, , 1, , 1 1, 1

1
  for  1  and 1 ,k l k l k l k l k l

i j i j i j i j i jl j k i i j k i i k n l m
k l

+ + + + + + + +
+ + + += − − + + − + ≤ < ≤ <r r r r r  (36) 

Note that, in the above definition, a single rib control point ,

,

k l

i jr is defined by four neighboring control points of the 

higher degree. This definition is the direct consequence of the transformation in Eqn. (32).  

 

A rib ,
( , )

k l
u vr  of degree (k, l) is a Bézier surface of Eqn. (24) defined by the rib control points of the ancestor rib 

1, 1
( , )

k l
u v

+ +
r  of degree (k, l) in Eqn. (36). Regardless of degrees k and l, the four corners of the rib are identical to those 

of the given surface: i.e., { }, , , ,

0,0 0,0 ,0 ,0 0, 0, , ,, , ,k l k l k l k l

k m n n k l m n= = = =r b r b r b r b . Hence, the lowest rib 1,1
( , )u vr is a hyperbolic 

paraboloid (or doubly ruled surface) defined by above four control points. 

3.2.3. Fan and Its Control Vectors 

The results of the three transformations described in Eqns. (33), (34), and (35) corresponds to the control vectors of 

fans of Bézier Surface, which are expressed as follows: 

( ) ( ) ( ), 2, 1 2, 1 2, 1 2, 1 2, 1 2, 1

, 1, , 2, 1, 1 , 1 2, 1

1 1 1
 for  0 2 and 1 1

2 2

k l k l k l k l k l k l k l

i j i j i j i j i j i j i jl j j k n l m
l

+ + + + + + + + + + + +
+ + + + + + +

    = − − + + − + ≤ ≤ − ≤ ≤ −    
    

p r r r r r r , (37) 

( ) ( ) ( ), 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2

, , 1 , , 2 1, 1 1, 1, 2

1 1 1
 for  1 1 and 0 2

2 2

k l k l k l k l k l k l k l

i j i j i j i j i j i j i jk i i k n l m
k

+ + + + + + + + + + + +
+ + + + + + +

    = − − + + − + ≤ ≤ − ≤ ≤ −    
    

q r r r r r r , (38) 

( ) ( ) ( ), 2, 2 2, 2 2, 2 2, 2 2, 2 2, 2 2, 2 2, 2 2, 2

, 1, 1 , 1 2, 1 1, , 2, 1, 2 , 2 2, 2

1 1 1 1
,

2 2 2 2

for 0 - 2 and 0 - 2.

k l k l k l k l k l k l k l k l k l k l

i j i j i j i j i j i j i j i j i j i j

k m l n

+ + + + + + + + + + + + + + + + + +
+ + + + + + + + + + + +

      = − + − − + + − +      
      

≤ ≤ ≤ ≤

f r r r r r r r r r
 (39) 

Control vectors of Eqns. (37) and (38) is defined by six neighboring control points placed in a sub-mesh of size 3 2×  or 

2 3× . Control vectors of Eqn. (39) is defined by nine neighboring control points placed in a sub-mesh of size 3 3× . 

Using these control vectors, we define three types of fans: u-directional fan , ( , )k l u vp , v-directional fan , ( , )k l u vq ,  and 

bidirectional fan , ( , )k l u vf , as vector fields of a tensor product form: i.e., , ,

,

0 0

( , ) ( ) ( )
k l

k l k l k l

i j i j

i j

u v B u B v
= =

≡ ⋅ ⋅∑∑p p . For 

notational convenience, we define a composite fan to simplify the expression of the linear combination of three fans. 
, , 1 1, ,( , )  2 (1 ) ( , )  2 (1 ) ( , )  4 (1 )(1 ) ( , ).k l k l k l k lu v u u u v v v u v uv u v u v+ +≡ − + − + − −φ p q f   (40) 

3.2.4. Theory 

In this section, we describe how to decompose a Bézier surface into a rib and three fans using the transformations 

defined in Eqns. (36)-(39) for the control points and vectors. 

 

Theorem 2. (Rib and Fan of Bézier Surface) A Bézier surface ,( , ) ( , )m nu v u v≡b r of degree ( , )m n  for , 2m n ≥ is 

decomposed into a rib 1, 1
( , )

m n
u v

− −
r  of degree ( )1, 1m n− −  and three fans, 2, 1( , )m n u v− −

p , 1, 2 ( , )m n u v− −
q , and 2, 2 ( , )m n u v− −

f  

as follows:  
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, 1, 1 2, 1 1, 2 2, 2

1, 1 2, 2

( , ) ( , ) ( , )  2 (1 ) ( , )  2 (1 ) ( , )  4 (1 )(1 ) ( , )

( , ) ( , )

m n m n m n m n m n

m n m n

u v u v u v u u u v v v u v uv u v u v

u v u v

− − − − − − − −

− − − −

≡ = + − + − + − −

= +

b r r p q f

r φ
 (41) 

 

Proof> We prove Eqn. (41) by the straightforward evaluation based on the definitions above and two consecutive 

decompositions of Bézier curve along u and v parameters using Theorem 1. First, for a fixed value of u , say 
0u , the 

Bézier curve ,

0
( , )m n u vr  is decomposed as follows based on Eqns. (25) and (26): 

( ), , 1, 2,

0 , 0 , 0 0 0 , 0

0 0

1, 2, 1, 2,

, 0 0 0 , 0 0 0 0 0

0 0

( , ) ( ) ( ) ( ) 2 (1 ) ( ) ( )

( ) ( ) 2 (1 ) ( ) ( ) ( , ) 2 (1 ) ( , ).

n n
m n m n n m n m n n

j j j j j

j j

n n
m n n m n n m n m n

j j j j

j j

u v u B v u u u u B v

u B v u u u B v u v u u u v

− −

= =

− − − −

= =

= ⋅ = + − ⋅

   
= ⋅ + − ⋅ = + −   
   

∑ ∑

∑ ∑

r r r p

r p r p

� � �

� �

 (42) 

Since Eqn. (42) holds for any value of u, the following equation holds: 
, 1, 2,
( , ) ( , ) 2 (1 ) ( , )

m n m n m nu v u v u u u v− −= + −r r p .  (43) 

Now, we fix the value of v  as 
0v , and evaluate the Eqn. (43) as follows: 

1 2
, 1, 2, 1, 1 2, 2

0 0 0 , 0 , 0

0 0

( , ) ( , ) 2 (1 ) ( , ) ( ) ( ) 2 (1 ) ( ) ( )
m m

m n m n m n m n m m n m

i i i i

i i

u v u v u u u v v B u u u v B u
− −

− − − − − −

= =

   
= + − = ⋅ + − ⋅   

   
∑ ∑r r p r p

� �
 (44) 

where 2,

, ( )m n

i v−p
�

denotes Bézier vector fields defined by the i-th column of control points of 2, ( , )m n u v−p . The term in the 

first parenthesis of Eqn. (44) is further evaluated as follows based on Eqn. (29): 

( )
1 1

1, 1 1, 1 1, 2 1

, 0 , 0 0 0 , 0

0 0

1 1
1, 1 1 1, 2 1

, 0 0 0 , 0

0 0

1, 1 1

0 0 0

( ) ( ) ( ) 2 (1 ) ( ) ( )

( ) ( ) 2 (1 ) ( ) ( )

( , ) 2 (1 )

m m
m n m m n m n m

i i i i i

i i

m m
m n m m n m

i i i i

i i

m n m

v B u v v v v B u

v B u v v v B u

u v v v

− −
− − − − − − −

= =

− −
− − − − − −

= =

− − −

⋅ = + − ⋅

   
= ⋅ + − ⋅   
   

= + −

∑ ∑

∑ ∑

r r q

r q

r q

� � �

� �

, 2

0( , ).n u v−

 (45) 

The term in the second parenthesis of Eqn. (44) is further decomposed as follows: 

( )
2 2

2, 2 2, 1 2, 2 1

, 0 , 0 0 0 , 0

0 0

2 2
2, 1 1 2, 2 1

, 0 0 0 , 0

0 0

2, 1 2

0 0 0

( ) ( ) ( ) 2 (1 ) ( ) ( )

( ) ( ) 2 (1 ) ( ) ( )

( , ) 2 (1 )

m m
m n m m n m n m

i i i i i

i i

m m
m n m m n m

i i i i

i i

m n m

v B u v v v v B u

v B u v v v B u

u v v v

− −
− − − − − − −

= =

− −
− − − − − −

= =

− − −

⋅ = + − ⋅

   
= ⋅ + − ⋅   
   

= + −

∑ ∑

∑ ∑

p p f

p f

p f

� � �

� �

, 2

0( , )n u v−

 (46) 

By applying Eqns. (45) and (46) to Eqn. (44), and replacing 
0v  by v , we can derive the desired Eqn. (41). Q.E.D. 

 

Corollary 2. A Bézier surface ,( , ) ( , )m nu v u v≡b r  of degree ( , )m n  for , 2m n ≥  can be decomposed into a single rib of 

degree (m-k, n-k) and a sequence of k composite fans as follows: 

, , 1 , 1

1

( , ) ( , ) ( , )  for 1 MIN( , ) 1
k

m n m k n k m k n k

i

u v u v u v k m n− − − − − −

=

= + ≤ ≤ −∑r r φ . (47) 

As a direct consequence of Theorem 2, Corollary 2 states that a Bézier surface can be further decomposed into one rib 

of a lower degree and a sequence of composite fans. For example, a bi-cubic Bézier curve 3,3
( , ) ( , )u v u v≡b r  (as in Fig. 

5) can be decomposed as follows: 
3,3 2,2 1,1 1,1 1,1 0,0
( , ) ( , ) ( , ) ( , ) ( , ) ( , )u v u v u v u v u v u v= + = + +r r φ r φ φ         (48) 

4. EXAMPLES 

In this section, we present geometric design examples based on the theories proposed in this paper. (The details are 

explained in the captions of each figure.) Fig. 3 and Fig. 4 show typical patterns of ribs and fans for Bézier curves of 

degrees are 9 and 10. Fig. 5 shows an example of ribs and fans of a simple Bézier surface of degree (3,3). (More 

examples can be found in the web site[6].) 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
Fig. 3. A Bézier curve of degree 9 with the shape of a hand-held cooling fan: (a) given curve 9( ) ( )t t≡b r  and its control points; (b) the 
control points of all the lower ribs whose color becomes red as its degree decreases; (c) a sequence of ribs defined by rib control 
points of (b); (d) fan lines generated by connecting sampled fan vectors of a sequence of scaled fans; (e) the overlay of (c) and (d); 
and (f) fan curves whose control points are defined by the fan lines of (d). 

 

  
   

(a) (b) (c) (d) (e) 
 
Fig. 4. A Bézier curve 10( ) ( )t t=b r  with the shape of the alphabet S. In this example, the two lowest ribs coincide due to the 
symmetry of the shape. Hence, in (c), there appear 9 ribs rather than 10: (a) the given curve and its control points; (b) rib control 
points; (c) ribs; (d) ribs and fan lines; and (e) fan curves. 
 
 

   
(a) (b) (c) 
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(d) (e) 

  
(f) (g) 

 
Fig. 5. A bi-cubic Bézier surface 3,3( , ) ( , )u v u v=b r : (a) the shape of the given surface. White curves denote iso-curves at u=0.5 and 
v=0.5; (b) the rib 2,2 ( , )u vr and sampled vectors of the composite fan 1,1( ,0.5)uφ ; (c) the rib 1,1( , )u vr and sampled vectors of the 
composite fan 0,0 ( ,0.5)uφ ; (d) overlay of (a), (b), and (c) including ribs and fans; (e) overlay of (a), (b), and (c) without fans; (f) the rib 
2,2 ( , )u vr and sampled vectors of three fans 1,2 ( ,0.5)up , 2,1( ,0.5)uq , and 1,1( ,0.5)uf in red, green, and blue arrows, respectively; and (g) 

the rib 1,1( , )u vr and sampled vectors of 0,1( ,0.5)up , 1,0 ( ,0.5)uq , and 0,0 ( ,0.5)uf . 

5. CONCLUDING REMARKS 

We have presented new geometric concepts of Bézier curves and surfaces: ribs and fans. We have shown that a Bézier 

curve of degree n is decomposed into a rib of degree (n-1) and a fan of degree (n-2), and a Bézier surface of degree (m, 

n) into a rib of degree (m-1, n-1) and three fans of degrees (m-1, n-2), (m-2, n-1), and (m-2, n-2), respectively. We 

have also presented the methods to transform the control points of a given Bézier curve or surface into its rib control 

points and fan control vectors of lower degrees. 

 

Using the ribs and fans of Bézier curves and surfaces, we can design interesting geometric patterns resembling the 

features of the given curves and surfaces. The presented methods can be used in design applications that require 

natural and aesthetic patterns such as flowers, leaves, and sea shells[6]. 

 

As ribs and fans are globally defined over given Bézier control points, there is some limitation to apply the proposed 

method directly to a piecewise curve or surface. When we apply the decomposition to each segment of the piecewise 

curve or surface, it may result in unwanted, discontinuous piecewise ribs and fans, which are unavoidable with the 

current methods presented in this paper. Consideration of ribs and fans for a B-spline curve or surface will be an 

interesting further research as well as rational extensions. 
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