
662

Interior Ball-Pivoting on Point Clouds for O�setting Triangular Meshes

Tathagata Chakraborty1

1HCL Technologies, tathagata.chakr@hcl.com

Corresponding author: Tathagata Chakraborty, tathagata.chakr@hcl.com

Abstract. Triangular mesh o�sets are useful for hollowing 3D models, generating tool paths,
for clearance analysis and robot path planning among other applications. Smaller o�sets are
also used to account for shrinkage in casting and rapid prototyping. It is however di�cult
to compute mesh o�sets that are simultaneously accurate, defect free and preserve sharp
corners.

The present work includes a brief survey of common mesh o�setting techniques and
describes our easy to implement sampling-based o�set method that preserves sharp corners.
Our approach consists of �rst approximating the mesh o�set using a uniformly distributed
point cloud that has been trimmed to eliminate self-intersections. The trimmed point cloud
is then triangulated using the Ball-Pivoting Algorithm (BPA) modi�ed to pivot the ball in
the interior of the point cloud. We show that the BPA is a robust algorithm when applied to
a uniform point cloud. While our method does not always guarantee defect-free meshes, it is
only because we need a more robust method for estimating the normals at the trim boundary
of sharp corners.

Keywords: o�set, triangular mesh, point cloud, surface reconstruction
DOI: https://doi.org/10.14733/cadaps.2022.662-676

1 INTRODUCTION

Mesh o�sets are useful for tolerance analysis, clearance testing, hollowing [18], modeling of coatings and
etchings, and of shrinkage in casting and rapid prototyping, cutter path generation for NC machine tools [15],
and path planning for robot motion. However, o�sets in general are di�cult to compute in two dimension and
in 3D the problem is even more challenging [26].

There are three broad category of techniques for o�setting meshes. In the �rst category are techniques
that obtain the o�set by computing the Minkowski sum of the mesh with a sphere of o�set radius [31]. A
constructive geometry approach like this reduces the problem to computing a large number of booleans [30].
However computing 3D booleans is also not a trivial problem [3]. Moreover numerical instability is expected
when computing booleans between the cylinder, spheres and prisms of the Minkowski sum since these will
often intersect tangentially when calculating an o�set.

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://orcid.org/000-0000-2752-2533
mainto:tathagata.chakr@hcl.com
mailto:tathagata.chakr@hcl.com
http://www.cad-journal.net


663

Figure 1: Left: Original mesh with trimmed point cloud at o�set distance; Right: Triangulation of the o�set
point cloud using the modi�ed BPA

The second category comprises techniques where either the triangles individually or the vertices indepen-
dently are moved along a normal to create the o�set. When the triangular faces are moved individually,
they invariably create self-intersections in concave regions and gaps in the convex regions [14] [32]. These
self-intersections then need to be trimmed and the gaps patched with cylindrical and spherical surfaces. Al-
ternatively, where the vertices are moved independently while maintaining the topology of the original model,
the o�set approximation becomes increasingly inaccurate for larger o�sets [28].

A third group of techniques are based on volumetric or surface sampling followed by surface reconstruction
[24] [31] [19] [21]. Here the o�set surface is approximated using a distance �eld or a point cloud and an
appropriate surface reconstruction algorithm is used to triangulate the o�set surface. In explicit surface
reconstruction the local surface connectivity is estimated and the space between points interpolated to create
triangles. Implicit approaches on the other hand require a signed distance �eld and use the Marching Cubes
[22] or the Dual Contouring [12] algorithm or variants of these to triangulate the surface.

1.1 Our Approach in Brief

Our approach belongs to the third group and involves uniform surface sampling and explicit reconstruction.
Uniform surface sampling is harder than it appears, and surface reconstruction o�ers a variety of possible
explicit and implicit approaches. Explicit surface reconstruction techniques are often elegant and easy to
implement, but they do not guarantee a watertight triangulation. Implicit techniques on the other hand
guarantee watertight meshes, but they are not very accurate [9] - their accuracy depends on the voxel resolution
used which is limited by available memory. In spite of this, implicit surface reconstruction techniques are more
popular because they robustly handle noise and non-uniformity typically present in device acquired point-cloud
data [13].

We use an explicit surface reconstruction technique called the Ball-Pivoting Algorithm (BPA) [2] which is
ideal for our arti�cially constructed point cloud that contains no noise. Our primary interest was in computing
relatively small, accurate and NC machinable positive o�sets to account for shrinkage during casting. It was
therefore necessary to compute and preserve sharp concave corners accurately. It is generally more di�cult to
preserve sharp features using implicit approaches [17] [12].

In brief, we �rst compute a uniform point cloud approximating the mesh o�set, then trim it to remove
self-intersections and �nally use the BPA to triangulate the trimmed point cloud (see Fig. 1). The rest of
the paper describes the process in detail and is organized as follows. We start with an brief survey of mesh
o�setting techniques in Sec. 2. In Sec. 3 we describe how to generate a uniform point cloud approximation of

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


664

the o�set, including how to trim it of self-intersections and how to compute extrapolated trim boundary points
for accurately reconstructing sharp concave corners. Sec. 4 describes the Ball-Pivoting Algorithm (BPA),
our modi�cations and some limitations. Lastly in Sec. 5 we analyze the complexity and performance of the
algorithm. Sec. 6 presents and discusses some results. Sec. 7 concludes our discussion with directions for
future research.

2 BRIEF SURVEY OF EXISTING TECHNIQUES

O�sets of synthetic curves and surfaces have been investigated since the early days of CAD/CAM (see [26] and
[23] for early surveys). As noted in [26] computing the o�set is not easy and most research has been focused
around �nding good approximations. Early methods used a combination of analytic and iterative techniques,
but we also see investigations into discrete and sampling-based methods (see [16], [6] and [27]). Sampling
and subdivision based techniques have remained essential for computing o�sets ever since.

Although a triangular mesh is already a sampled and discretized surface it is thereby still no easier to o�set.
Negative o�sets can be used to hollow 3D models to make them faster to print using rapid prototyping. The
idea in an early solution [18] was to move the vertices inward by the o�set distance along their average normal
to create the negative o�set. This would often generate self-intersections. However, instead of resolving these
intersections in 3D, the model is sliced along the material deposition direction and the self-intersections are
then corrected in 2D which is much easier to do. Similar techniques are used for resolving self-intersection
when computing o�set-based tool paths (see [15]). These techniques however cannot be readily extended to
compute uniform o�sets and are therefore limited in their application.

A more complicated technique that allows for both positive and negative o�sets moves the vertices in
the direction of the average normal [28] or along multiple normals [14]. In [28] the topology is preserved as
is by moving the vertices independently along the average normal. No gaps and only rare self-intersections
are thereby created in the o�set but the o�set accuracy decreases rapidly for larger o�set values. Somewhat
di�erently in [14] each convex vertex is o�set along multiple normals creating gaps which are then patched
with cylindrical and spherical surfaces. In both cases however the self-intersection problem is left unresolved
and delegated to downstream processes.

Volumetric and sampling based methods have become increasingly popular because they avoid the need for
complex intersections and heuristics. The o�set of a 3D polygonal model can be construed as the Minkowski
sum of the model with a sphere of o�set radius. Computing the Minkowski sum can be very expensive, however
in [31] a fast approximation of the Minkowski sum is computed by combining multiple signed distance �elds
over a voxel grid and then the Marching Cubes iso-surface extraction algorithm is used to create the o�set
mesh. In [5] a voxel grid and a point sampling technique are used to identify surface voxels in the o�set and
then the Dual Contouring algorithm is used to reconstruct the o�set mesh. In [21] a similar technique is used
where the space is sampled in a uniform grid, intersections between the o�set surface and the grid edges are
computed and a modi�ed version of the Dual Contouring algorithm is used to extract the o�set mesh surface.
The method presented in [4] is also similar.

The techniques in [31] [5] [21] [4] all rely on an implicit surface reconstruction technique. Reconstruction
from an implicit representation gives a watertight model, although it may sometimes contain self-intersections.
Implicit techniques however take up a lot of memory and thus do not scale well with the size of the model.
Larger voxel grids and �ner octrees require exponentially more memory and even when such memory is available
the algorithm can become very slow due to memory access overheads.

Explicit surface reconstruction techniques on the other hand are not popular because they do not work well
on noisy and non-uniform point cloud data. An explicit technique can however handle very large models without
running out of memory. Unfortunately, not all explicit reconstruction technique are robust and they usually
cannot guarantee watertight meshes. However we show that the BPA, which is an explicit reconstruction
algorithm, performs robustly given a uniformly distributed point cloud as input.

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


665

Figure 2: Left: Point cloud using random point distribution; Center: Point cloud using pseudo-random point
distribution; Right: Point cloud using the Poisson-disk decimator

3 POINT-CLOUD GENERATION

Point-clouds are typically acquired using 3D scanners and sometimes generated from the information extracted
from 2D depth cameras. In our case however the point-cloud data is arti�cially generated and therefore has
very di�erent characteristics. Point clouds acquired using 3D scanners have a lot of noise and non-uniformity.
Preprocessing techniques to remove the noise from the data are frequently employed, and a reconstruction
algorithm is chosen which it is invariant to some amount of noise present in the data.

Our o�set point cloud is generated by sampling the surface of the model directly and moving the points
normal to the surface. This creates gaps in the convex corners which are patched using point cloud approx-
imations of cylindrical and spherical surfaces. These patch surfaces are created conservatively to cover a
surface area somewhat larger than the actual gap since at complex corners it is di�cult to accurately estimate
the extent of the required patch surface beforehand. In concave regions and near the boundaries where the
patch surfaces meet there are therefore self-intersections. These self-intersections are identi�ed and trimmed
to create an accurate and noise-free point cloud.

Traditionally mesh sampling has been used for remeshing and to reduce the dimension of the problem for
statistics and machine learning algorithms. Our implementation required a uniform mesh sampling technique
with feature preservation and was inspired from these studies [8] [11].

3.1 Uniform Point Cloud Generation

We use the Ball-Pivoting Algorithm (BPA) to triangulate the o�set point cloud [2]. While the BPA is quite
elegant and simple, it has not been widely investigated possibly because the algorithm was, until recently,
under the shadow of a patent which discouraged broad usage. Our early experiments showed that the BPA
works well given a fairly uniform point cloud. While it is theoretically possible execute the BPA iteratively
using balls of increasing radii to triangulate a non-uniform point cloud, practically this is inadvisable because it
is di�cult to predetermine the number and range of ball radii required for these iterations. Highly non-uniform
point clouds may require too many iterations of the algorithm to triangulate fully.

Generating a globally uniform point distribution however is harder than it initially appears. Real-world 3D
models are non-uniformly tessellated which makes it di�cult to ensure a globally uniform point density when
sampling each triangle independently. Locally this is because the boundary between neighboring triangles get
approximated twice and globally because the model is likely to contain very large triangles as well as small
and sliver triangles, which results in regions that have a much higher concentration of boundary edges and
therefore also a higher density of points.

Generating a uniform point distribution inside a triangle is equally di�cult. A random sprinkling of points
inside a triangle is far from uniform and not ideal for a triangulation algorithm (see Fig. 2). A more appropriate

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


666

method is to use a quasi-random distribution of points. Quasi-random distributions [29] give good results for
most triangles but show aliasing e�ects on narrow triangles. Another method is to overlay a regular grid of
points on top of the triangle and discard the points that fall outside the triangle. However, the triangulation
resulting from such a distribution looks sterile. Triangulation of a quasi-random distribution on the other hand
is aesthetically more pleasing.

The number of points generated for a triangle is proportional to its area. It is therefore possible that no
points are generated for very small triangles. This is not a problem for an isolated triangle, but when sizeable
regions are covered by a large number of small or sliver triangles, the point distribution in these regions may
become sparse. We therefore also sample the triangle edges and include the vertices of each triangle in the
point cloud.

3.2 Poisson-disk Sampling

To get a globally uniform point distribution we �rst generate a denser point cloud and then decimate it using
Poisson-disk sampling [7] (see Fig. 2). We implemented a randomized parallel version of the algorithm which
is similar to the constrained sampling method described in [8]. We draw random points from the original
point cloud, keep that point and remove the points in the r-neighborhood of the point where r is the desired
resolution of the point cloud. The random selection of points is necessary to avoid any aliasing e�ects and
it produces aesthetically pleasing triangulation. Our implementation of the algorithm is given in pseudo-code
below.

Algorithm 1: Parallel Poisson-disk sampling

Input: original point list and decimation resolution r
Output: decimated points list
while points remaining in the original list do

pick a random point from the list;
�nd the points in the r-neighborhood of this point;
add the picked random point to the decimated point list;
remove the picked point and the points in the r-neighborhood from the original list;

end

Generating the dense point cloud takes time proportional to the surface area of the mesh. For every triangle
we generate quasi-random points proportional to the area of the triangle. The number of points to generate
per unit area is determined based on the maximum chord tolerance that is acceptable in the output o�set
mesh. For a typical mesh several million points are generated, and often the time taken to generate the points
is overshadowed by the time taken to allocate and access the memory for storing them. Memory allocation
and access can be made more e�cient by predetermining the total memory required and preallocating it in
right sized chunks. The memory footprint of our method is driven by the size of the point cloud but even for
large models it rarely exceeds the gigabyte mark.

Poisson-disk decimation requires O(n logm) time. During decimation we have to go through a subset of
points in the point cloud and for each point �nd the points in its r-neighborhood which takes on an average
O(logm) time, where m is the size of the mesh space when discretized using a resolution r.

3.3 Trimming Self-Intersections

Before Poisson-disk decimation, we trim the self-intersections in the point cloud. Additionally, we also explore
the neighborhood of invalid points (i.e. points in the self-intersecting regions) to �nd points on the boundary
of the trimmed surfaces (see Sec. 3.4). To trim the self-intersections we �nd the closest distance of each point
to the input mesh. To do this e�ciently we overlay the model space with a o�set distance resolution voxel

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


667

Figure 3: Left: Triangulation with no trim points at sharp corners; Right: Triangulation with trim points

grid, where each voxel stores the list of triangles intersecting with the voxel. For every point in the o�set
point cloud, we �nd the voxel in which it contained, and then �nd all the triangles passing through the 1-voxel
neighborhood of this voxel. Next we compute the closest distance of the o�set point under consideration from
the set of the triangles found passing through the 1-voxel neighborhood. If the closest distance is less than
the o�set distance we discard the point.

This requires O(n logm) time. We have to go through all the n points to determine if they are valid and
for each point �nd the voxels in the neighborhood of the point which takes on an average O(logm) time
where m is the number of voxels in the grid. The algorithm is given in pseudo-code below where both the for
loops can be executed in parallel.

Algorithm 2: Trimming Self-Intersections

Input: original point list with self-intersections and voxel grid
Output: point list without self-intersections
for each point in the original point list do

�nd the triangles in the 1-voxel neighborhood of this point;
for each triangle found in the neighborhood do

�nd the minimum distance of the point to the triangle;
if minimum distance is less than o�set distance then

remove the point from the list;
end

end

end

Trimming self-intersections and �nding exact boundary points are the most computationally expensive
steps in our approach. Most of the time is taken up in computing the minimum distance of a point from
the mesh. In practice most of the points are already exactly on the o�set surface and only a much smaller
subset of the points are within the self-intersecting regions. For points that are already on the o�set surface
it is not only redundant to compute the minimum distance from the mesh but it is also computationally more
expensive since for these points we need to compute the distance to each and every one of the neighboring
triangles before we can be sure that they are valid.

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


668

Figure 4: Finding trim boundary points (red) by binary searching along orthogonal directions from invalid
points (purple)

A quick method of �ltering out the points that are already on the o�set surface is to render the points as
surfels [25] from di�erent directions with the depth bu�er and depth testing enabled and then to note which
points get rendered. The points must be rendered with a radius slightly greater than the point cloud resolution
to ensure that the self-intersection points cannot be seen through the gaps. The points which are rendered
on the framebu�er can then be �ltered out as valid. The percentage of valid o�set points thus detected will
depend on the geometry of the model and the number of directions from which the point cloud is rendered.
In our experiments around 70-80% of the valid points are detected when the point cloud is rendered from the
positive and negative standard axis directions.

3.4 Finding Exact Boundary Points

During trimming we explore the neighborhood of each invalid point to see if we can �nd a valid point nearby
that lies on the trim boundary. Finding points on the trim boundary is essential for preserving sharp concave
corners in the o�set. Without these trim boundary points and a surface reconstruction method which includes
them, the triangulation in the concave corners will be visibly jagged (see Fig. 3). Jagged corners are problematic
in domains like manufacturing and especially for tool path generation.

Algorithm 3: Finding Exact Trim Boundary Points

Input: original point list with self-intersections
Output: boundary trim point list
for each point in the original point list do

�nd if the point is valid;
if point in not valid then

�nd two orthogonal directions on the plane tangential to the o�set at the point;
create four segments of resolution length along these two directions;
for each segment with a valid end point do

try to �nd nearest valid point on the segments using binary search;
if valid point found then

add point to the boundary trim point list;
end

end

end

end

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


669

As described in the algorithm above, to �nd these trim points, we do a binary search along multiple line
or arc segments passing through each invalid point to discover the nearest valid points if any. If found these
valid points are appended to the point cloud and marked as trim points. In our current implementation we
choose two arbitrary orthogonal directions and mark o� four small segments of length equal to the point
cloud resolution on both sides of these orthogonal directions. If the end points of any of these segments
turns out to be valid, we do a binary search for the nearest valid points along that segment (see Fig. 4).
For invalid points that originate from the original triangles we extend line segments lying on the o�set plane
and along the orthogonal directions. For invalid point originating from cylindrical patch surfaces we extend a
line segment along the cylindrical axis and extend an arc orthogonal to the line both lying on the cylindrical
surface. Similarly for invalid points originating from spherical patch surfaces.

Only invalid points near the trim boundary are useful for �nding valid trim boundary points. We can
therefore improve performance by �ltering out invalid points which are too far from the o�set envelop. Our
method also �nds trim boundary points on convex corners which result in trim points on smooth boundaries.
These trim points are not useful for the preservation of sharp corners. Another possible improvement therefore
is to restrict the computation of trim boundary points to those entities (triangles, edges or vertices) among
whose connected neighbors we can �nd at least one concave entity. However, this would fail to capture trim
points on concave corners created by globally distant intersections.

3.5 Limitations

We would like to apply Poisson-disk sampling only on the geodesic neighborhood of a point on the o�set
surface, however our implementation removes points from the volumetric r-neighborhood. In narrow channels
and small holes therefore, where two or more surfaces are close together, the Poisson-disk sampling method
can remove unintended points during decimation. A partial solution to this problem is to only remove those
points from the r-neighborhood whose normals have a positive dot product with the normal of the random
point selected for preservation. In spite of this, sometimes narrow channels and small holes may have ugly
triangulations due to the sparseness of the point cloud in these regions. A more adaptive sampling technique
needs to be investigated to resolve these issues.

4 TRIANGULATION WITH MODIFIED BPA

Point cloud reconstruction has been extensively studied (see [20] [1] [13] for recent surveys). Di�erent tech-
niques can be used depending on how unevenly distributed, noisy or sparse the point cloud is. We chose
the Ball-Pivoting Algorithm (BPA) because of its robustness and simplicity. Lack of available data on the
e�ectiveness of the BPA was a deterrent but it did not dampen our curiosity for exploring a robust technique
the patent on which had just expired. More importantly, the BPA had heuristic steps which could be tweaked
and extended.

In the sections below we describe our implementation of the BPA which is somewhat di�erent from that
proposed in the original paper [2] and in part inspired from the implementation detailed in [10]. We explain
our modi�cations to the BPA and highlight limitations with the method. We also brie�y describe a parallel
implementation of the BPA.

4.1 Ball-Pivoting Algorithm

We start by selecting a random seed point and then �nd a point nearby which is not already interior to the
triangulation (i.e. either it is outside the triangulation or on its boundary). These two points form the seed
edge about which we pivot a ball of a prede�ned radius, and try to �nd another point in the neighborhood of
the seed edge such that we can get the ball on rest on these three points. If certain conditions are met then
we create a triangle using these three points and add it to our triangulation.

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


670

We maintain a half-edge data-structure to store the triangulation. A half-edge data-structure enables us
to quickly check whether a vertex or an edge is interior to the triangulation or on the boundary. In general
for a closed solid all pivots must succeed. However sometimes a pivot fails because there are no nearby points
close enough to create a triangle with the ball radius with which we are pivoting. A range of balls are therefore
used and the BPA is executed repeatedly on the failed pivot edges using balls of increasing radii till there are
no edges left to pivot on.

Algorithm 4: The Ball Pivot Algorithm

Input: o�set point cloud
Output: triangulated o�set mesh
�nd a seed pivot edge and insert it into the stack;
while there are pivot edges remaining in the stack do

pop an edge from the stack;
if edge is not an interior edge then

�nd points in the 2r-neighborhood of this edge;
for each point in the neighborhood do

if point is not an interior point in the triangulation then

see if we can rest the ball on these three points;
if we can rest the ball then

check if there are any other points inside the rested ball;
if no points are inside the ball then

create a triangle using these three points and;
compute the dot product of the triangle normal and the vertex normals;
if the dot produts are all positive then

add the triangle using these three points to the triangulation;
end

end

end

end

end

end

end

The details of our ball pivot implementation are shown in the algorithm above. Given the edge about
which to pivot, we �nd its mid-point �rst, and then �nd points in the 2r-neighborhood of this point (where r
is the resolution of the point cloud). We then sort these points in ascending order of distance from the pivot
mid-point. We iterate over this sorted list of points till we �nd a point on which we can rest a sphere of the
ball radius, such that no other points in the neighborhood lie inside this sphere.

While iterating through the list of points we check if the point is already a part of the triangulation, in
which case we additionally check if the point is an interior point or a point on the boundary of the triangulation.
In case the point in an interior point (we can �nd this out by checking if all the coedges connected with the
vertex for this point have partner coedges), we ignore the point. If we �nd a non-interior point on which we
can rest the ball then we create a new triangle with the pivot edge and the found point. The edges of the this
triangle become new potential pivot edges, which we maintain in a stack. We keep pivoting on the edges from
the stack edges till the stack is empty. While popping edges from the stack we check if the edge is interior to
the triangulation (we can do this by checking if both the coedges of the edge are present) and only pivot on
the edge if the edge is boundary edge. This edge check can also be performed before pushing an edge onto
the pivot edge stack.

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


671

Figure 5: BPA ball radius r (purple) must be less than o�set distance d so that it can access all points when
rolling in the interior of the point cloud

4.2 Modi�cations to the BPA

When checking whether a ball of a given radius can be balanced on the three points, two other checks are
performed. First we also check if the dot products of the normal of the triangle and the vertex normals of the
three points of the triangle are all positive. Secondly we check that no other neighboring point is inside the
sphere when it is resting on the three points. Both these checks may fail, especially at sharp concave corners.
Our initial attempts at preserving sharp concave corners therefore revolved around heuristic relaxation of these
checks in the neighborhood of such corners. However it was di�cult to handle all possible cases using such
heuristics.

Our main insight into resolving this issue was to roll the ball in the interior of the point cloud instead of
outside it as it typically done. This converts sharp concave corners into convex corners, which are easier to
handle. This choice forces us to use a ball radius less than the o�set distance (see Fig. 5), which in turn
requires us to use a higher point cloud density, but in practice this is not a problem. Rolling the ball inside the
point cloud also enables us to properly triangulate narrow channels and gaps which the standard BPA, and
most other surface reconstruction technique for that matter, cannot easily handle.

Rolling the ball inside the point cloud however doesn't completely resolve the issue. The BPA can handle
sharp convex corner only if the points at the trim boundary forming the sharp corner have properly averaged
and accurate normals. Otherwise the positive dot product check of the triangle normal with the vertex normals
is likely to fail resulting in gaps and irregular triangulation in these regions. We try to accurately estimate
the normal of the trim point by setting it to the average of the neighborhood point normals, taking care to
count approximately equal number of points in the various surrounding directions to eliminate any bias. If
the normals are estimated accurately then it is impossible for a vertex normal to have a negative dot product
with the �tted triangle. However in very sharp corners accurate normal estimation is di�cult and this results
in small gaps in the triangulation.

4.3 Problems with Very Sharp Corners

Very sharp corners typically occur when two opposite o�set surfaces just meet each other, for example in the
case of a narrow channel with width twice the o�set distance (see Fig. 6). In these cases it becomes very
di�cult to estimate the normal of the trim points on the boundary of the intersecting surfaces based solely on
the local neighborhood of the point.

Normal estimation in general is a di�cult problem. Most of the limitations in our approach are caused by
erroneous normal estimation in such borderline cases. Inaccurate normals are a serious problem since they lead
to small gaps and jagged triangulation in the o�set mesh. Often the gaps are small enough that a triangulation

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


672

Figure 6: Left: Model with a narrow channel of width 4; Right: O�set at 2 units with problems resulting
from inaccurate normal estimation

can be forced in these regions using a simple hole patching algorithm. However, the jagged triangulations are
more di�cult to �x. We are still investigating how to robustly resolve this issue.

4.4 Parallel BPA

The BPA can be parallelized by splitting the point cloud into multiple exclusive regions along its major axis.
The number of split regions will depend on the number of available processors cores. The BPA can then
be executed on each of these regions in parallel to generate as many triangulations. Since these regions will
not be watertight, in each case we will also end up with a list of failed pivot edges. The multiple half-edge
triangulation data structures are easily merged into one. The BPA is then run on all the failed pivot edges
with the whole of the point data to patch the gaps between the di�erent triangulations. In case we have a
large number of parallel processors this two step process can be further broken down into a multi-step process
where each intermediate step involves a parallel merging of two or more adjacent split regions.

With the parallel BPA we can sometimes get very narrow triangles and triangular gaps in the joins between
the split triangulations. These narrow gaps require a much larger ball to triangulate. To patch these we need
a separate triangular hole patching step which can force the triangulation in these gaps. However note that
this problem does not occur with the serial version of the algorithm.

4.5 Negative O�sets

We were only interested in computing relatively small positive mesh o�sets to account for shrinkage in casting
and for generating NC machinable tool paths for such cast products. Our method therefore works only for
computing positive o�sets. The whole idea of rolling a ball in the interior of the point cloud which converts
hard to triangulate sharp concave corners into convex corners, does not hold when computing negative o�sets.
Negative o�sets will contain both sharp convex and concave corners no matter on which side of the point
cloud we roll the ball. One possible way of extending the BPA so that it preserves both sharp concave and
convex corners would be to roll the ball on both sides of the point cloud and in each side take care to avoid
rolling over sharp concavities. While this seems theoretically possible, such an approach will surely involve
several more and di�erent challenges.

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


673

Figure 7: Left: Performance scaling with model size with number of triangles �xed; Right: Performance
scaling with number of triangles with model size �xed

5 PERFORMANCE CHARACTERISTICS

In general sampling-based methods do not scale well with model size. As the size of the model increases
the point cloud density required to maintain the same tolerance increases quadratically (see Fig. 7). Even
with a low overall complexity of O(n log n), but with n increasing quadratically the algorithm slows down
signi�cantly with increasing model size. However since all the steps in our approach can be easily parallelized,
we can signi�cantly improve the runtime of the algorithm when executing on modern multi-core processors.
This brings down the overall time taken to a reasonable amount for moderately sized models, but it is still too
large for integration into interactive applications.

The algorithm scales only linearly with the number of triangles (see Fig. 7), but in our case this is still
bad. Typically sampling-based methods should be invariant to the density of the underlying representation,
since once the original surface has been sampled there is rarely any need to refer back to it. We however need
to access the original mesh surface to trim the self-intersection in the point cloud and to compute the trim
boundary points and this creates an overall linear dependency. The additional linear dependency compounds
the performance problem since an increase in the size of a model is usually accompanied by an increase in
triangle count.

6 RESULTS

Fig. 8 shows some results from our method. Note that our method produces aesthetically pleasing Delaunay-
like triangulation. Some minor gaps at concave corners can be seen (marked in red) in both cases and these
are due to inaccurate normal estimation and are typically representative of the type of problem encountered
with our method. The time taken is half a minute in both cases. In general, given a �xed tolerance and thus
a �xed point cloud resolution, the time taken by the algorithm can vary between a few seconds going up to a
few minutes for large complicated models.

7 CONCLUSIONS

Robustly o�setting triangular meshes is a di�cult problem. A Minkowski sum approach can work but requires
a robust mesh boolean algorithm, which is equally di�cult to implement. Commonly used are volumetric
approaches where the o�set is approximated by a signed distance �eld and reconstructed using an implicit
surface reconstruction algorithm. However the accuracy of these volumetric approaches depends on the voxel
resolution and increasing accuracy requires exponentially more memory. In this paper we have described an
unorthodox technique for computing accurate o�sets of triangular meshes using the relatively uncommon

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


674

(a) Around 41k triangles, size 22x21x23, time taken to o�set by 3 units was around 36 seconds

(b) Around 57k triangles, size 34x113x113, time taken to o�set by 3 units was around 20 seconds

Figure 8: Some examples of o�set on non-trivial parts

Ball-Pivoting Algorithm for surface reconstruction. We have shown how the method can be extended to
overcome inherent limitations of the algorithm and to preserve sharp concave corners in the o�set. Our results
indicate that the method performs robustly given a uniform point cloud with reasonably accurate normals
at trim boundaries. Our method requires much less memory as compared to volumetric techniques, however
performance remains a problem for very large models and a more robust normal estimation technique needs
to be found.

ACKNOWLEDGEMENTS

This research was undertaken as a part of the CAMWorks project. CAMWorks is a popular CAM software used
by small and medium sized workshops and industries. Thanks to Vivek Govekar and Nitin Umap, product and
project managers respectively for CAMWorks for providing us the opportunity to explore and prototype the
ideas presented here. Thanks to Swadhin Bhide for suggesting various research directions, and to Hariharan
Krishnamurthy for reviewing several drafts of the paper.

Tathagata Chakraborty, http://orcid.org/000-0000-2752-2533

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://orcid.org/000-0000-2752-2533
http://www.cad-journal.net


675

REFERENCES

[1] Berger, M.; Tagliasacchi, A.; Seversky, L.; Alliez, P.; Levine, J.; Sharf, A.; Silva, C.: State of the art in
surface reconstruction from point clouds. In Eurographics 2014-State of the Art Reports, vol. 1, 161�185,
2014.

[2] Bernardini, F.; Mittleman, J.; Rushmeier, H.; Silva, C.; Taubin, G.: The ball-pivoting algorithm for
surface reconstruction. IEEE transactions on visualization and computer graphics, 5(4), 349�359, 1999.
http://doi.org/10.1109/2945.817351.

[3] Chen, M.; Chen, X.Y.; Tang, K.; Yuen, M.M.: E�cient boolean operation on manifold mesh surfaces.
Computer-Aided Design and Applications, 7(3), 405�415, 2010. http://doi.org/10.3722/cadaps.

2010.405-415.

[4] Chen, Y.; Wang, C.C.: Uniform o�setting of polygonal model based on layered depth-normal images.
Computer-aided design, 43(1), 31�46, 2011. http://doi.org/10.1016/j.cad.2010.09.002.

[5] Chen, Y.; Wang, H.; Rosen, D.W.; Rossignac, J.: A point-based o�setting method of polygonal meshes.
ASME Journal of Computing and Information Science in Engineering, 1�21, 2005.

[6] Choi, B.K.; Park, S.C.: A pair-wise o�set algorithm for 2d point-sequence curve. Computer-Aided Design,
31(12), 735�745, 1999. http://doi.org/10.1016/S0010-4485(99)00060-3.

[7] Cline, D.; Jeschke, S.; White, K.; Razdan, A.; Wonka, P.: Dart throwing on surfaces. In Computer Graph-
ics Forum, vol. 28, 1217�1226. Wiley Online Library, 2009. http://doi.org/10.1111/j.1467-8659.
2009.01499.x.

[8] Corsini, M.; Cignoni, P.; Scopigno, R.: E�cient and �exible sampling with blue noise properties of
triangular meshes. IEEE transactions on visualization and computer graphics, 18(6), 914�924, 2012.
http://doi.org/10.1109/TVCG.2012.34.

[9] De Araújo, B.R.; Lopes, D.S.; Jepp, P.; Jorge, J.A.; Wyvill, B.: A survey on implicit surface polygoniza-
tion. ACM Computing Surveys (CSUR), 47(4), 1�39, 2015. http://doi.org/10.1145/2732197.

[10] Digne, J.: An analysis and implementation of a parallel ball pivoting algorithm. Image Processing On
Line, 4, 149�168, 2014. http://doi.org/10.5201/ipol.2014.81.

[11] Geng, B.; Zhang, H.; Wang, H.; Wang, G.: Approximate poisson disk sampling on mesh. Science China
Information Sciences, 56(9), 1�12, 2013. http://doi.org/10.1007/s11432-011-4322-8.

[12] Ju, T.; Losasso, F.; Schaefer, S.; Warren, J.: Dual contouring of hermite data. In Proceedings of
the 29th annual conference on Computer graphics and interactive techniques, 339�346, 2002. http:

//doi.org/10.1145/566654.566586.

[13] Khatamian, A.; Arabnia, H.R.: Survey on 3d surface reconstruction. Journal of Information Processing
Systems, 12(3), 2016.

[14] Kim, S.J.; Lee, D.Y.; Yang, M.Y.: O�set triangular mesh using the multiple normal vectors of a ver-
tex. Computer-Aided Design and Applications, 1(1-4), 285�291, 2004. http://doi.org/10.1080/

16864360.2004.10738269.

[15] Kim, S.J.; Yang, M.Y.: Triangular mesh o�set for generalized cutter. Computer-Aided Design, 37(10),
999�1014, 2005. http://doi.org/10.1016/j.cad.2004.10.002.

[16] Kimmel, R.; Bruckstein, A.M.: Shape o�sets via level sets. Computer-Aided Design, 25(3), 154�162,
1993. http://doi.org/10.1016/0010-4485(93)90040-U.

[17] Kobbelt, L.P.; Botsch, M.; Schwanecke, U.; Seidel, H.P.: Feature sensitive surface extraction from volume
data. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques,
57�66, 2001. http://doi.org/10.1145/383259.383265.

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://doi.org/10.1109/2945.817351
http://doi.org/10.3722/cadaps.2010.405-415
http://doi.org/10.3722/cadaps.2010.405-415
http://doi.org/10.1016/j.cad.2010.09.002
http://doi.org/10.1016/S0010-4485(99)00060-3
http://doi.org/10.1111/j.1467-8659.2009.01499.x
http://doi.org/10.1111/j.1467-8659.2009.01499.x
http://doi.org/10.1109/TVCG.2012.34
http://doi.org/10.1145/2732197
http://doi.org/10.5201/ipol.2014.81
http://doi.org/10.1007/s11432-011-4322-8
http://doi.org/10.1145/566654.566586
http://doi.org/10.1145/566654.566586
http://doi.org/10.1080/16864360.2004.10738269
http://doi.org/10.1080/16864360.2004.10738269
http://doi.org/10.1016/j.cad.2004.10.002
http://doi.org/10.1016/0010-4485(93)90040-U
http://doi.org/10.1145/383259.383265
http://www.cad-journal.net


676

[18] Koc, B.; Lee, Y.S.: Hollowing stl objects with biarcs �tting to improve e�ciency and accuracy of rapid
prototyping processes. In IIE Annual Conference. Proceedings, 1. Institute of Industrial and Systems
Engineers (IISE), 2002.

[19] Lien, J.M.: Covering minkowski sum boundary using points with applications. Computer Aided Geometric
Design, 25(8), 652�666, 2008. http://doi.org/10.1016/j.cagd.2008.06.006.

[20] Lim, S.P.; Haron, H.: Surface reconstruction techniques: a review. Arti�cial Intelligence Review, 42(1),
59�78, 2014. http://doi.org/10.1007/s10462-012-9329-z.

[21] Liu, S.; Wang, C.C.: Fast intersection-free o�set surface generation from freeform models with triangular
meshes. IEEE Transactions on Automation Science and Engineering, 8(2), 347�360, 2010. http:

//doi.org/10.1109/TASE.2010.2066563.

[22] Lorensen, W.E.; Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. ACM
siggraph computer graphics, 21(4), 163�169, 1987. http://doi.org/10.1145/37402.37422.

[23] Maekawa, T.: An overview of o�set curves and surfaces. Computer-Aided Design, 31(3), 165�173, 1999.
http://doi.org/10.1016/S0010-4485(99)00013-5.

[24] Pavi¢, D.; Kobbelt, L.: High-resolution volumetric computation of o�set surfaces with feature preserva-
tion. In Computer Graphics Forum, vol. 27, 165�174. Wiley Online Library, 2008. http://doi.org/10.
1111/j.1467-8659.2008.01113.x.

[25] P�ster, H.; Zwicker, M.; Van Baar, J.; Gross, M.: Surfels: Surface elements as rendering primitives. In
Proceedings of the 27th annual conference on Computer graphics and interactive techniques, 335�342,
2000. http://doi.org/10.1145/344779.344936.

[26] Pham, B.: O�set curves and surfaces: a brief survey. Computer-Aided Design, 24(4), 223�229, 1992.
http://doi.org/10.1016/0010-4485(92)90059-J.

[27] Piegl, L.A.; Tiller, W.: Computing o�sets of nurbs curves and surfaces. Computer-Aided Design, 31(2),
147�156, 1999. http://doi.org/10.1016/S0010-4485(98)00066-9.

[28] Qu, X.; Stucker, B.: A 3d surface o�set method for stl-format models. Rapid prototyping journal, 2003.
http://doi.org/10.1108/13552540310477436.

[29] Roberts, M.: Evenly distributing points in a triangle. http://extremelearning.com.au/

evenly-distributing-points-in-a-triangle/, 2019. [Online; accessed 24-March-2021].

[30] Rossignac, J.R.; Requicha, A.A.: O�setting operations in solid modelling. Computer Aided Geometric
Design, 3(2), 129�148, 1986. http://doi.org/10.1016/0167-8396(86)90017-8.

[31] Varadhan, G.; Manocha, D.: Accurate minkowski sum approximation of polyhedral models. In 12th Paci�c
Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings., 392�401. IEEE, 2004.

[32] Yi, I.L.; Lee, Y.S.; Shin, H.: Mitered o�set of a mesh using qem and vertex split. In Proceedings of
the 2008 ACM symposium on Solid and physical modeling, 315�320, 2008. http://doi.org/10.1145/
1364901.1364945.

Computer-Aided Design & Applications, 19(4), 2022, 662-676
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://doi.org/10.1016/j.cagd.2008.06.006
http://doi.org/10.1007/s10462-012-9329-z
http://doi.org/10.1109/TASE.2010.2066563
http://doi.org/10.1109/TASE.2010.2066563
http://doi.org/10.1145/37402.37422
http://doi.org/10.1016/S0010-4485(99)00013-5
http://doi.org/10.1111/j.1467-8659.2008.01113.x
http://doi.org/10.1111/j.1467-8659.2008.01113.x
http://doi.org/10.1145/344779.344936
http://doi.org/10.1016/0010-4485(92)90059-J
http://doi.org/10.1016/S0010-4485(98)00066-9
http://doi.org/10.1108/13552540310477436
http://extremelearning.com.au/evenly-distributing-points-in-a-triangle/
http://extremelearning.com.au/evenly-distributing-points-in-a-triangle/
http://doi.org/10.1016/0167-8396(86)90017-8
http://doi.org/10.1145/1364901.1364945
http://doi.org/10.1145/1364901.1364945
http://www.cad-journal.net

	INTRODUCTION
	Our Approach in Brief

	BRIEF SURVEY OF EXISTING TECHNIQUES
	POINT-CLOUD GENERATION
	Uniform Point Cloud Generation
	Poisson-disk Sampling
	Trimming Self-Intersections
	Finding Exact Boundary Points
	Limitations

	TRIANGULATION WITH MODIFIED BPA
	Ball-Pivoting Algorithm
	Modifications to the BPA
	Problems with Very Sharp Corners
	Parallel BPA
	Negative Offsets

	PERFORMANCE CHARACTERISTICS
	RESULTS
	CONCLUSIONS

