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Abstract. In this paper, we develop an arbitrary order virtual element method for the static
bending analysis of Reissner-Mindlin plates. The transverse displacement and rotations are
independently interpolated with the functions de�ned in the virtual element spaces. The in-
terpolation functions for transverse displacement are one order higher than the functions for
rotations. Due to the advantages of insensitivity to the elemental distortion and allowance of
hanging nodes in the virtual element method, a simple mesh generation scheme is employed
to generate polygonal mesh by using an initial background grid and a quadtree re�nement
approach. Some examples are studied to verify the accuracy and convergence of the devel-
oped method. The high convergence rates for transverse displacement and rotations could
be observed from the numerical results.

Keywords: virtual element method, Reissner-Mindlin plates, polygonal mesh, arbitrary de-
grees
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1 INTRODUCTION

The virtual element method (VEM), introduced in [10] is designed for solving numerical problems de�ned on
arbitrarily shaped polygonal/polyhedral discretizations. Therefore, it will greatly alleviate the heavy burden
placed on meshing complex CAD geometries when compared with the traditional �nite element method.
Furthermore, VEM could handle the non-conforming discretizations by allowing the existence of hanging
nodes, which are treated as normal nodes in the element. The local h-re�nement and p-version re�nement
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could be easily implemented under the VEM framework. The shape functions are implicitly de�ned in VEM and
all the integrations are obtained from a series of the prede�ned degree of freedoms. This is also the reason why
the element is called "virtual" element. So far VEM has been successfully applied to solve various problems
including topology optimization [7, 2], contact [18], fracture [17], plate bending and vibration [9, 8, 14],
inelasticity [4].

Plate structures are widely used in practical engineering and the Reissner-Mindlin plate theory is a well-
known assumption for the analysis of moderately thick plate structures. One of the main di�culties of this
assumption is the "locking" phenomenon, frequently encountered when the thickness-length ratio is small.
A variety of locking-free techniques have been proposed to solve this problem, e.g., reduced integration
scheme [13], mixed interpolation technique [6], discontinuous Galerkin method [3], weak Galerkin method
[19], isogeometric method [11]. Recently, VEM is also applied to solve the Reissner-Mindlin plate problem.
Da Veiga et al, developed a variational formulation for Reissner-Mindlin plate considering the conforming
approximation of shear strain and de�ection [9]. Chinosi presented a virtual element method for bending
analysis of Reissner-Mindlin plate following the MITC approach [8]. Note that the approaches proposed in
[8, 9] are non-primary formulations by introducing a reduction operator or shear strain.

In this work, we developed a novel virtual element method for the bending problem of Reissner-Mindlin
plate in the primary form on polygonal meshes following the approach proposed in [16, 19]. The primary form
indicates that no shear strains or reduction operators are introduced. The degree of polynomials for interpola-
tion of de�ection is one-order higher than that of rotations to easily perform the integration calculation with
the prede�ned degree of freedoms. The implementation procedures are simple and straightforward compared
with the existing techniques. The mesh for VEM can be generated by using an initial background grid and
a simple quadtree re�nement scheme. Numerical results con�rm the robustness and high convergence of the
proposed method. It should be noticed that the bending results of thin plate are still su�ered from the shear
locking problems and further studies are opened.

2 REISSNER-MINDLIN PLATE PROBLEMS

Let Ω be the domain occupied by the middle plane of an elastic plate with thickness t. Let W and Θ be the
function spaces for the transverse displacement w and rotations θ(θx, θy). Then the Reissner-Mindlin plate
problems can be described as: Find w ∈ W,θ ∈ Θ, such that

a(θ,η) + b(θ −∇w,η −∇v) = (g, v), ∀(v,η) ∈ W ×Θ, (1)

where the bilinear forms can be written as

a(θ,η) =

∫
Ω

εT (θ)Dbε(η)dΩ, (2)

b(θ −∇w,η −∇v) =

∫
Ω

(θ −∇w)TDs(η −∇v)dΩ, (3)

in which ε(θ) = 0.5(∇θ +∇θT ) is the Voigt representation of the strain tensor. Db and Ds are the material
bending and shear constitutive matrices.

3 VIRTUAL ELEMENT METHOD

Let Th be a decomposition of the domain Ω into a series of polygons. For each polygon E ∈ Th and edge
e ∈ E, the local VEM spaces of degree k + 1(k ≥ 1) for the transverse displacement w are de�ned as

Wk+1
h (E) = {wh ∈ H1(E) : wh|e ∈ C0(e), wh|E ∈ Pk+1(E),∆wh|E ∈ Pk−1(E)} (4)

with the associated degrees of freedom as follows
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- Vertex DOFs: the values of wh at each vertex of E;

- Edge DOFs: the values of wh at k internal Gauss-Lobatto quadrature points on each edge of E;

- Face DOFs: the moments up to degree k − 1 of wh in E:
1

|E|
∫
E
wh · pdE,∀p ∈ Pk−1(E).

Let nv be the number of vertices of the polygon E. The dimension of the space Wk+1
h,E is

dim(Wk+1
h (E)) = nv + knv + dim(Pk−1(E)) = (k + 1)nv +

k(k + 1)

2
. (5)

Similarly, the local VEM spaces of degree k for rotations θ can be given by

Θk
h(E) = {θh ∈ [H1(E)]2 : θih|e ∈ C0(e), θih|E ∈ Pk(E),∆θih|E ∈ Pk−2(E), i = 1, 2} (6)

with the associated degrees of freedom as follows

- Vertex DOFs: the values of θh at each vertex of E;

- Edge DOFs: the values of θh at k − 1 internal Gauss-Lobatto quadrature points on each edge of E;

- Face DOFs: the moments up to degree k − 2 of θh in E:
1

|E|
∫
E
θh · pdE,∀p ∈ Pk−2(E).

Then the dimension of the spaces Θk
h is calculated as

dim(Θk
h(E)) = 2nv + 2(k − 1)nv + 2dim(Pk−1(E)) = 2knv + k(k − 1). (7)

Let Π∇r be the local projection operator for vertical displacement, mapping the functions from the local
space Θk

h(E) to Pk(E). Given θh ∈ Θk
h(E), the projection operator Π∇r satis�es:

aEh (θh,p) = aEh (Π∇r θh,p), ∀p ∈ Pk(E). (8)

Assume that the function θh could be expressed by the bases {ϕi}
nd
i=1 as θh =

∑nd

i=1ϕiθ̄i,where nd denotes
the total number of basis functions, θ̄i denotes the unknown rotations at ith DOF. Using the polynomial
functions pα ∈ Pk(E) to express the projected function with Π∇r ϕi =

∑nk

α=1 π
r
i,αpα, and combining Eqs. (2)

and (8), a system of linear equation can be written as

aEh (ϕi,pβ) =

nk∑
i=1

πri,αa
E
h (pα,pβ), ∀pβ ∈ Pk(E),∀ϕi ∈ Θk

h(E). (9)

The right side term aEh (pα,pβ) can be calculated directly and the left side term can be computed by using
the rule of integration by parts as

aEh (ϕi,pβ) =

∫
E

εT (ϕi)Dbε(pβ)dE = −
∫
E

ϕTi ∇Dbε(pβ)dE +

∫
e

ϕTi Dbε(pβ)n̄de, (10)

where n̄ denotes the unit normal vector to the edges of E. Note that the integrand of the �rst term in the right
side ∇Dbε(pβ) could be expressed by using polynomials of degree k−2. Then we can compute the integration
according to the prede�ned face DOFs. The integrand of the second term in the right side could be expressed
by using polynomials of degree 2k − 1 and could be precisely calculated by using the k + 1 Gauss-Lobatto
quadrature points, namely the edge DOFs. Eventually, the coe�cient πr(πi,a) can be obtained by solving a
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system of linear equations. Considering the orthogonality condition of the projection operator Π∇r , the bilinear
form aEh (θh,ηh) is computed by

aEh (θh,ηh) = aEh (Π∇r θh,Π
∇
r ηh) + aEh (θh −Π∇r θh,ηh −Π∇r ηh), (11)

where the �rst term is called consistent term and the second term is called stability term. Combining Eqs. (2)
and (8), the consistent term can be written as

aEh (Π∇r θh,Π
∇
r ηh) = θ̄

T
πTr

{∫
E

(∂Nrp)
TDb(∂N

r
p)dE

}
πrη̄ = θ̄

T
K
c
aη̄, (12)

and the stability sti�ness matrix derived from the stability term is written as

K
s
a = τtr(Kca)(I−Drπr)T (I−Drπr), (13)

in which τ is a positive real number and is chosen as τ = 0.5 according to the recommendation given in
[5]. The matrix Dr is constituted by the value of polynomials pj at i-th DOFs as Dijr = dofi(pj). ∂ is the
gradient matrix and Nrp is the matrix consisting of polynomials pj .

Next we consider the discrete bilinear form bEh (θ −∇w,η −∇v), which can be expanded as

bEh (θ −∇w,η −∇v) = bEh (∇w,∇v)− bEh (∇w,η)− bEh (θ,∇v) + bEh (θ,η), (14)

where the �rst term bEh (∇w,∇v) can be calculated using the similar way for computation of aEh (θh,ηh). The
derived consistent sti�ness matrix Kcbw and stability sti�ness matrix Ksbw are written as

K
c
bw = πTw

{∫
E

(∇Nwp )TDs(∇Nwp )dE

}
πw, (15)

K
s
bw = τtr(Kcbw)(I−Dwπw)T (I−Dwπw). (16)

The fourth term bEh (θ,η) is computed through an equivalent projection operator Π0
r as introduced in [1],

and the derived sti�ness matrix Kcbr and stability sti�ness matrix Ksbr are given as

K
c
br = π0T

r

∫
E

(∇Nrp)TDs(∇N
r
p)dEπ

0
r, (17)

K
s
br = τtr(Kcbr)(I−Drπ0

r)
T (I−Drπ0

r). (18)

The third term bEh (θ,∇v) is the symmetric part of the second term bEh (∇w,η), which can be computed
using the rule of integration by parts as

bEh (∇w,η) =

∫
e

wTηnde−
∫
E

wT∇ηdE = w̄Kwrη̄. (19)

Note that w is a polynomial of k+ 1 and η is the polynomial of k. Therefore the term
∫
∂E

wTηnd∂E can be
obtained by computing the integrations on the k + 2 Gauss-Lobatto quadrature points (edge DOFs), and the
term

∫
E
wT∇ηdE can be calculated by using the face DOFs prede�ned for the space Wk+1

h (E).
Eventually the sti�ness matrix induced by bilinear forms aEh (θh,ηh) and bEh (θ − ∇w,η − ∇v) can be

expressed as

K =

[
K
c
bw +K

s
bw Kwr

K
T
wr K

c
a +K

s
a +K

c
br +K

s
br

]
. (20)

Computer-Aided Design & Applications, 19(3), 2022, 510-521
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


514

(a) Mesh T1 (b) Mesh T2 (c) Mesh T3 (d) Mesh T4

Figure 1: Four di�erent types of mesh discretization for the unit square plate.

The external force vector F can be computed using the scheme presented in [15]. Then the displacement u
consisting of de�ection w and rotations θ could be calculated by solving the system of equation

K u = F ⇒ u =

{
w

θ

}
= K

−1
F. (21)

Once the displacements are obtained, the pseudo stresses σp(u) can be computed by

σp(u) =
{
Mx My Mxy

}T
= Dbε

p = Db∂N
r
pπrθ. (22)

4 NUMERICAL EXAMPLES

4.1 Square Plate

A benchmark problem is studied in this example to verify the robustness and convergence of the developed
method on static bending analysis of Reissner-Mindlin plates. Consider a clamped unit square plate Ω ∈ [0, 1]2

subjected to a transverse load g with the expression

f(x, y) =
E

12(1− ν2)
[12y(y − 1)(5x2 − 5x+ 1)(2y2(y − 1)2 + x(x− 1)(5y2 − 5y + 1))

+ 12x(x− 1)(5y2 − 5y + 1)(2x2(x− 1)2 + y(y − 1)(5x2 − 5x+ 1))].

The analytical solutions of vertical displacement and rotations are given by

w(x, y) =
1

3
x3(x− 1)3y3(y − 1)3 − 2t2

5(1− ν)
[y3(y − 1)3x(x− 1)(5x2 − 5x+ 1)

+ x3(x− 1)3y(y − 1)(5y2 − 5y + 1)],

θx(x, y) =x3(x− 1)3y2(y − 1)2(2y − 1),

θy(x, y) =y3(y − 1)3x2(x− 1)2(2x− 1).

The material parameters are taken as: E = 10.92 × 106, ν = 0.3, t = 0.1. Some studies of this benchmark
problem can be found in [16, 8, 12].

We �rst test the robustness of the developed method by using four di�erent types of mesh discretizations
with poor mesh qualities as provided in Fig 1. Mesh T1 is a voronoi diagram generated by a series of random
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points. Mesh T2 consists of both concave polygonal elements and convex polygonal elements. Mesh T3 only
consists of concave polygonal elements and some "hanging" nodes are designed for mesh T4. The obtained
numerical results are plotted in Fig .2 where three rows correspond to vertical displacement w, rotation θx
and bending moment Mx, and four columns are related to four mesh types. Note that p3

w/p
2
r virtual element

method is used for these tests. Here pk+1
w /pkr is used to state that the vertical displacement is interpolated

with functions of degree k+ 1 and rotations are interpolated with functions of degree k. It can be found that
the results qualitatively agree well with each other from the color plots.

Mesh 1 Mesh 2 Mesh 3 Mesh 4

w

 x

 x

Figure 2: Plots of numerical results for the four types of mesh discretization. Top row: Vertical displacement
w; Middle row: Rotation θx; Bottom row: Bending moment Mx.

Next we investigated the convergence of the method, for which an L2-like relative error e
w
h for the vertical

displacement is de�ned as

(ewh )2 =

∑
E∈Th

∫
E

(wex −Πwh)2dE∑
E∈Th

∫
E
w2
exdE

.

The error for rotations can be similarly de�ned by substituting θ for w. To better describe the mesh size
and compute the errors, we discretize the square plate into structured rectangular mesh. Figure 3 presents
the relative errors ew and eθx with respect to mesh size h under three cases: p2

w/p
1
r, p

3
w/p

2
r, p

4
w/p

3
r. The

convergence rates for each curve are obtained from the last two data points and posted in Fig. 3. It is
observed that both the vertical displacement w and rotation θx could achieve high convergence rates.
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Figure 3: Relative errors of vertical displacement (Left) and rotation θx (Right) with respect to mesh size.

4.2 Cantilever Beam with a Circular Hole

In the second example, we consider the bending problem of a cantilever beam with a circular hole, studied
in [12] by using non-conforming isogeometric analysis. Figure 4 provides the geometry and dimensions of the
cantilever beam. The bottom edge is clamped and the top surface is subjected to a uniform load q = −10.
Thickness t = 50, Young's modulus E = 1× 1010 and Poisson ratio ν = 0.3.
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Figure 4: Geometry and dimensions of the cantilever beam with a circular hole.

Take the advantages of the insensitivity of elemental distortion and the permission of hanging nodes in
VEM, we employ a simple mesh generation scheme to generate polygonal elements as shown in Fig. 5. First,
the outer and inner boundary curves of the beam are de�ned and an initial background grid with 20 × 14
quadrilateral elements is then constructed according to the bounding box of the boundary curves. Note that
the background grid does not have to be consistent with any types of the bounding box. Second, the elements
intersecting with the boundary curves are re�ned by using a quadtree scheme to better capturing the boundary
shapes. The elements in the background grid can be classi�ed into three types: void elements, valid elements
and trimmed elements. The void elements are located in the interior of the inner boundaries or exterior of
the outer boundary. The valid elements are between the outer boundary and inner boundaries. The trimmed
elements intersect with the boundary curves. In the last, the void elements are deleted and valid elements
are reserved. The trimmed elements are converted to polygonal elements based on the intersection of the
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(a) Grid and curves (b) Quadtree re�nement (c) Virtual elements

Figure 5: Generation of virtual elements for the cantilever beam based on the background grid and the
quadtree re�nement scheme.

(a) ABAQUS results (b) VEM results

Figure 6: Comparison of de�ection results obtained by using FEM and VEM.

boundary curves and elements. The valid elements and converted polygonal elements consist of the mesh for
VEM. Figure 6 presents the de�ection of the cantilever beam obtained by using commercial software ABAQUS
and the proposed VEM of degree p2

w/p
1
r. It can be found that the results agree very well with each other from

the color plots.

4.3 Square Plate with Multiple Holes

A square plate with twelve inner trimmed holes subjected to a uniform load is studied in this example. Figure
7 illustrates the geometry and dimensions of the plate with multiple holes. Four edges of the plate are clamped
and the load q = −1. Thickness t = 15, Young's modulus E = 200×106 and Poisson ratio ν = 0.3. Similar to
the above example, the polygonal mesh is generated by using a quadtree re�nement scheme and background
grid as provided in Fig. 8. The grid is discretized into 12 × 12 elements. The elements that intersect with
boundary curves are re�ned and the re�nement depth is 2. In addition, the central elements are also re�ned
to obtained better results. The obtained polygonal mesh as shown in Fig. 8c contains 616 elements and 925
nodes.

Using proposed VEM with polynomials of degree p3
w/p

2
r and the constructed mesh given in Fig. 8c, the

de�ection, rotation θx and moment Mx are obtained and plotted in Fig. 9. To validate the obtained results,
the problem is also solved in ABAQUS using 3921 quadratic quadrilateral elements of type S8R and 12252
nodes. The de�ection with respect to the x coordinates at section A-A (presented in Fig. 7) obtained by using
the proposed VEM and FEM in ABAQUS are compared as shown in Fig. 10. It can be observed that both
de�ections show good agreements.
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Figure 7: Geometry and dimensions.

(a) Grid and curves (b) Quadtree re�nement (c) Virtual elements

Figure 8: Generation of virtual elements for the square plate with multiple holes based on the background
grid and the quadtree re�nement scheme.

(a) De�ection (b) Rotation θx (c) Moment Mx

Figure 9: Color plots of de�ection, rotation θx and moment Mx of the multi-hole plate using virtual element
method of degree 2.
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Figure 10: Comparison of the de�ection at the secion A-A obtained by using the proposed VEM and FEM in
ABAQUS.

5 CONCLUSIONS

Virtual element methods possess some appealing features including robustness to arbitrarily shaped polytopal
discretizations and �exibility in dealing with non-conforming meshes. In this paper, a novel virtual element
method is developed for static bending analysis of Reissner-Mindlin plate by using k-degree functions for
interpolation of rotations and (k + 1)-degree for interpolation of vertical displacement. The Reissner-Mindlin
formulation is written in its primary form and none of the reduction operators or shear strains are used. The
numerical results show the robustness and high convergence rates for the de�ection and rotations. We note
that the currently developed method is only valid for moderately thick plates and the numerical results for thin
plates are still plagued by the shear locking phenomenon, which should be a good topic for future studies. The
local re�nement scheme employed in the last two examples shows the �exibility of VEM on handing polygonal
elements and hanging nodes. Additionally, it is interesting to explore the improvement introduced by the local
re�nement of VEM based on the classical quadtree or octree re�nement schemes.
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