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Abstract. In the product design stage, it is necessary to repeatedly perform Boolean 
operations to inspect whether the shapes of design products meet the requirements 
or not. When the involved models are complex triangular mesh models, the existing 
Boolean operations be performed in real time, which is important for trial and error 

at the product design phase. This paper uses the ray tracing technique to very quickly 
obtain sampled ray segments and perform Boolean operations between the sampled 
intervals, converting 3D model Boolean operations on mesh models into one-

dimensional Boolean operations on 1D intervals. The 1D Boolean operation result is 
finally rendered as an image to obtain the visual resultant effect of Boolean operation 
on triangular mesh models. The test results have shown that the proposed method 
is much faster than the commercial CAD package, i.e., Rhino and the state-of-the-
art method based on the LDI (Layered depth image) or LDNI (Layered depth-normal 
image), and can obtain the visual results of Boolean operation in real-time and have 

a potential application in simulation and CAD/CAM. 
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1 INTRODUCTION 

Boolean operation plays one important role in constructive solid modeling (CSG), which constructs 
complex models through a series of Boolean operations on simple primitives, which are usually 
represented as triangular mesh models. With the rapid development of 3D printing technology in 
recent years, manufacturing complex shaped models has become a reality. To model such complex 
shapes during the product design phase, Boolean operations will be repeatedly done on primitives 
and the results are preferred to be inspected in real time such that one can judge whether the 
involved primitives need be amended or not. 

In some applications, due to the large number of models and the huge scale of the models, 

current techniques cannot support real-time Boolean operations on dense mesh models of millions 
of triangles, thereby limiting product design efficiency. To solve this problem, one ray tracing-based 
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method is proposed in the paper to sample 3D models as depth-orderly interval models efficiently, 
and transform 3D Boolean operation as 1D one. The results of 1D Boolean operation are rendered 
by image rendering technique. The above steps are defined as “Visual Boolean Operation”, short for 
VBO. In this field, the most common method is using Surfel rendering [1] and layered depth image, 

i.e., LDI [17] technique, both of which sample the involved models as points with normal information. 
As graphic cards developed rapidly recently and ray tracing can be very efficiently performed [14] 
[21], the paper makes full use of the advantage to sample 3D triangular mesh models into ordered 
intervals and perform 1D Boolean operation parallelly. The major difference between the method 
proposed in the paper and the above two methods lie in the sampling step. The above two methods 
usually need much more time for dense mesh models, but in the proposed method, the sampling 
step can be significantly speeded up, achieving a real-time VBO result. 

2 RELATED WORK 

Boolean operation is heavily studied and the efficiency is a key bottleneck. The review in the paper 
focuses on how to improve the efficiency of Boolean operations. Boolean operations can be divided 
into approximate Boolean operations and exact Boolean operations. The boundary presentation (B-
rep) is the most commonly used for exact Boolean operations, in which the intersection calculation 
of the primitives and the extraction of the intersection loops takes much time, which is unacceptable 

at the design phase. In order to improve the efficiency, two methods, i.e., bounding volumes and 
spatial partitioning, are applied. The bounding volumes methods include axis-aligned bounding box 
(AABB) [2], oriented bounding box (OBB) [4], K-Dop [13], and bounding sphere [11]. For example, 
Qin et al. [16] used axis-aligned bounding box binary tree to accelerate the triangle-triangle 
intersection test. The collision detection among the models can be quickly completed by the bounding 
volumes methods. But a more accurate intersection test should be done to extract intersection loops. 

With the increase of the complexity of models, the detection efficiency of the bounding volumes 

method will decrease significantly. The spatial partitioning methods include octree[10, 15], BSP 
tree[3], kd-tree[8], and uniform grid[9]. The most popular method among them is the octree. The 
octree recursively divides the space into 8 subspace cubes, which can quickly locate the intersecting 
triangles among the mesh models. Douze et al.'s QuickCSG [8] uses the k-d tree index to accelerate 
and implements very high-speed Boolean operations between mesh models through parallel 
computing. Zhou [24] used winding numbers and combined BSP tree space division to propose a 
new Boolean operation method. This method performs Boolean operations on multiple models at the 

same time and eliminate self-intersections. Campen and Kobbelt [5] proposed a hybrid method that 
divides the BSP trees in the octant of the octree, which balanced the efficiency and memory 
consumption. In comparison to the bounding volumes method, space partitioning avoids unnecessary 
intersection tests and improves the overall efficiency of Boolean operations.  

Approximate Boolean operation is based on volumetric representation. More explicitly, the mesh 

model is converted to a voxel model and then the Boolean operation is performed. After the Boolean 

operation is completed, the result is converted back to a mesh model. Via this method, the robustness 
has been improved. However, the accuracy of the method depends heavily on the resolution of the 
voxelization. The geometric details of the mesh models are inevitably lost in the converting 
procedure, especially in the regions where the intersections occur. For more accuracy, with the 
increasement of voxel resolution, the memory consumption will increase exponentially. Vardhan et 
al. [18] uses adaptive segmentation techniques to reduce the memory cost. Pavić et al. [15] performs 
Boolean operations by adopting polygonal and voxel hybrid presentation. This method uses an 

adaptive octree to generate voxels by surface-volume conversion only in the intersection areas of 
models. The amount of data will be reduced a lot compared with the method of volumetric 
representations. For non-intersected areas, B-rep is used so that the resultant mesh retains the 
original input geometric features of the model.  

In addition to the above methods, some scholars also use Ray-rep to accelerate mesh Boolean 
operations. This type of methods often uses the image space technique of the LDI or layered depth-

normal image (LDNI) [6] to accelerate Boolean operations. Chen et al. [7] used LDNI and topology 
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information to accelerate the inside/outside classification of the Boolean operation, which greatly 
improve the efficiency and performance. Wang et al. [6] used LDNI to discretize the model, 
determined the inside and outside of the sampling point cloud to obtain the Boolean operation result, 
and reconstruct it into a polygonal mesh through the dual contour method [12]. Wang's mesh/LDI-

hybrid representation [20] is an approximate Boolean operation that can keep the model features of 
the non-intersected areas. Another method proposed by Wang employs LDI to sample the model, 
and performs a membership classification based on the ray sampling results. The intersecting area 
is reconstructed in a voxel-based manner with the help of an octree to generate a new mesh model. 
Similar to this, Zhao et al. [25] adopted the compact LDI (CLDI) for ray sampling, and its memory 
consumption is much reduced compared with LDI and LDNI. 

3 METHOD OUTLINE 

The proposed algorithm can be outlined as three steps in Figure 1: 1) first, emit multiple rays from 
the pixel center of the current view plane in an orthogonal projection manner and sample the involved 
mesh models (see Figure 1(a)) as the ray interval models (see Figure 1(b)); 2) perform a one-
dimensional Boolean operation on the ray interval models to obtain the resultant interval model after 
1D Boolean operations (see Figure 1.(c)); 3) render the kept points of Figure 1(c) and use the 
specified lighting environment and materials to render the result of Figure 1(c) as an image, 

representing the visual result of Boolean operation on mesh models of Figure 1(a). once the viewpoint 
changes or either of the involved model is modified, steps 1 to 3 will be re-executed. 
 

 
(a)                                 (b)                              (c)                             (d) 

 
Figure 1: The steps of the proposed method: (a) The input triangular mesh models for a “difference” 

Boolean operation (Dragon-Bunny), (b) Sample the input models as ray interval models by ray 
tracing, (c) Perform one-dimensional Boolean operation on the ray interval models, (d) Render the 
result of (c) as an image, which outputs the visual effect of the Boolean operation result of (a). 
 
Note that the sampling procedure is performed using ray tracing technique, which can be very quickly 
performed by ray-tracing engine. In the sampling step, we do not use the octree method to 

recursively spatially split models as ray-tracing engines have implemented this acceleration data 
structure. The sampling resolution is set to be the current viewing window pixel resolution.   

4 VISUAL BOOLEAN OPERATION 

As mentioned before, the whole procedure of the proposed method consists of three steps, i.e., ray 
tracing sampling, 1D Boolean operation on ray-segment models and image rendering. Next come 
the detailed introductions of the three steps. 

4.1 Ray Tracing Sampling 

Different from the method of LDI [7, 17, 21, 23] or LDNI [6, 20, 24] , in which rasterized rendering 
for ray sampling is used, this paper uses a ray tracing method to sample models as ray intervals，

which is much efficient. The involved models’ bounding boxes will be first calculated and the union 
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region of their occupied area will be regarded as region of interests (ROI). For the ROI, a series of 
parallel rays will be emitted from the center of pixels of the screen and the hit points of the rays and 
the models are regarded as the sampling points, which are ordered by their depth values t. Figure 2 
shows one YZ-plane-sampling slice on two models denoted as Ma and Mb when rays shoot along the 

x axis.  

 

 
 

Figure 2: Ray sampling on the YZ plane along the X axis. 
 

For a NVIDIA graphics card with RTX, a programmable ray tracing pipeline can perform ray tracing 
via three programs, i.e., ray generation, closest-hit, and miss-hit. Ray generation initializes one ray 

by Ray (orig, dir), where orig and dir represent the ray tracing start point and the direction of the 
tracing a ray, respectively. One sampling ray corresponds to one program fragment, which can be 

executed parallelly and efficiently. When one ray hits an intersection point, the closest-hit program 
fragment will be automatically called and the intersection point coordinate can be calculated in 
closest-hit program. The RTX’s built-in ray triangle intersection program will quickly evaluate the 
barycentric coordinate (u, v) of the intersection point in the triangle hit by the ray, and its 

corresponding cartesian coordinate P can be calculated by Eq. (1) as below: 

 𝑃 = 𝑢𝑃1 + 𝑣𝑃2 + (1 − 𝑢 − 𝑣)𝑃3 (1) 

where P1, P2 and P3 are the coordinates of the vertices of the triangle hit by the ray. when a ray has 
no intersection points within the specified ray tracing range t, miss-hit is called to terminate the 
sampling procedure.  

The sampling process is shown in Figure 3. After ray generation is executed, all rays will be 
traced. The acceleration structure will be traversed to determine whether a triangle intersects any 

ray. Within the specified ray tracing range [tmin, tmax], once the intersection occurs, closest-hit will 

be carried out at the intersection point closest to orig. Next, update the ray start point orig to be the 
intersection point and continue the ray tracing along the direction dir, the emitting direction of the 
rays. Actually, a preset small positive offset 𝜀 should be added to the hit point for the next ray tracing 

to avoid a dead loop. As shown in Figure 4, Ri should hit the triangle Tj at point P, but the obtained 
point may be P1 out of floating-point computing errors. Once P1 is behind P and updated as the new 
ray tracing start point, Ri will hit Ti again, resulting in a dead loop. Thus, a small number 𝜀 ( 𝜀 = 10-

5 in the paper) is added to P obtaining a new point P2 , and P2 will be used as a new starting point for 

ray tracing. The value of the ray tracing range is important: an unreasonable range will result in 
incomplete sampling or ray tracing failure. In Figure 2, the ray Ri intersects the two mesh models Ma 
and Mb at t1, t3, and t2, t4, respectively; if the range [tmin, tmax] is set to be [t2, t4], Ri can only obtain 
the sampling points at t2, t3, and t4 and the sampling point at t1 will be lost as t1 is out of the range 
of [t2, t4], resulting in incomplete sampling. In order to obtain a complete sampling, tmax can be easily 
set as an infinite positive number and one strategy should be devised to determine tmin. In the paper, 

each sampling model’s bounding box is first calculated and ensure the value of tmin and tmax are set 
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to be outside of the bounding box, avoiding the incomplete sampling problem. when Ri hit any 

primitives at t’, a positive offset ε will be added to t’ and continue ray tracing with a new ray tracing 

range, i.e., [t’+ε, tmax], preventing the ray from repeatedly sampling at the same position and falling 

into a dead loop. If no intersection occurs in the range, do miss-hit and stop ray tracing. The above 
sampling can be very quickly performed. 

 

 
 

Figure 3: The flowchart of ray sampling by ray tracing. 

 
 

Figure 4: Ray sampling with 𝜀 offset. 

4.2 1D Boolean Operation on Rays  

Ideally, the involved primitives are watertight. In this case, for one ray, entry points and exit points 
appear alternately and the number of sampling points is even; when isolated edges or holes appear, 

odd number of sampling points may occur, leading to wrong inside/outside classifications and 
incorrect results of Boolean operations. The methods in the literatures [6][24] are both applicable 
to the situation where the number of sampling points on one ray is even. As the built-in Ray-Triangle 
intersection program of the ray tracing engine returns no intersections, when the emitted rays are 
coplanar to the sampling primitives and an odd number of sampling points will be generated. If a 

perspective projection is used, since the rays are not parallel to each other, the probability of the 
rays being tangent to the model will be much larger than that of orthogonal projection, which is used 

in the paper.  

To conquer the failure of the inside/outside classification caused by the odd number of sampling 
points, this paper proposes a new scheme to determine the inside/outside classification of sampling 
points. As shown in Figure 5, it is assumed that the green and blue sampling points represent the 
sampling points of Ma and Mb, respectively. By judging the angle between the normal of the sampling 
point and the ray direction, the sampling point’s entry/exit status can be defined. When the angle is 
acute, the point is an exit point and if the angle is obtuse, the point is an entry one. After determining 

the entry/exit statuses of hit points, the inside/outside classifications of one model’s sampling points 
can be figured out with the help of the entry/exit statuses of their nearest neighboring sampling 
points of the other model. Take Figure 5 for an example, it is assumed that P2, P3 and P4 belong to 
Ma and the other points Mb. Point P2 is one exit point of Ma, thus P1 is located inside of Ma. Point P1 

is one entry point of Mb, thus P2, P3 and P4 are located inside of Mb. Similarly, P5 is outside of Ma as 
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P4 is the exit point of Ma. According to the rule, all sampling points’ inside/outside classification can 
be easily decided.  

 

Ray

P5P1 P2 P3 P4

 
 
Figure 5: The schematic diagram of inside/outside classification: the yellow arrow stands for the 
directions of normal vectors of the sampling points and the green and blue represent that they are 

sampled from different models. 
 
Once the inside/outside step is completed, the sampling points of Ma and Mb can be kept or removed 
using the rule of Tab.1, and all kept sampling points can be image or Surfel rendered, representing 
the final visual result of Boolean operation. 
 

Operation Ma Kept Mb Kept 

Ma∩Mb Inside Mb Inside Ma 

Ma∪Mb Outside Mb Outside Ma 

Ma－Mb Outside Mb Inside Ma 

Mb－Ma Inside Mb Outside Ma 

 

Table 1: The kept rules of sampling points.  

4.3 Image Based Rendering 

After 1D Boolean operation, the kept points can be rendered through the Surfel method or the image-

based rendering method. The Surfel method converts points to surfel and then renders them through 
rasterization [18]. Due to the limitation of sampling resolution, low-resolution sampling often needs 
to interpolate before rendering to obtain the correct intersection area visual effect [23]. In the paper, 
our focus is how to get the visual result in the least time. Therefore, we directly use ray tracing for 
image-based rendering and then employed OpenGL to show the rendered image with 2D texture. 
The image-based rendering method is adopted to render the final results out of its more excellent 
efficiency.  

 

 
(a)                                          (b) 

 
Figure 6: 1D Boolean result of Mb-Ma at one slicing layer: (a)The ray sampling models of Ma and Mb 
at one slicing layer; (b) 1D Boolean result of Mb-Ma at one slicing layer and only the circled points 

(the foremost point along each ray) will be rendered as one part of the final rendering image. 
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5 RESULTS 

The method in [6] and the commercial package Rhino are adopted as benchmarks. The test models 
are all triangular mesh models listed in Tab.2. The tested PC is configured with Intel(R) Xeon(R) 
Silver 4110 CPU @2.10ghz CPU × 2, 64GB DDR4, NVIDIA Quadro P4000 graphics card and 8GB 

video memory. 
Figure 7 shows the final visual effect (images) by the proposed algorithm. The difference of 

Dragon and Bunny is performed in Test 1 and the sampling intervals, the result of 1D Boolean 
operation and the rendered result are shown in the second row of Fig. 6(a); In Test 2 (see Figure 
7(a)), a cuboid subtracts 144 Flexes models; One product design in jewelry is presented in Test 3, 
in which one big ring subtracts 100 small rings and the results are shown in Fig. 6(c). The time 
consumption of Rhino, the proposed method and the method in [6] are all counted and the statistical 

data is listed in Table 2 - Table 4. Table 2 lists the triangle numbers of each involved mesh models. 

From Table 3, we can easily find that it is impossible to obtain a real time result by current commercial 
CAD package such as Rhino if one mesh model Boolean operation is directly done: in Test 3, it will 
take 32 seconds for Rhino, which cannot be accepted in product design phase as the Boolean 
operation will be repeatedly done to inspect the final product appearance and the real-time effect is 
a must. Thus, quick visual Boolean operation is one complementary step before doing real mesh 

Boolean operation. In Figure 7(c), the result of VBO can be directly rendered as one image with 
different materials, i.e., silver, gold, plastic and emerald.  

For all the tests, the proposed method can obtain the visual result in the least time: at 512 ×512 

resolution, the three tests can be done in 66 ms, 184.5 ms and 154 ms, respectively, which will not 
be perceptible (regarded as real time). As for the resolution 1024×1024, a high-resolution rendering 

image can be obtained instantly, i.e., 148.5 ms, 488 ms, 435 ms, for the three tests, respectively. 
If LDNI [6] is done for visual Boolean operation, the proposed algorithm is much faster, as the 
sampling time in the paper is much shorter than that of the benchmark in [6]. The sampling time 

and 1D Boolean operation time by the proposed method and the method in [6] are illustrated in 
Table 4. Note that once the view window is update after rotation, zoom in/out or pan, the VBO will 
be executed again, updating the resultant rendered image. As the VBO can be done quickly, the 
rendered image can be updated in a real time.  

      

Test Mesh Models 
Test 1 Test 2 Test 3 

Dragon Bunny Cuboid 144Flexes Ring 100Rings 

Vertices 50K 3.5K 0.7K 216K 1.2K 123K 

Triangles 100k 6.9K 1.2K 265K 2K 209K 

 
Table 2: The tested models’ triangle number 

 
 

Resolution 
Rhino(sec) LDNI (ms) Ray tracing(ms) 

Test 1/2/3 Test 1/2/3 Test 1/2/3 

128×128 

1.3/15/32 

399.5/471/408 15.2/24.3/28 

256×256 425.0/477/454 28.8/60.8/60 

512×512 495.7/525/490 66/184.5/154 

1024×1024 664.2/716/706 148.5/488/435 

 
Table 3: The time cost by the benchmarks and the proposed algorithm.  
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(a) 

 
(b) 

 
(c) 

 
Figure 7: The visual results of VBO by the proposed method: (a) The sampling model and 
the result of VBO for Test 1; (b) The VBO result of Test 2; (c) The VBO result of Test 3 and 
it is rendered with different materials including silver, gold, plastic and emerald. 
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Resolution 
LDNI (ms) Ray tracing(ms) 

Sampling 1D Boolean Sampling 1D Boolean 

128×128 398 1.5 15.25 Less than 1 

256×256 419.75 5.25 27.75 1 

512×512 487.5 8.25 63 3 

1024×1024 645 19.25 138 9.5 

 

Table 4: The sampling and 1D Boolean operation time by [6] and the proposed method. 
 

Since rays are emitted from the center of each pixel of the screen, the accuracy of the proposed 
visual Boolean operations is at pixel level. As shown in Figure 8(a), Dragon and Armadillo perform 

an intersection operation, and the result can be shown as a full view in Figure 8(b) or as different 

zooming-in views as in Figure 9(c)-(d). better visual effects can be obtained by bringing the viewpoint 
closer to the model, all of which are at pixel accuracy level.  Once the view  is updated after 
zoom/pan/rotate, the  visual  Boolean operation will be repeatedly executed to obtain a new rendered 
image, a visual resultant effect. 

 
 

 
(a)                                 (b)                         (c)                         (d) 

 
Figure 8: The visual results of VBO (Dragon∩Armadillo): (a) The visual result in a full view, (b) The 

result of the full view, (c) The visual result when zooming in to the particular parts bounded by the 

red rectangle in (b), (d) The visual result when zooming in to the particular parts bounded by the 
red rectangle in (c).  

6 CONCLUSIONS 

Aiming at the problem that Boolean operations on large-scale mesh models cannot be quickly 
performed in the design phase. The paper proposes one ray tracing-based method to achieve the 
real-time visual Boolean operation result, which samples involved models as ray interval models and 
1D Boolean operation, defined as “Visual Boolean operation” is done to show the visual result of 

Boolean operation. In this paper, the ray tracing technique is used to acquire a ray segment model, 
which can be very quickly done by a third-party ray tracing engine. The results show that the 
proposed method can achieve visual Boolean operation in real time, which is of a significant sense in 
designing complex shapes by lots of Boolean operations. 
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