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Abstract. On the researches of free-form curves, those of the quadratic curve have been
become very active because of κ-curves. In this paper, we will prove the uniqueness theorem
on the shape of free-form curves de�ned by three control points, including non-rational:
integral and rational quadratic Bézier curves, generalized trigonometric and hyperbolic curves
and splines in tension.
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1 INTRODUCTION

On the researches of free-form curves, those of the quadratic curve have been become very active because of
κ-curves[8, 7]. The κ-curve, which consists of a sequence of quadratic Bézier curves and proposed recently
by [8], is an interpolating spline which is curvature-continuous almost everywhere and passes through input

points at the local curvature extrema. It has been implemented as the curvature tool in Adobe Illustrator®

and Photoshop® and is accepted as a favored curve design tool by many designers (see e.g. [1, 2]). We
consider the reasons for the success of κ-curve to be [5]:

1. Information along contours is concentrated at local maxima of curvature.

2. Curves of low degree have smooth distribution of curvature.

3. G2-continuous curves tend to look fairer than only G1-continuous ones.

Computer-Aided Design & Applications, 19(2), 2022, 293-305
© 2022 CAD Solutions, LLC, http://www.cad-journal.net

http://orcid.org/0000-0001-9326-3130
http://orcid.org/0000-0003-1906-4998
http://orcid.org/0000-0003-3077-8772
http://orcid.org/0000-0003-1813-822X
http://orcid.org/0000-0003-1165-5507
mainto:miura.kenjiro@shizuoka.ac.jp
mainto:wang.dan.18@shizuoka.ac.jp
mainto:gr@umt.edu.my
mainto:sekine.tadatoshi@shizuoka.ac.jp
mainto:usuki@shizuoka.ac.jp
mailto:miura.kenjiro@shizuoka.ac.jp
http://www.cad-journal.net


294

We emphasize especially the second reason since the curvature distribution of free-form curves de�ned by three
control points are generally smooth.

In this paper, we will prove the uniqueness theorem on the shape of free-form curves de�ned by three control
points, including non-rational: integral and rational quadratic Bézier curves [4], generalized trigonometric (GT)
and hyperbolic (GH) curves and splines in tension [3]. For the applications of our theorem in CAD and CAGD,
we might be able to select a parameterization of the curve suitable for the speci�c application by selecting, for
example, the generalized trigonometric or the rational quadratic Bézier curves since our theorem guarantees
that if the locations of their control points are the same, the shapes of these curves are identical although
their blending functions are di�erent.

2 GENERALIZED TRIGONOMETRIC BASIS

In this section, we describe our new generalized trigonometric basis. This is based on the trigonometric cubic
Bernstein-like basis [6], which we are going to review �rst.

The trigonometric cubic Bernstein-like basis functions have an extra shape parameter α, and are de�ned
by

f0 = αS2 − αS + C2 = 1 + (α− 1)S2 − αS,
f1 = αS(1− S),
f2 = α(S2 + C − 1) = αC(1− C),
f3 = (1− α)S2 − αC + α = 1 + (α− 1)C2 − αC, (1)

where S = sin πt
2 , C = cos πt2 , for α ∈ (0, 2), t ∈ [0, 1]. Note that these functions satisfy partition of unity,

i.e.,
∑3
i=0 fi(t) = 1 for any α. When α = 1, the above functions are simpli�ed to

f0 = 1− S,
f1 = S(1− S),
f2 = C(1− C),
f3 = 1− C. (2)

If we add the second and third functions together and rename them to u, v and w, we obtain blending functions
{u, v, w} as follows:

u = 1− S,
v = S(1− S) + C(1− C) = S + C − 1,

w = 1− C.
(3)

It is straightforward to de�ne a curve by these blending functions with three control points, which we can
regard as a �linear� trigonometric curve since the highest degree the trigonometric functions are in is one.

One interesting relationship among these functions is

v2 = 2uw, (4)

which enables

(u+ v + w)2 = u2 + 2uv + 4uw + 2vw + w2, (5)

and yields the �ve blending functions {u2, 2uv, 4uw, 2vw, w2}, associated with �ve control points. We
can de�ne a curve using these blending functions and regard it as a �quadratic� trigonometric curve since the
highest power of each blending function is now degree two.
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In a similar way, we can extend blending functions of �degree� n with 2n+ 1 control points. As explained
in Appendix, we can perform a recursive procedure to evaluate a curve of any degree similar to de Casteljau's
algorithm avoiding the overhead of trigonometric function evaluation. We call this procedure Gobithaasan-
Miura's recursive algorithm. This means that it is not necessary to calculate the coe�cients of blending
functions, or keep a coe�cient table. The coe�cients of the generalized trigonometric curve are listed as an
triangle as Pascal's triangle and we call it Miura's triangle as shown in the Appendix.

3 GENERALIZED HYPERBOLIC BASIS

In this section we will derive a new basis for {sinh t, cosh t, 1}. Let w(t) satisfy

w(0) = 0

w(1) = 1

dw(0)

dt
= 0 (6)

Hence

w(t) =
1

2 sinh2 1
2

(cosh t− 1)

=
e

(e− 1)2
et(1− e−t)2 (7)

We de�ne u(t) symmetric to w(t) along t = 1/2 as w(1− t)

u(t) = w(1− t) = 1

2 sinh2 1
2

(cosh(1− t)− 1)

=
1

(e− 1)2
e−t(e− et)2 (8)

Then

v(t) = 1− u(t)− w(t)

= 1− 1

2 sinh2 1
2

(cosh t+ cosh(1− t)− 2)

=
(e+ 1)e−t (e− et) (et − 1)

(e− 1)2
(9)

Figure 1 shows these basis functions.
Again fortunately we obtain the following relationship:

v(t)2 =
(e+ 1)2

e
u(t)w(t) ≈ 5.08616u(t)w(t) (10)

Hence for GH basis functions, α = (e+1)2

e ≈ 5.08616.
Therefore we can de�ne generalized hyperbolic basis functions as

{u(t), v(t), w(t)} = { 1

2 sinh2 1
2

(cosh(1− t)− 1), 1− 1

2 sinh2 1
2

(cosh t+ cosh(1− t)− 2),

1

2 sinh2 1
2

(cosh t− 1)} (11)
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Figure 1: The linear hyperbolic basis functions

Note that the construction of the generalized hyperbolic basis is similar to that of the generalized trigonometric
basis and its nice properties are inherited to the GH basis such as curve de�nition of any degrees, Gobithaasan-
Miura's recursive algorithm and Miura's triangle.

For example, the second Miura's triangle, which is for GH basis is de�ned as follows: by multiplying
u(t) + v(t) + w(t) = 1 to a linear generalized hyperbolic curve,

C(t) = = u(t)2P 0 + 2u(t)v(t)
P 0 + P 1

2
+ (P 0 +

(e+ 1)2

e
P 1 + P 2)u(t)v(t)

+2v(t)w(t)
P 1 + P 2

2
+ w(t)2P 2

= u(t)2P 0 + 2u(t)v(t)
P 0 + P 1

2
+
e2 + 4e+ 1

e
{eP 0 + (e+ 1)2P 1 + eP 2

e2 + 4e+ 1
}u(t)v(t)

+2v(t)w(t)
P 1 + P 2

2
+ w(t)2P 2 (12)

where (eP 0 + (e+ 1)2P 1 + eP 2)/e
2 + 4e+ 1 ≈ 0.14112P 0 + 0.71776P 1 + 0.14112P 2.

We can construct the second Miura's triangle as follows:

1 1 1

1 2 e2+4e+1
e ≈ 7.08616 2 1

1 3 3(e2+3e+1)
e ≈ 18.2585 e2+4e+1

e ≈ 11.0862 3(e2+3e+1)
e 3 1

(13)

4 SPLINES IN TENSION

Splines in tension are functions de�ned piecewise to be in the space span{eρt, e−ρt, 1, t}[3]. In this section as
an extension of generalized hyperbolic basis functions, we de�ne a new basis in the space span {eρt, e−ρt, 1}.

Similar to Eq.(7)

w(t) =
1

cosh ρ− 1
(cosh ρt− 1)

=
sinh2 ρt2
sinh2 ρ2

(14)

Figure 2 shows graphs of {u(t), v(t), w(t)} = {w(1 − t), 1 − w(1 − t) − w(t), w(t)} for ρ = 0.1, 2 and
10. By increasing ρ, a curve de�ned by these basis functions approaches to a polyline connecting its control
points.
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Figure 2: The linear hyperbolic basis functions in tension

For this basis, the following equation is satis�ed:

v(t)2 =
(eρ + 1)

2

eρ
u(t)w(t) (15)

Note that if ρ = 1, α = (e + 1)2/e as in the previous section. If ρ = 0, α = 4. In this case since the
Maclaurin's expansion of sinh t is given by

sinh t = t+
t3

3!
+
t5

5!
· · · , (16)

from Eq.(14) function w(t) is given by

lim
ρ→0

w(t) = lim
ρ→0

sinh2 ρt2
sinh2 ρ2

= lim
ρ→0

(ρt2 +
( ρt2 )3

3! + · · · )2

(ρ2 +
( ρ2 )

3

3! + · · · )2

= t2 (17)

We obtained one of the quadratic Bernstein basis functions as expected because α = 4. Figure 3 shows
α = (eρ + 1)

2
/eρ for 0 ≤ ρ ≤ 5. Notice that cosh t as well as w(t) is an even function and the graph of α is

symmetric along the y axis.

5 RATIONAL QUADRATIC BERNSTEIN BASIS

It is very common to represent a circular arc by a rational quadratic Bézier curve as

C(t) =
(1− t)2P 0 + 2(1− t)tσP 1 + t2P 2

(1− t)2 + 2(1− t)tσ + t2
(18)

where σ is a weight of P 1. For example when P 0 = (−1, a), P 1 = (0, 0) and P 2 = (1, a) for a given a, if
σ = 1/

√
a2 + 1 the curve becomes a circular arc.
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Figure 3: Function α = (eρ + 1)
2
/eρ

Hence we de�ne a blending function w(t) as follows:

w(t) =
t2

(1− t)2 + 2(1− t)tσ + t2
(19)

For this basis, the following equation is satis�ed:

v(t)2 = 4σ2u(t)w(t) (20)

Figure 4 shows graphs of {u(t), v(t), w(t)} = {w(1 − t), 1 − w(1 − t) − w(t), w(t)} for σ = 1/4, 1/2,
1/
√
2, 2 and 10. By increasing σ, a curve de�ned by these basis functions approaches to a polyline connecting

its control points.
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Figure 4: Rational quadratic Bernstein basis functions

Note that if σ = 1, since the basis becomes that of the non-rational quadratic Bernstein basis, α = 4. If
σ = 1/

√
2, α = 2. However w(t) 6= 1− cos(πt/2). Figure 5 compares these two basis functions and they are

very similar, but not identical.
Since there are two types of the bases whose α = 2, the conditions

{1− w(t)− w(1− t)}2 = αw(t)w(1− t) (21)

for a given constant α > 0 with

w(0) = 0

w(1) = 1

dw(0)

dt
= 0 (22)
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Close up

Figure 5: Comparison between the rational quadratic Bernstein basis functions (brown) and {1 −
sin(πt/2), sin(πt/2) + cos(πt/2)− 1, 1− cos(πt/2)} (blue)

do not determine function w(t) uniquely.
Notice that when t = 1/2, from the following equation:

(1− 2w(
1

2
))2 = αw(

1

2
)2

(4− α)w(1
2
)2 − 4w(

1

2
) + 1 = 0 (23)

When α = 4, w(1/2) = 1/4. Since 0 < w(1/2) < 1, when α < 4, w(1/2) = (2 −
√
α)/(4 − α) and when

α > 4, w(1/2) = (
√
α − 2)/(α − 4). Therefore although the basis functions are di�erent, if they have the

same α value, when t = 1/2, the values of these basis functions are exactly the same.

6 COMPARISON BETWEEN LINEAR GT BASIS AND RATIONAL QUADRATIC BERNSTEIN

BASIS

We would like to know how di�erent are the linear GT and rational quadratic Bernstein bases. When P 0 =
(1, 0), P 1 = (1, 1) and P 2 = (0, 1), the linear generalized trigonometric curve with these control points
becomes a quadrant or a quarter of a circular arc. For the same control points with σ = 1/

√
2, the rational

quadratic Bézier curve becomes the same quadrant. As shown in Fig.6, the numerator of the curve is a
non-rational quadratic Bézier curve with P 0 = (1, 0), P 1 = (σ, σ) and P 1 = (0, 1) and the denominator is
the x-coordinate of a non-rational quadratic Bézier curve with P 0 = (1, 0), P 1 = (σ, 1/2) and P 2 = (1, 1).
Hence the e�ect of the denominator is only a scaling factor of the coordinate of the numerator and the polar
angle of the point on the quadrature is the same as the point on the non-rational quadratic Bézier curve.

The polar angle θ of the non-rational quadratic Bézier curve is given by

θ = arctan
2(1− t)tσ + t2

(1− t)2 + 2(1− t)tσ
(24)

Hence the di�erence between the linear GT and rational quadratic Bernstein bases is that of the changing
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speed of their parameters. Therefore

1− cos θ = 1− cos{arctan
√
2(1− t)t+ t2

(1− t)2 +
√
2(1− t)t

}

=
t2

(1− t)2 +
√
2(1− t)t+ t2

(25)

since cos(arctanx) = 1/
√
1 + x2. We have obtained the blending function for the third control points of the

rational quadratic Bézier curve. Figure 7 shows t − 2{arctan
√
2(1−t)t+t2

(1−t)2+
√
2(1−t)t}/π. Note that the value of

Numerator P
0
=(1,0)

P
1
=(0,1)

P
1
=(s,s)

Denominator P
0
=(1,0)P
0
=(1,0)

P
1
=(1,1)

P
1
=(s,1/2)

q

Figure 6: The numerator and denominator of the rational quadratic Bézier curve representing a quadrant of
a unit circle

0.2 0.4 0.6 0.8 1.0

-0.010

-0.005

0.005

0.010

Figure 7: Parameter di�erence: t− 2{arctan
√
2(1−t)t+t2

(1−t)2+
√
2(1−t)t}/π

w(1/2) is determined by α, when t = 1/2, the parameter di�erence is 0.
Figure 8 shows the curvature distributions of a rational quadratic Bézier and linear GT curves de�ned by

three control points (0, 0), (2, 0.5) and (1, 0). The weight of the Bézier curve is 1/
√
2. Before reparameteri-

zation, the parameters at the peak of their curvature are di�erent, but after reparameterization by Eq. (24),
they become identical.
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(a) (b)

Figure 8: Curvature distribution (a) before reparameterization, (b) after reparameterization

7 COMPARISON BETWEEN LINEAR GH BASIS AND RATIONAL QUADRATIC BERNSTEIN

BASIS

We would like to know how di�erent are the linear GH and rational quadratic Bernstein bases. When P 0 =
(cosh(1)−1,− sinh(1)), P 1 = (0, 0) and P 1 = (cosh(1)−1, sinh(1)), the linear generalized hyperbolic curve
with these control points becomes (cosh(2t− 1)− 1, sinh(2t− 1)), i.e. hyperbola shown in Fig.9(a). For the
same control points with σ = (e+1)/(2

√
e), the rational quadratic Bézier curve becomes the same hyperbola.

Figure 9(b) compares the polar angles of the two curves. θH and θR are the polar angles of the linear GH and
rational quadratic Bézier curves. Note that also in this case the value of w(1/2) is determined by α, when
t = 1/2, the parameter di�erence is 0.

(a) (b)

Figure 9: (a) Hyperbola, (b) Parameter di�erence: θH − θR
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8 UNIQUENESS THEOREM OF THE SHAPE OF THE CURVE

We will prove a theorem called uniqueness theorem of the shape of the curve. We assume that for 0 ≤ t ≤ 1
a curve C(t) is de�ned by three control points P 0, P 1 and P 2 as

C(t) = u(t)P 0 + v(t)P 1 + w(t)P 2 (26)

where 0 ≤ w(t) ≤ 1, 0 ≤ v(t) ≤ 1 and

u(t) + v(t) + w(t) = 1

u(t) = w(1− t)
w(0) = 0

w(1) = 1

dw(t)

dt
> 0 for 0 < t < 1 (27)

If there is such a constant α that

v(t)2 = αu(t)w(t) (28)

for 0 ≤ t ≤ 1, then the following theorem is satis�ed:

Theorem 1. Uniqueness Theorem: The shape of the curve C(t) is determined by α exclusively and it does

not depend on the basis functions {u(t), v(t), w(t)} which are used to de�ne the curve.

Proof. For a given value w0 = w(t0), 0 ≤ w0 ≤ 1, let u0 = u(t0). Since v(t) = 1− u(t)− w(t),

(1− u0 − w0)
2 = αu0w0 (29)

Hence

u0 =
(α− 2)w0 + 2±

√
αw0((α− 4)w0 + 4)

2
(30)

We assume u0 is a continuous function of w0 and 0 ≤ u0 ≤ 1 for w0 ∈ [0, 1]. Assume we select + sign in
the above expression, then u0 = 1 when w0 = a. Hence when α < 1, u0 can be less than 1. However when
α < w0 ≤ 1, u0 > 1. When α ≥ 1, u0 > 1 for w0 ∈ (0, 1). Therefore we should select − sign in Eq.(30)
and u0 is uniquely determined. For any α > 0, when w0 is speci�ed, we can determine parameter t0 for the
blending function w(t) of the third control point of the rational quadratic Bézier curve with its weight σ such
that α = 4σ2. We know the blending function u(t) of the �rst control point of the curve and we obtain
u0 = u(t0). That means we have a unique solution of u0 for any α > 0.

Since u0 is uniquely determined by w0, the location of the point C(t0) is also uniquely determined because
{u(t), v(t), w(t)} are barycentric coordinates of triangle P 0P 1P 2. By changing t from 0 to 1, w(t) also
increases from 0 to 1 and the shape of the curve C(t) is also completely determined.

Figure 10 shows u0 for 0 ≤ w0 ≤ 1 and 0 ≤ α ≤ 10. Note that for these �gures we change α until 10,
but we will obtain similar �gures for any α ≥ 10.

The �nal remark is that it is relatively easy to specify blending functions which have a property of partition of
unity, but they do not satisfy Eq.(28). For example, u(0) = 1− 3

√
t, w(t) = u(1−t), and v(t) = 1−u(t)−w(t).

Then

v(t)2

u(t)w(t)
=

(
3
√
1− t+ 3

√
t− 1

)2(
3
√
1− t− 1

) (
3
√
t− 1

) (31)

Clearly the above expression is not a constant. The square of {u(t) + v(t) + w(t)}2, for example, becomes a
relatively complicated expression because there is no α such that v(t)2 = αu(t)w(t).
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u₀ v₀

Figure 10: u0 for 0 ≤ w0 ≤ 1 and 0 ≤ α ≤ 10

9 CONCLUSIONS

We have proved the uniqueness theorem on the shape of free-form curves de�ned by three control points,
including non-rational and rational quadratic Bézier curves, generalized trigonometric and hyperbolic curves
and splines in tension. We have also shown that we can generate in�nite di�erent Miura's triangles for di�erent
α values. For future work, we would like to extend our theorem for higher-degree free-from curves.
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Gobithaasan and Miura's Recursive Algorithm

For our new trigonometric basis, we can derive a recursive algorithm similar to de Casteljau's algorithm. For
simplicity we explain only the quadratic case, but it can be extended to a general degree n by induction. To
shorten expressions, we use u = 1 − S(t), v = S(t) + C(t) − 1 and w = 1 − C(t), where S(t) = sin πt

2 and
C(t) = cos πt2 . Note that v2 = 2uw, and

(u+ v + w)2 =

u(u+ v + w) + v(u+ v + w) + w(u+ v + w).
(32)

For a quadratic curve with this basis, �ve control points Pi (i = 0 . . . 4) are used, and the curve point at
t is evaluated as [

u v w
]

P0 P1 P2

P1 P2 P3

P2 P3 P4



u

v

w

 . (33)

Hence the algorithm repeats a simple blending of three points uPi−1 + vPi + wPi+1 to generate a point on
the given curve.

Miura's Triangle:

We can construct a triangle using the coe�cients of trigonometric basis functions, similarly to Pascal's triangle.
Below is a table of degree elevation, from the �rst row representing degree 1 to the sixth row representing
degree 6:

1 1 1

1 2 4 2 1

1 3 9 8 9 3 1

1 4 16 20 34 20 16 4 1

1 5 25 40 90 74 90 40 25 5 1

1 6 36 70 195 204 328 204 195 70 36 6 1

(34)
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On how to construct Miura's triangle let's take a simple case from linear to quadratic. We use u, v and
w to denote u = 1− S, v = S + C − 1 and w = 1− C. Then the following equation is satis�ed:

v2 = 2uw (35)

Let's consider the following problem. We would like to know coe�cients for the following expression:

(u+ v + w)n (36)

When n = 1, we obtain

(u+ v + w)1 = c1,1u+ c1,2v + c1,3w (37)

where of course c1,1 = c1,2 = c1,3 = 1. For ci,j the �rst su�x i indicates degree, i.e. the row of Miura's
traingle and the second one j does the column of Miura's triangle. Then

(u+ v + w)2 = (u+ v + w)u+ (u+ v + w)v + (u+ v + w)w

=

u2 + uv + uw

+ uv + v2 + vw

+ uw + vw + w2

=

u2 + uv + uw

+ uv + 2uw + vw

+ uw + vw + w2

(38)

Hence

c2,1 = c1,1

c2,2 = c1,2 + c1,1

c2,3 = c1,3 + 2 c1,2 + c1,1

c2,4 = c1,2 + c1,1

c2,5 = c1,1 (39)

Then we obtain the second row of Miura's triangle: {c2,1, c2,2, c2,3, c2,4, c2,5} = {1, 2, 4, 2, 1}. We can repeat
similar processes again and again and we can construct Miura's triangle.
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