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Abstract. A new definition of Beta-Bezier curves which include classic Bezier 
curves as a special case is given. With the new definition, the functions of Beta-

Bezier curves are easier to study. It shows that Beta-Bezier curves not only have 
all the basic properties of Bezier curves such as convex hull property, recursive 
subdivision, B-spline conversion and C2 interpolation, but also the capability of 

modifying the shape a Bezier curve segment or a C2-continuous, composite cubic 
Bezier curve without changing the control points of the curve. This is because in the 
cubic case a Beta-Bezier curve is actually also a Bezier curve. Hence, we have a 
curve design technique more general than Bezier curves. Since C2-continuous, 
composite cubic Bezier curves are equivalent to uniform B-spline curves, this 
means the new curve design technique is more general than uniform B-spline 
curves as well. 
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1 INTRODUCTION 

The shape of a Bezier curve segment is guided by its control polygon. By manipulating the control 
points of a Bezier curve segment, one can manipulate the shape of the control polygon and, 
consequently, the shape of the curve segment. In addition, Bezier curve segments satisfy the 
convex hull property and subdivision property [5; 6; 9] which make clipping, rendering and 
intersection computation for Bezier curve segments more efficient or doable. Hence, Bezier curves 
not only have intuitive appeal for interactive users, but are also attractive for system and 
numerical applications.  
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Actually, cubic Bezier curves are popular for shape modeling applications, such as font, cartoon 
character and car body design/representation (Figure 1), as well. Given a set of data points, one 
can construct an open or closed, composite cubic Bezier curve that interpolates the data points at 

its joints [2]. The composite curve is -continuous and can be manipulated by manipulating the 

data points. The final curve can be converted into a cubic B-spline curve [2] and, hence, can be 
processed either as a cubic B-spline curve or a composite cubic Bezier curve. 

 

 

 

Figure 1: 2D shape modeling examples. 

 

 

 

                Figure 2: A composite cubic Bezier curve that interpolates a set of data points. 

 

While one can change the skeleton shape (shape of the data polygon, see Figure 2) of the 
interpolating composite cubic Bezier curve (ICCBC), one cannot change the shape of the ICCBC 
once the skeleton shape is determined. This is because the control polygons of the segments of the 

ICCBC are completely determined by the shape of the data polygon. Hence, once the shape of the 
data polygon is determined, then so is the shape of the ICCBC. 

For years people have been trying to find ways to extend/modify the definition of Bezier curves 
so that one can change the shape of the curve without changing the control points of the curve [1; 
7; 2]. But none of the works seem to be intuitive enough for practical applications in the field. A 
recent work by Chu and Zeng [4] was an attempt in that direction as well. A Beta-Bezier curve of 
degree n with shape parameter  is defined by 

C ,            
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where  

,                                        (1) 

are the so-called Beta-Bernstein basis functions,  are 2D or 3D control points. 

When λ tends to infinity, Beta-Bezier basis functions reduce to Bernstein basis functions 

 

Hence the Beta-Bezier curves defined by Chu and Zeng [4] include Bezier curves as a special case. 

A few geometric properties of the curve, including a de Casteljau like algorithm similar to Bezier 

curve’s de Casteljau algorithm, are studied [4].  Conditions on -continuity at the joint of two 

adjacent Beta-Bezier curve segments are discussed by Levent and Sahin [8]. Unfortunately, 

Chu/Zeng and Levent/Sahin did not realize that the definition of Beta-Bezier curves given in [4] is 
not the best definition for Beta-Bezier curves. 

In this paper, we will present a better definition for Beta-Bezier curves and show that, with 
this new definition, properties of Beta-Bezier curves can be easily studied and computed, such as 
showing that Beta-Bezier curves satisfy the convex hull property and computing the second 

derivative of a cubic Beta-Bezier curve. Consequently, we are not only able to modify the shape of 
a Beta-Bezier curve without changing the control points of the curve, but also to perform all the 
properties of a Bezier curve such as recursive subdivision, converting to a B-spline representation, 

joining two curve segments with -smoothness and interpolating a set of data points with a 

composite cubic Beta-Bezier curves that is -continuous. One of the reasons for us to be able to 

do these is that in the cubic case, a Beta-Bezier curve is actually also a Bezier curve. 

The rest of the paper is arranged as follows. In section 2, a new definition of Beta-Bezier 

curves is presented and basic properties of Beta-Bezier curves defined this way are studied. 

Further properties of Beta-Bezier curves such as smooth ( -) joining of two curve segments, 

subdivision property, -continuous interpolation and B-spline conversion are discussed in Sections 

3, 4, 5 and 6, respectively. Concluding remarks are given in Section 7. 

2 NEW DEFINITION OF BETA-BEZIER CURVES AND BASIC PROPERTIES 

A Beta-Bezier curve of degree n with shape parameter  is defined as follows 

                      C ,                                                                (2) 

where  are 2D or 3D control points and 

                          ,                                                         (3) 

 = ,  are Beta-Bernstein basis functions of degree n. The basis functions defined in (3) are 

related to the basis functions defined in (1) in that . We have the following immediate 

properties of Beta-Bézier curves: 

(i) When , . Hence  reduces to a Bezier curve  of 

degree  defined as follows when  

                      ,                                                                       (4) 

where  

                                                                                                     (5) 

are Bernstein basis functions of degree n. 
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(ii) Since  and  for all  bigger than 0, and  and 

  for all  smaller than , a Beta-Bezier curve segment always starts at the first 

control point  and ends at the last control point . 

(iii) The sum of the basis functions of a Beta-Bezier curve equals one for any  and  （the unit 

sum property. Hence Beta-Bezier curves also satisfy the “convex hull property”, that is, a Beta-
Bezier curve segment is always contained in the convex hull of its control points. A proof to show 
that the basis functions of a Beta-Bezier curve satisfy the unit sum property can be found in [3]. 

(iv) A non-zero  applies a dripping force to the curve. The bigger the value of , the bigger the 

dripping force. The dripping force pulls the curve segment towards the base line segment  of 

the curve. When , the curve coincides with the base line segment.  See Figure 3 for the 

cases when ,  and  for a cubic Beta-Bezier curve segment. 

 

                                    

 

Figure 3: Cubic Beta-Bezier curves defined by the same control points but with different shape 
parameters. 

 

From this point on we will mainly focus on degree 3 case because that is what people are using for 
most of the applications. The only exception we know is a degree five curve/surface used in a dam 
design case in China. But it is known that dam design case can be done using degree three 
curve/surface as well. 

(v) A cubic Beta-Bezier curve can be represented as a cubic Bezier curve. 

Given a cubic Beta-Bezier curve  with control points , defined as follows 

                             ,                                                                        (6)       

where  are Beta-Bernstein basis functions of degree 3 as defined in (3), through simple 

computation, one can rewrite  as a cubic Bezier curve as follows: 

                            ,                             (7) 

where 

                             ,                         (8) 

                                                       (9) 

The sums of the coefficients of  and  in  and  are both 1. So  and  are both 

inside the convex hull of the control points of . Since the sum of the coefficients of  
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and  in  is one, this provides another proof of the fact that cubic Beta-Bezier curves satisfy 

the “convex hull property”. 

 and  can be written as 

                                                           （10） 

                                                          （11） 

To compute , first compute linear combination  of  and , and linear combination  of  

and  as follows: 

                         

                           

then compute the linear combination of  and  to get  

                       . 

Similarly, to compute , first compute linear combination  of  and , and linear combination 

 of  and  as follows: 

                   ;          

                       , 

then compute the linear combination of  and  to get  

                   . 

The relationship between these points is shown in Figure 4. 

 

 

 

Figure 4: Relationship between control points of a cubic Beta-Bezier curve and its Bezier control 

points. 
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It is clear now how the shape parameter  applies a dripping force on the curve. Note that  and 

 move from points on the control polygon leg   (when ,  ) to points on 

the control polygon leg  (when , , )。Therefore, according 

to (7), the curve will be pushed toward the base line segment  when  becomes larger. 

(vi) Beta-Bezier curves have a de Casteljau-like algorithm [4]. 

For any number t between 0 and 1, one can compute the value of a Bezier curve segment  of 

degree n as defined in (4) using the classic de Casteljau algorithm [5; 6; 9]: 

 

 

 

Figure 5: de Casteljau algorithm for a Bezier curve. 

 

The value of  is the value contained in  when the computation process stops. A chart that 

illustrates the computation process for a cubic Bezier curve segment is shown in Figure 6. 

 

 

 

Figure 6: Computation flow of the de Casteljau algorithm for a cubic Bezier curve. 

 

For a Beta-Bezier curve segment defined using the basis functions described in (1), a de Casteljau-

like algorithm is given in [4]. By replacing  with  in the computation process, we get the 

following de Casteljau-like algorithm for Beta-Bezier curves defined in (2) and (3): 
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Figure 7: de Casteljau algorithm for a Beta-Bezier curve. 

 

The value of  is the value contained in  when the computation process stops. A chart that 

illustrates the computation process for a cubic Beta Bezier curve segment is shown in Figure 8. 

 

 

 

Figure 8: Computation flow of the de Casteljau algorithm for a cubic Beta-Bezier curve. 

 

When  the de Casteljau-like algorithm for Beta-Bezier curves reduces to the de Casteljau 

algorithm for Bezier curves. However, unlike the de Casteljau algorithm for Bezier curves, the de 

Casteljau algorithm for Beta-Bezier curves cannot be used in the recursive subdivision process of a 
Beta-Bezier curve. Recursive subdivision technique for Beta-Bezier curves is shown in Section 4.  

3 SMOOTHNESS CONDITIONS BETWEEN ADJACENT CURVE SEGMENTS 

Two cubic Beta-Bezier curve segments can be joined together with -, - or -continuity. 

Note that the first derivative of a cubic Beta-Bezier curve is 

     

                                 (12) 

and the second derivative of a cubic Beta-Bezier curve is 
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                                                                                             (13) 

where  and  are basis functions of Beta-Bezier curves of degree 

2 and degree 1, respectively. 

Hence, for two adjacent, cubic Beta-Bezier curve segments  and  with control 

points { } and { } and shape parameters  and , respectively,  to 

have -continuity at the joint, we must have 

                   ;      

or 

                                                                                                         (14) 

                    

                                                             （15） 

When , (15) reduces to , -continuity condition for two adjacent, 

cubic Bezier curve segments at their joint. 

When   -continuity depends not only on the last control polygon leg of the first 

curve and first control polygon leg of the second curve, but also on vectors connecting the joint 
with the other vertices of the control polygons. Actually, the base line segments have the biggest 

impact on the continuity condition when  is large (see Figure 9). 

 

 

 

Figure 9: Connecting two cubic Beta-Bezier curve segments. 

 

For  and  to have -continuity at the joint, in addition to (14) and (15), we must 

also have , that is, 

     

                               (16) 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 18(6), 2021, 1265-1278 

© 2021 CAD Solutions, LLC, http://www.cad-journal.net 

 

1273 

When , (16) reduces to  ,  -continuity condition of 

two adjacent, cubic Bezier curve segments at their joint. 

When , -continuity depends also on    and  

 (see Figure 9). Since these vectors determine the curvature of the curves at 

the joint, when  is large, (16) indicates  and  have small curvature at the joint. 

4 RECURSIVE SUBDIVISION 

In this section we show that given a cubic Beta-Bezier curve segment  as defined in (6) and 

a  by computing the value of  the curve is divided into two Beta-Bezier curve 

segments at , each with its own control points. Therefore, one can perform recursive 

subdivision on cubic Beta-Bezier curves. 

More specifically, when one uses the de Casteljau algorithm (Figure 7) to compute the value of 

 for a given , the value one gets on  divides the curve segment into two 

portions:  

                         ;                                 (17)                           

 and  are each a cubic Beta-Bezier curve with shape parameter . However, unlike the 

situation for classic cubic Bezier curve segments, the control points of   and  are not 

 and  (the circled points in Figure 8), but  and 

. These control points are computed as follows.  

First, converting  to a cubic Bezier curve  with control points  as follows: 

                                 

where  and  and  are defined in (8) and (9), but should be computed using the 

process shown in Figure 4. For the convenience of subsequent indexing, we will use 

 to represent the control points of , that is, , , , . 

Next, performing a subdivision step on  by applying the classic de Casteljau algorithm (Figure 5) 

on the control point set  for . The computation process is shown in Figure 10. 

 

 

 

Figure 10: Computing the value of  at  when represented as a cubic Bezier curve. 
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The subdivision step splits  at  into two cubic Bezier curve segments  and  

with control point sets  and , respectively, that is, 

                 

                                                                                        (18) 

and 

                

                                                                                        (19) 

An example illustrating the situation for a shape parameter  and  is shown in Figure 

11. 

 

 

 

Figure 11: Subdivision of a cubic Beta-Bezier curve segment with shape parameter  at 

 

 

To show that  is the control point set of  defined in (17), it is sufficient to show 

that  defined in (18) is the same as . Note that from Figure 10 we can easily derive that 

     

     

     

By substituting these expressions into   and through straightforward algebra, one gets that                                 

     

                          

Then by substituting the expressions for  and  from (10) and (11) into the above equation and 

through straightforward algebra, we would have 
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                ,           

Note that .  Hence  is indeed the same as  and therefore 

 is indeed the control point set of . The proof for the  case is similar. 

The above proof also explains why  is not the control point set of . Note that  as 

a combination of  and  involves all of the control points of  and yet  only involves  

and . Therefore,  cannot be the second control point of . Likewise,  also involves all the 

control points of   while   only involves ,  and . Hence   cannot be the third 

control point of  either.             

5 INTERPOLATION USING COMPOSITE CUBIC BETA-BEZIER CURVES 

Given a set of data points , , , ⋯, , one can construct a composite cubic Beta-Bezier curve 

to interpolate these points. The curve is - continuous. 

In the case the data set is closed (  = ) (see Figure 12 for an example with 𝑛 = 5), the 

composite cubic Beta-Bezier curve has n segments and each segment , , is a 

cubic Beta-Bezier curve with control point set  { , , , } and shape parameter . 

 interpolates  and  at its start point and end point, that is,  and . 

Hence, for each segment  only two control points, , have to be constructed. 

Totally, we have  unknowns for the construction of such a  - continuous composite cubic Beta-

Bezier curve. These unknowns can be found using - and - continuity conditions at the data 

points. 

 

 

 

Figure 12: Interpolation using a composite cubic Beta-Bezier curve. 

 

Note that for  we have 

         (  
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If ,  are given then from (15) we have 

     

                                                                                          (20) 

where  and , and from (16) we have 

     

                                                    (21) 

where  and . 

By solving this system of 2n equations for   and , , we get the remaining control 

points for the construction of the - continuous, composite cubic Beta-Bezier curve that 

interpolates the given data points. However, assigning different shape parameters to a large 
number of segments is a tedious work. Besides, for many applications it is the overall shape that is 
important especially when the size of each individual segment is relatively small. A more 

appropriate approach is to use a global shape parameter  for all the segments of the interpolating 

composite curve initially and then adjust the value of  to adjust the shape of the interpolating 

composite curve after it is constructed. In such a case, (20) and (21) become of the following 
forms:  

     

                                                                         (22) 

where  ,  and  is a given global shape parameter, 

     

                                                                                                 (23) 

where  and . The example shown in Figure 12 is construction this 

way with . Note that in this case once the above system is solved and the interpolating 

composite cubic Beta-Bezier curve is computed, to change the shape of the curve, we simply 

change the value of  and compute the new shape of each segment using the original control 

points, we don’t need to solve the above system again. 

In the above system, if the initial value of the global shape parameter  is set to zero, then we 

have the following system of equations; 

     ,                                                                                       (24) 

    ,                                                                   (25) 

This is the system we need to solve to get a composite cubic Bezier curve to interpolate the 
given data points. We cannot change the shape of the curve once it is constructed unless we 
change the locations of some of the data points. 

For an open interpolating curve, we only have 2(n-1) conditions in any of the above systems. To 

get two extra conditions, one approach is to set the second derivatives at  and  to zero. 

6 REPRESENTATION CONVERSION 

A cubic Beta-Bezier curve segment can be represented as a cubic B-spline curve segment. 
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Given a cubic Beta-Bezier curve  with control point set  and shape parameter , 

first convert it to a cubic Bezier curve as the one shown in (7) with  and  being defined as in (8) 

and (9), see Figure 13 for an illustration. We then compute  ,  and  as follows: 

    ;      

    ;                                                                 (26) 

    ;     

If we define a cubic B-spline curve segment  using  ,  and  as its control points as 

follows: 

                                                         (27)           

where  then by substituting the expressions defined in (26) into (27) for  ,  and , 

with  and  being replaced with the expressions defined in (8) and (9), it can be proved through 

straight forward algebra that , that is, the cubic B-spline curve segment defined in 

(27) equals . Hence, a cubic Beta-Bezier curve segment can indeed be represented as a 

cubic B-spline curve segment as well. 

 

 

 

Figure 13: Representing a cubic Beta-Bezier curve segment as a cubic B-spline curve segment. 

7 CONCLUDING REMARKS 

This paper gives a new definition of Beta-Bezier curves. Like the original definition [4], the new 
definition also includes the classic Bezier curves as a special case. The main difference between the 
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new definition and the original definition is on the role of the shape parameter. In the new 
definition, the shape parameter is the inverse of the shape parameter used in the original definition. 

With the new definition, properties of Beta-Bezier curves are easier to study. It shows that 
Beta-Bezier curves not only have all the basic properties of Bezier curves such as convex hull 

property, recursive subdivision, B-spline conversion and  interpolation, but also the capability of 

modifying the shape a Bezier curve segment or a -continuous, composite cubic Bezier curve 

without changing the control points of the curve. This is because in the cubic case a Beta-Bezier 
curve is actually also a Bezier curve. Consequently, we have a curve design technique more 

general than Bezier curves. Since -continuous, composite cubic Bezier curves are equivalent to 

uniform B-spline curves, this means the new curve design technique is more general than uniform 
B-spline curves as well. 

Future works in this direction include the study of Beta-Bezier surfaces, extending the Beta 
shape parameter concept into B-spline curves and surfaces, and subdivision surfaces as well. 
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