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Estimation of Surface Stresses on Voxel Meshes
using Neuronal Nets on FEA Results in 2D Plane Stress Models
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Abstract. Voxel meshes are a natural choice for several types of analyses, particularly in
the context of certain (gradient-based) optimization methods (including machine learning) or
biomimicry. Such meshes can not directly be used to calculate meaningful surface stresses,
though, e.g. for modeling fatigue. In this work, a process for calculating stresses based
on neuronal nets (instead of smoothing and/or remeshing) is proposed, thereby potentially
enabling the integration of stress calculation into optimization methods that rely on backprop-
agation (including generative design approaches). The method is demonstrated for 2D plane
stress problems. Verification is attempted and the concrete behavior as well as limitations of
the current implementation are discussed.
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1 INTRODUCTION
This work presents a neuronal-net-based method for estimating surface stresses based on a FEA results obtained
on a voxelized mesh.

Voxel-style meshes are a natural choice for several types of analyses, particularly in the context of optimiza-
tion methods: Many machine-learning methods operating on geometric data (specifically those incorporating
convolutional networks) operate on such representations [1]. In addition, CT-type scans of natural structures
like trabecular bone traditionally yield voxel-style representations of reality [5]. Voxelization shall, in this con-
text, be defined as representing a (typically mostly smooth) geometry by all cubes of a fixed grid that are
judged as “inside”. Continuous representations (i.e. each voxel is assigned a density value) are commonly
used. In this work, though, density will be binary and active voxels are those, the centroids of which lie inside
the original model (see figure 1).

The use of voxel meshes may also be promoted by recend trends in production: Additive manufacturing
technologies may not even require an actually smooth geometry. So providing a suitable voxelized design may
even be increasingly sufficient for production. Note, that for such an approach, effective compression strategies
are known to facilitate an efficient representation of complex geometries [4].
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(a) Displacement results (magnitude)

S, Mises

(b) Stress results (von Mises)

Figure 1: Results from one sample problem, on both smooth and voxelized models

For many application in mechanical engineering, fatigue calculation is a necessity. Although fatigue may
occasionally be estimated based on voxel-wise strains [3], in particular for biological materials, the accurate
calculation of local surface stresses is a necessity with many engineering materials due to typical modes of
failure. Particularly in a high cycle fatigue context, stress results on a component’s model’s surface may be a
necessary and even sufficient basis for an estimation of durability. The latter is particularly true for commonly
used models describing fatigue as a stress-life relationship [2].

On a voxelized representation of geometry, calculating stresses is not immediately possible in a meaningful
way: If stresses are directly derived from FEA results on a voxel model, these may heavily be influenced by
discretization (edge length, element formulation and even coordinate origin) rather than the reflecting the
implied shape. Surface stresses will not converge towards a smooth progression due to the jagged nature
of the model, i.e. angles between neighboring elements’ faces at the surface will be multiples of π/2. Still,
displacement results converge with small element size and are consistent with results from smooth meshes
(see figure 1a compared to figure 1b), as the voxel model actually approximates the stiffness of the original
geometry.

One obvious strategy for calculating stresses more accurately is to derive an explicit estimation of the
underlying geometry, meshing this geometry suitably and performing FEA on this new mesh, before calculating
stresses from the resulting displacements. With this strategy, known implementations of the smoothing and
re-meshing step (potentially incorporating complex feature recognition) will break the backtraceability of the
overall process by switching from a voxel to a non-voxel mesh. Many optimization algorithms, though, benefit
from the availability of exact gradients. For linear finite element calculations as well as neuronal nets, the
calculation of the respective outputs’ gradients with respect to the elements’ stiffness (i.e., a voxels’ modulus of
elasticity) is known. Consequently, a stress calculation based on the voxel mesh might benefit such algorithms.

Combining such an FEA-based analysis with machine-learning-based design automation processes combin-
ing previously learned features in complex ways [10] may yield a potentially powerful optimization strategy:
Figure 2 depicts the forward pass through a hypothetical system for numerically optimizing geometrical shapes.
The process is based on structural simulation as well as features of heuristic nature, optimizations on such
systems are frequently referred to as generative design [8]. Using a density field ρ as representation of ge-
ometry, convolutional neuronal nets (CNN) can be used to identify (desired or undesired) features. Such
features may reflect targets like manufacturability, best design practices, cost or even aesthetics. Outputs
of this analysis could be formulated as quality measures Qi(ρ). In parallel, finite element analysis can be
performed on the very same representation of geometry, resulting in a displacement field. From this, stresses
can be calculated (the focus of this work) which then serve as a basis for modeling fatigue, ultimately giving
a safety factor SF (ρ), which will act as another quality measure. Additional measures, either directly derived
from the density field (e.g. total weight) or extracted from intermediate results (e.g. selected displacement
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Figure 2: Forward Pass of used in a hypothetical generative Design process

values) might be included. Ultimately, from all quality measures a overall loss function L(ρ), or – equivalently
– a target function can be designed. Based on this evaluation process (the forward pass), which should allow
backpropagation, an optimization can be set up to generate suitable shapes. Potentially suitable optimization
methods are particularly under investigation in a computer vision context [7].

In specific applications, FEA has been replaced entirely by heuristic models altogether [6]. Such approaches
typically have to be trained on specific class of problems. This work strives to avoid this limitations and be
potentially applicable to any mechanical design problem.

In this work, a potentially novel method for estimating surface stresses is proposed. Within this first
investigation, it is applied onto the two-dimensional plane stress problem.

As by the use of neuronal nets, a heuristic strategy is pursued, the method incorporates generating refernce
problems, extracting data for training, and finally training and applying the model. Those steps are presented
in the following.

2 GENERATION OF REFERENCE PROBLEMS
To provide a sufficient data basis for the training of a neuronal net, a meta-model of problems was defined.
This was chosen as follows: each training problem is constructed based on a mesh of square quadrilateral
elements. The total width of the base mesh is 0.5 and its height is 1.0. While the other three edges of this
mesh remain fixed, the right edge of each sample is distorted according to the following class of function. An
example mesh can be seen in figure 1. Let y be the vertical coordinate in this representation and the center
point of the original right edge (that is to be distorted) the origin of the coordinate system. Then the function
(representing a Fourier series)

s(y) = c

n∑
i=1

aiq
i sin

(
iy

2π + ϕi + ϕ0

)
(c, n, q) = (0.2, 10, 0.5)

gives the boundary of the deformed patch for y ∈ [−0.5, 0.5]. The parameters ϕi ∈ [0, 2π[ and ai ∈ [0, 1[
were chosen uniformly randomly for each sample. Subsequently, ϕ0 was adjusted so that s(−0.5) = s(0.5) =
0. Accordingly, the continuous mesh was constructed by distorting a regular mesh of bi-linear plane stress
quadrilateral elements.
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Analogously to the randomly generated geometry, random boundary constraints were defined in polar
coordinates with respect to the origin. Static terms enabling omnidirectional strain were introduced for all
points on the undeformed three edges:

uϕ = xr

n∑
i=1

biq
i sin

(
ixϕ
2π + χi

)
ur = c0 + xr

n∑
i=1

ciq
i sin

(
ixϕ
2π + ψi

)
Figure 1a shows the displacements calculated for such a randomly generated sample problem. As stiffness of
the models coincides (assuming sufficiently small edge lengths in the voxel model), the interior displacement
values show very good consistence. As described above, surface stress results in the voxelized model do not
locally give reasonable approximation of the stresses in the smooth model, as shown in figure 1b.

3 EXTRACTION OF TRAINING DATA
Subsequently, for every sample problem (defined by the above described random geometry and random bound-
ary constraints), for every sufficiently interior voxel on the deformed edge, an input dataset as well as target
stress data were extracted. Node displacements were used as primary input. Nodes that were not inside the ge-
ometry, i.e. that had no elements assigned to them, were assigned displacement (0, 0), as an arbitrary nonzero
value as indicator for outside nodes may have impeded the learning process. This obviously adds ambiguity
to the meaning of nodes with displacements (close to) 0. So, in addition, a binary field (i.e. containing only
values 0 or 1) was added, carrying the information about the nodes being present in the model. Accepting
some limitations in the analogy, this additional field could be interpreted as a density field.

To obtain the associated targeted stress values from the continuous model, bilinear extrapolation of
integration-point data was performed. The target location was chosen to match the respective voxel’s cen-
troidal position projected onto the edge of the geometry. From a total of 2 000 pairs of meshes, 23 were
excluded due to excessive distortion. From each of the remaining problems, 76 voxels on the non-straight edge
were used as locations for stress evaluation. Each of those locations ultimately gave 4 data sets by rotation,
resulting in a total of 601 008 data sets for training the model.

Let nu and nd denote the halved edge length of the patches (of displacements and densities respectively)
used for input, hence being of Dimension 4n2

i . Using the index ·(0) to indicate original data from the reference
problems, the extracted data is comprised of:

• Input data:

– Node “densities” indicating a node’s presence in the model, d(0) ∈ {0, 1}4n2
d)

– Displacements in the x-Direction, u(0)
x ∈ R4n2

u

– Displacements in the y-Direction, u(0)
y ∈ R4n2

u

• Target vector σ(0) = (σ(0)
xx , σ

(0)
yy , σ

(0)
xy )

As a neuronal net will be used to model the non-linear effects of the problem (and standard training methods
are not very well suitable for arbitrarily scaled input data), the following three-step normalization process is
used:

• Removing rigid body rotations: As overall rigid body rotations were deliberately excluded from the
reference problem definition, these will be small in the training set. Hence, the learned heuristic will not
learn that the problem is invariant to rotations. In real-world problems, in contrast, they may frequently
occur and – in combination with the last step (displacement scaling) – give inconsistent results.

• Centering: The displacement values will be offset so that the arithmetic mean value will be zero
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• Displacement scaling: The displacement values will be scaled so that the quadratic mean value will be
zero. This – in contrast to the two previous steps – requires the consistent scaling of the stress values.

Let ku < 4n2
u and kd < 4n2

d denote the number of nodes present in the model in the respective (displacement
or “density”) field and u(0)

·,j denote the displacement and x(0)
·,j the location vector of the j-th node of the patch.

Then, assuming suitability of linearization for the rotation step, the normalization algorithm described above
can be written as:

ᾱ = 1
ku

∑
j

‖x(0)
·,j × u(0)

·,j ‖

‖x(0)
·,j ‖

u(1)
x = u(0)

x + ᾱx(0)
y

u(1)
y = u(0)

y − ᾱx(0)
x

u(2)
i = u(1)

i −
u(1)
i · 1
n

, i ∈ {x, y}

uinput
i = u(2)

i

√
ku√

u(2)
x · u(2)

x + u(2)
y · u(2)

y

Stress scaling was adjusted so that the resulting model would be independent of the elastic modulus and the
voxel size. The use of ŷ, which denotes half the edge length of the displacement input range (instead of the
voxel edge lenth) and constant factor of

√
3 results from the intention to have σtarget

xx = 1 for constant uniaxial
stress. Effects of Poisson’s ratio were neglected at this point, it was set at 0.3 in all calculations.

σtarget =
√
kuŷ

E
√

3
√

u(2)
x · u(2)

x + u(2)
y · u(2)

y︸ ︷︷ ︸
=:1/σref

σ(0)

This way, the model can be trained to return a dimensionless stress factor independent on voxel resolution
and material.

4 TRAINING OF THE MODEL
Training of neuronal nets was performed using a stochastic gradient descent algorithm incorporating a mo-
mentum term. The loss function was defined as the mean square error with respect to the plane stresses as a
vector. The net used as an initial basis for the investigations is described in the following table:

Layer Type Dimension Activation
1 fully connected (4n2

d + 8n2
u)× 256 tanh

2 fully connected 256× 128 tanh
3 fully connected 128× 64 tanh
4 fully connected 64× 3 1

For this net, several cases of input vectors were specifically investigated: (nd, nu) ∈ {(8, 8), (8, 4), (4, 4)}. The
results in terms of von-Mises equivalent stress on sample problems not used for training are visualized in figure
3.
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(a) (nd, nu) = (8, 8),
validation loss=0.00270

(b) (nd, nu) = (8, 4),
validation loss=0.00369

(c) (nd, nu) = (4, 4),
validation loss=0.00513

Figure 3: Fit of model output to Reference Solution

Number show that a reasonably accurate prediction can already be made at nd = nu = 4 within the
meta-model of training problems. Nevertheless, increasing the scope of “perception” of the model somewhat
improves the prediction quality. Using four times the input dimensions results in roughly half the loss. In figure
3b, one can – in addition to a greater deviation – observe a slight convex bend with high relative stresses.
That is, high stress concentrations tend to get underestimated by the model.

In addition, variations of the neuronal nets were generated by removing the first hidden layer of dimension
256 or the two first layers leaving only one hidden layer to successively decrease complexity. Verification loss
values (with respect to sample problems not used for training) are given below, together with the total number
of degrees of freedom in the model.

DOFs at (nd, nu) = Losses at (nd, nu) =
Hidden Layer Sizes (8,8) (8,4) (4,4) (8,8) (8,4) (4,4)

256,128,64 238 211 139 907 90 755 0.00270 0.00369 0.00513
128,64 106 883 57 731 33 155 0.00283 0.00364 0.00516

64 49 411 24 835 12 547 0.00292 0.00376 0.00523
lin. reg. 2 307 1 155 579 0.0129 0.0129 0.0129

These results show very little dependency on model complexity, that is, even the simplest models gave
reasonably accurate results. This indicates that the problem of estimating stresses on sufficiently smooth
underlying geometries is much simpler than initially expected. For reference, the results of a linear regression
model on the same data-set is given in the last line.

A basic investigation of the weights in the first layer of the neuronal net is shown in 4. The norm of all
gains with respect to each input channel is visualized. It is not surprising that particularly in the bigger model
(4a) the stresses depend on relatively wide geometry input, while most relevant displacement (i.e. strain)
information is very local. In contrast, the density in the very center is completely redundant (stresses are only
queried for existing elements).

5 VERIFICATION
Outside-model validation was attempted to investigate the suitability of the proposed process for real-world
engineering problems. A beam with a circular notch under torsional loading was chosen, as it exhibits particu-
larly significant differences to the problems within the training data set: Instead of the harmonic nature of the
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(a) (nd, nu) = (8, 8)

(b) (nd, nu) = (8, 4)

(c) (nd, nu) = (8, 4)

Figure 4: Weights (2-Norm) in the first Layers

training data, it consists of segments of constant curvature, connected by sharp corners. Still, in principle, it
should be possible to estimate the curvature – and thereby the stress values – within those segments assuming
the choice of a suitable resolution.

A sketch of the geometry and a plot of concentration factors from [9] is given in figure 5. The choice
of parameters for the validation problem (r/b,B/b) = (0.1, 1.15) is highlighted in the figure. The voxelized
model investigated in the following was constructed so that at the critical location (i.e. the center of the
notch), there was always a gap exactly one voxel wide. This choice was made in order to provoke possible
artifacts of the models, thereby serving as a plausible worst-case problem.

6 compares the stress estimates of the models. The lower section of figure 6 shows the dependency of
the models’ (von-Mises-equivalent stress) estimates on the meshing size . The meshing size is given by the
multiple of voxel edges amounting to the notches radius.

For context, the upper section of figure 6 displays the scope of input for selected models (resolution
indicated by the tick marks connecting the grids to the plot). Black cells are parts of the area of ni = 4 gray
cells of the area of ni = 8. White cells are not part of the model. Note that this visualization is element-based,
while the actual input to the model is node-based.

The curves for the nu = 4 seem to show a plateau for 1.5 to 2.5 elements per radius in good accordance
with the reference solution. This should not be overstated, as in this range the notch is represented by a
constant voxel mesh and differences in model output only result from slight differences in the displacement
field (and, thereby, reference stress).

The results show a strong variation of the model output with resolution. The tendency to underestate
at low resolutions is to be expected: the smoothness of training problems will lead to an underestimation of
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Figure 5: Stress concentration factors from [9]

Figure 6: Results for the notched Beam
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Figure 7: Resolutions resulting in accurate Stress Estimates

curvature as the surrounding segments of curvature 0 will dominate.
The overestimating behavior at high resolutions is less obvious: For high resolutions, the adversely chosen

problem gives the same geometric input as very low resolutions (a straight boundary with one single voxel
missing). Normalized strain will vary at a different rate (and curvature) within the geometry, determined by
overall bending stiffness (i.e. relative width) as well as local stress concentration (notch geometry). The model
is seemingly unable to distinguish those effects, though. It hence returns a very similar factor (approximately
1.7 for (nd, nu) = (8, 8)) for both problems. The reference stress σref could be informally described as the
“average stress” in the geometry under consideration. For low resolutions, this reference stress gives a value
close to the nominal stress, which is to be scaled by a concentration factor in classical mechanical engineering.
For high resolutions, in contrast, the reference stress in the voxel model is already very close to the real stress.
Nevertheless, it is again scaled by the similar concentration factor.

Figure 7 selectively visualizes the input ranges for “ideal” resolutions in terms of accuracy of the stress
estimate. To the author, it is intuitively striking that for all those cases, the input range resembles a somewhat
“harmonic” contour. A closer investigation reveals, though, that the theoretical curvatures of a single harmonic
fitted to the input contour does not quite give the same maximum curvature as the underlying circular notch.

For context, the upper part of figure 6 shows the scope of input for selected models (resolution indicated
by the tick marks connecting the grids to the plot). Black cells are parts of the area of ni = 4 gray cells of
the area of ni = 8. White cells are not part of the model.

The curves for the nu = 4 seem to show a plateau for 1.5 to 2.5 elements per radius in good accordance
with the reference solution. This should not be overstated, as in this range the notch is represented by a
constant voxel mesh and differences in model output only result from slight differences in the displacement
field (and, thereby, reference stress).

In summary the model trained in this work exhibits a strong bias towards certain properties of the input
geometry (i.e. a narrow-band superposition of harmonic functions), which can only be predetermined by the
definition of the training problems. This is consistent with the above minimal decrease in loss due to reduction
of model complexity, which may also point towards an inherent bias.

6 CONCLUSION
The model trained in this demonstation works well within the used class of problems (of smooth shape). For
problems of lower degree of smoothness, its usability decreased sharply. The limitations may be determined
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by the choice of training problems, even though some error is inherent to the problem.
For bio-mimicry tasks, particularly with trabecular structures, this might not be a significant limitation, as

some natural structures may tend to be smooth and typical curvatures may be known.
In the context of reverse-engineering of artificial structures or topology optimization/generative design,

these limitations will be serious. Discussed issues may be mitigated by the following advancements:
Training problems shall be defined in a more generic, “less smooth” way. Training problems can be

constructed by randomly combining predefined geometrical features, i.e. performing Boolean operations on
randomly sized and placed primitives. This also transfers well to 3D problems.

The learning process shall be extended to continuous (non-binary) density fields. Such a field trivially carries
more information on the underlying shape and should thereby support the estimation process. In addition,
optimization processes may require the a usable model to operate on smooth (in terms of density gradient)
representations of geometry. In this context, different approaches to calculating stress-like measures might
arise, like using stresses and density gradients directly.

Successively, the process depicted in figure 2 shall be demonstrated, providing an expandable generalization
of topology optimization, and ultimately transferred to 3D problems.
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