
 

 

Computer-Aided Design & Applications, 18(5), 2021, 1096-1110 

© YYYY CAD Solutions, LLC, http://www.cad-journal.net 
 

1096 

 

Solid Model Similarity for Engineering Applications using 

Congruence of Triangles 

Christopher L. Sousa1  and Rahul S. Renu2   
 

1Clemson University, clsousa@g.clemson.edu 
2Francis Marion University, rrenu@fmarion.edu 

 
Corresponding author: Rahul S. Renu, rrenu@fmarion.edu 

 

Abstract. This research is an investigation of a solid model retrieval method based 
on congruence of triangles - Congruent Triangle Similarity (CTS). In the CTS method, 
three side lengths of each triangle of a query mesh solid model are computed, and 
the frequency of side length triplets are compared with those of a database model. 

This comparison is computed as a ratio of number of congruent triangles across pairs 
of solid models to the total number of triangles. 

CTS method is evaluated using the Engineering Shape Benchmark with standard 
information retrieval metrics. Results indicate that (1) retrieval performance shares 
an inverse-U relationship with resolution of solid models, (2) retrieval performance 
peaks when number of decimals used is on. It is thus concluded that the CTS method 
is an effective method of solid model retrieval. The CTS method has an advantage of 
having good retrieval performance on low fidelity solid model files. 
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1 INTRODUCTION 

During product design, three-dimensional solid models are developed to serve as virtual 
representations of the desired product. The ability to accurately recall existing solid models from a 

database in order to recycle designs would positively impact the time requirements of the product 
design phase. Whether it be repurposing existing parts or reverse engineering designs in order to 
make a new product entirely, design reuse aids in reducing the cost associated with the product 
development process.  

Further, downstream operation data (such as manufacturing quality) concerning the product is 
collected and coupled with the previously created solid model through the use of Product Data 

Management systems. This coupling of solid models and relevant manufacturing data allows for an 
organization to make predictions about product behavior, based on design data [4,30]. For example, 

if it has been previously learned that a part’s geometry is not conducive to the machining capabilities 
of a company, then a geometrically similar part may also pose issues (assuming machining 
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capabilities remain unchanged). The prediction and mitigation of manufacturing concerns during the 
product design step would save time and reduce cost in the manufacturing phase of product 
development. This prediction can be facilitated through retrieval of solid models and their associated 
information. In order to objectively retrieve models with a similar geometry to what is desired, solid 

model similarity methods are used. 

The household use of solid model similarity stems from the additive manufacturing revolution. 
With additive manufacturing machines becoming more affordable and web-based databases of solid 
models expanding their catalogues through crowdsourcing, the need for an engineering solid model 
retrieval mechanism is increasing. Ultimately, the desire to create a solid model similarity 
assessment method stems from the need for an objective method of solid model retrieval from a 
database. The currently popular text-based querying method is associated with high amounts of 

subjectivity. For example, using text queries to retrieve models from a database relies entirely on 

the assumption that the language, descriptions, and/or tags used by the user searching for a model 
will match those used by the creator of the model. Dialect differences between even two English 
speaking users could be the difference between querying the text phrase “boot” and retrieving either 
footwear or the rear, storage portion of an automobile. These language differences are only 
exaggerated by translational disconnects between speakers of different languages. Many 

multinational companies will find themselves with various solid models created by employees who 
speak different languages. While the troubles of text querying caused by various dialects of the same 
language may be solved through detailed part descriptions, language barriers caused by non-exact 
translations will persist. Additionally, creating and reading hundreds of lengthy descriptions of solid 
models would only further complicate and lengthen the product development process. Therefore, 
query-by-solid-model (see Figure 1) is a preferred approach. 

 

 
 

Figure 1: Query-by-solid-model method for solid model retrieval 

 

The work presented in this paper compares triangular mesh solid models based on the congruence 
of their constituent triangles. The framework and scope of this research is presented in Figure 2. 
This work requires the existence of three-dimensional solid models (in boundary representation 
format [28]) within a company’s database. These models must then be converted into a triangular 

mesh format (like STL) using one of many standard methods/software [2,6]. It is critical that the 
conversion from B-REP to triangular mesh representation occurs with consistent settings for all 
database models.  
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Figure 2: Framework and Scope of this Research. 

 

The premise for this research is that if all triangles from a solid model are congruent to those from 

another solid model, then these solid models are identical. Furthering this, if some fraction (< 1) of 

triangles from a solid model are congruent to those from another solid model, then they might be 
considered similar (yet, not identical). Quantification of the similarity between two such models is 
investigated, and results presented in subsequent sections. 

2 REVIEW OF RELEVANT WORK  

This work is motivated by the increasing use of solid model similarity for search and retrieval within 
engineering databases. While numerous methods to compute solid model similarity exist, few focus 

on assessing these methods for their ability to retrieve models from the perspective of engineering 
relevance. In this paper, methods that have been used for engineering purposes are reviewed and 
their shortcomings are identified. A more extensive review of general solid model similarity methods 
can be found in [1,10,19]. 

Solid model similarity methods have been investigated and applied to retrieval of machining 

process planning [14,23,9], assembly time estimates [13,20,21,27,26], assembly work instructions 

[24], and other solid models [11,16,22,29,15,17].  One of the oldest forms of solid model 
comparisons is Group Technology [14]. In this method, an alphanumeric string is assigned manually 
to a part based on its machining features. This alphanumeric string is then used for search and 
retrieval of machining process plans. A major drawback of this process is the subjectivity associated 
with the manual assignment of alphanumeric codes. Researchers have worked to overcome this by 
automating the assignment process [5] and hence making it repeatable and consistent. However, 
the granular nature of comparison leads to false positives being identified. 

Hong and colleagues [7] have developed a two-stage approach for retrieving solid models of 
mechanical parts for the purposes of part reuse. In the first stage, a coarse comparison of overall 
shape is performed. This is performed using the D2 method proposed by Osada and colleagues [22]. 
Once a subset of coarsely similar solid models have been identified, a finer level of comparison is 
performed using Boundary Representation (B-rep) [28] information. This allows the comparison of 

individual features between two solid models. This method is dependent on the presence of B-rep 
information, which is absent in formats such as STL and AMF. This disallows the method from Hong 
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and colleagues from being used on parts generated for additive manufacturing purposes. The 
requirement of B-rep information is also found in Li and colleagues’ work [15]. 

Tao and colleagues [29] use partial shapes within solid models to search for other solid models 
with matching partial shapes. In other words, retrieval is performed on partial shape matches as 

opposed to global shape descriptors. While there are several high-impact applications of partial 
shape-based searches, global shape-based searches lend themselves better to be applied in 3D 
query-by-model search engines. 

Another effort to use solid model similarity for engineering applications comes from Iyer and 
colleagues [11]. They investigated a shape-based search method for applications throughout a 
product’s lifecycle. Their method allows users to Query-By-Example, Query-By-Sketch, or through 
Feature Vector Choice. Of particular interest is the Query-By-Sketch method, which requires a user 

to generate an approximate query solid model. This query model is then voxelized using its B-rep 

data, and subsequently a representative skeletal graph is generated. The graph parameters, voxel 
parameters, geometric parameters, and moment invariants are used to generate a feature vector for 
a solid model. Feature vectors of database solid models are compared to that of the query solid 
model for search and retrieval of the former. The following drawbacks are associated with this 
method: (1) The multi-step process is computationally intensive; (2) The method relies on the 

existence of B-rep information for voxelization. 
Ramesh and colleagues [23] use solid model similarity for variant process planning in 

manufacturing. Their method focuses on the extraction of solid model features, mapping these solid 
model features to machining features, and also focuses on a similarity metric based on solid model 
features that affect machining. For the last part, the authors use feature existence, feature count, 
feature direction, feature size, directional distribution, size distribution, and relative orientation to 
vectorize, and subsequently compare solid models. Similar work comes from Elinson and colleagues 

[3], who have developed a solid model similarity assessment technique for the purposes of retrieval 
of manufacturing plans. Their algorithm identifies geometric features relevant to machining and 

constructs a graph structure from these features. The graph structures from the query model are 
then compared to those from database models, and manufacturing plans of the latter are retrieved. 
Unlike the work from Iyer and colleagues [11], these works are narrowly focused on machining 
applications and do not have extended use in other engineering applications. 

A relatively different approach was explored by Manns and colleagues [18], who have 

investigated methods of predicting assembly process and assembly time information from product 
geometries. Their method involves the conversion of solid models of an assembly (of multiple parts) 
to a feature vector. This feature vector includes part weight, centre of gravity and outer dimensions, 
and is used to cluster similar solid models together. Clusters of similar solid models are then 
associated with clusters of process descriptions. This allows for a new solid model to be assigned to 
a cluster (through unsupervised machine learning) and its corresponding process description cluster 

be retrieved as a prediction. While this research does more than just identify similar solid models, 
there are several concerns. First, language used in their paper [18] seems to suggest that the feature 

vectors are composed of factors beyond those that are stated explicitly. Second, rationale for use of 
the elements of the feature vector are not provided - this disallows one from extending their method 
to other engineering applications beyond assembly time prediction. Lastly, the features used for 
clustering include factors beyond the solid model themselves (number of standard parts used, for 
instance). 

Other researchers have implicitly used solid model similarity as a conduit between the early 
engineering design stages and downstream manufacturing stages. Namouz and colleagues [21] have 
used the interference between parts in an assembly solid model to predict assembly time estimates. 
Their approach uses artificial neural networks to relate connectivity metrics to assembly time 
estimates and therefore, they don’t explicitly compute the similarity between two solid models. In 
addition, the black box approach used doesn’t allow researchers to understand the relationship 
between solid models that allow the prediction of assembly times. Renu and colleagues [24] have 

used the D1 metric to relate solid models to assembly work instructions. They have also developed 

a method that generates shape signatures of tessellated solid models based on the area of the 
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triangles. The latter method was found to have poor performance (measured by Precision-Recall) 
when the query and database models had several curved features. This poor performance was 
attributed to the larger number of false positives generated when comparing areas of triangles - two 
triangles can have different shapes, but identical areas. To overcome this weakness, the research 

presented in this paper investigates a method that computes similarity of tessellated solid models 
based on the congruence of the constituent triangles – the CTS method. This is evaluated on the 
Engineering Shape Benchmark (ESB) [12] to assess its suitability to engineering applications. 

3 PROPOSED METHODOLOGY  

Due to the nature of the similarity assessment, its function hinges on the necessity of all database 
and query files being of the same tessellation resolution (see Figure 2). This requirement makes the 

proposed approach more suited to applications within an enterprise where tessellation procedures 

can be controlled, as opposed to applications on open databases where STL file resolution is not 
standardized. The solid model similarity assessment method presented in this research uses the STL 
file format, and can be seamlessly extended to any file format that uses triangular mesh 
representation. Specifically, the side lengths of each tessellation are calculated in order to build a 
profile of every triangle that comprises the model. These side lengths are then used to generate a 
shape signature for each solid model, and subsequently used to compare the number of occurrences 

of congruent triangles between solid models. The complexity of the algorithm, for a given pair of 
solid models is O (N^2). Pseudo code for this can be seen below. 
 

1. For the query STL file 
a. Calculate side lengths for every triangle 
b. Round side lengths to one decimal place 

c. Calculate the number of occurrences of each, unique triangle 

2. Repeat Step 1 for all database STL files 
3. Determine similarity by using Equation (3.1) 
4. Normalize similarity scores using Equation (3.2) 

 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑎𝑐𝑟𝑜𝑠𝑠 𝑏𝑜𝑡ℎ 𝑚𝑜𝑑𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝑠 𝑎𝑐𝑟𝑜𝑠𝑠 𝑏𝑜𝑡ℎ 𝑚𝑜𝑑𝑒𝑙𝑠
 

(3.1) 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑆 =  
𝑆𝑑 − 𝑀𝑖𝑛 𝑆

𝑀𝑎𝑥 𝑆 − 𝑀𝑖𝑛 𝑆
                     ∀ 𝑑 ∈ 𝐷 

 

(3.2) 

𝑊ℎ𝑒𝑟𝑒:    
𝑑 = 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑚𝑜𝑑𝑒𝑙   
𝑆 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑠𝑐𝑜𝑟𝑒  

𝐷 = 𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑜𝑙𝑖𝑑 𝑚𝑜𝑑𝑒𝑙𝑠 𝑏𝑒𝑖𝑛𝑔 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑   
 

 

The check for congruence is performed by creating an array of lists. One array is created for the 
query model and another is created for the database model. Each list has three elements - the three 
side lengths of a triangle, arranged in ascending order of their magnitude. If a list of ordered side 

lengths is found in both, the query and the database model, then the difference in their computed. 

Normalization of similarity scores occurs following their calculation using Equation (3.2). In this 
process, each database model is assigned a number from 0 to 1 (inclusive), based on its similarity 
to the query model, where 1 indicates most similar and 0 indicates least similar. The query model is 
included in the database set to ensure that 1 indicates an identical match. 

The Congruent Triangle Similarity (CTS) method is scale-sensitive by design due to its intended 

application in engineering settings. For instance, let’s consider a case where the CTS method is used 
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to find similar screws to a query screw model for the purpose of assembly instruction retrieval [25]. 
In this case, scale sensitivity is highly desired because a 1in screw will have significantly different 
assembly process than a 10in screw. 

The CTS method was evaluated using the Engineering Shape Benchmark (ESB) [12]. Jayanti 

and colleagues have developed this benchmark specifically for engineering applications, and they 
have also provided Precision-Recall curves showing the performance of solid model similarity 
techniques from literature. The latter allows the CTS method to be objectively compared with the 
performance of pre-existing methods. 

In terms of testing, the sensitivity of the CTS method to two parameters was evaluated: (1) 
Resolution of the tessellations for all files; (2) Number of decimal places used to compute side 
lengths. All 867 models of the Engineering Shape Benchmark (ESB) were modified using a quadric 

edge collapse tool in Meshlab [2] to adjust the resolution of the files. This process yielded ten sets 

of ESB files, one at 100% resolution and each subsequent version decremented by a 10% reduction 
of resolution. The reduction in resolution is reducing the number of tessellations that comprise each 
solid model. For example, reducing a model which was originally comprised of 100 tessellations by 
50% would result in a model with 50 tessellations. A visualization of the reduction of tessellations 
can be seen in Figure 3. It must be noted that ten sets of ESB files were generated, and testing was 

performed within (and not across) these sets. 

 

 
 

Figure 3: Solid model from the ESB with tessellation overlay alongside reduced resolution versions 

of the original. 

4 TESTING AND EVALUATION  

4.1 Engineering Shape Benchmark 

The ESB is separated into three main categories “Flat-thin walled parts,” “Rectangular-cubic prism 
parts,” and “Solids of revolution.” Each main category consists of a number of subcategories within 
which solid models are placed [12]. As mentioned earlier, ten sets of ESB files were generated, 
where nine sets are obtained by reducing STL resolutions in steps of ten (90%, 80% … 10% 

resolution) and one set is the original ESB (100% resolution). Of these ten sets, four were used for 
sensitivity analysis – 10%, 40%, 70%, and 100%. A sensitivity analysis was also performed on the 
number of decimal places used to compute triangle side lengths. Performance (defined 

subsequently) was evaluated when the following number of decimal places were used: 1, 2, 3, 4, 9, 
10, 11, and 12. For each resolution set and each decimal rounding place, an M-by-M matrix was 
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generated by treating each ESB file as a query and determining its similarity to all other files from 
the ESB – resulting in 24,054,048 comparisons. Performance of the CTS was assessed using the 
following two information retrieval metrics. 

4.2 Precision-Recall 

Performance was quantified by using Precision-Recall curves (constructed using the NIST TREC 
standards [8] to stay consistent with Jayanti and colleagues’ work [12]). Precision is the fraction of 
documents retrieved that are relevant to what is queried (Equation (4.1)), and recall is the fraction 
of total relevant documents that were retrieved (Equation (4.2)). It must be noted that a database 

solid model is deemed relevant if it is the same subcategory as that of the query model (as defined 
in [12]). The precision values at various levels of recall (10%, 20%… 100% of relevant documents) 
are calculated and plotted to result in a Precision vs. Recall (PR) curve. Pre-existing solid model 

similarity assessment methods from literature have been benchmarked using PR curves on the ESB 
models. These solid model similarity methods include: Light Field Descriptors, Convex Hull 
Histogram, 2.5D Spherical Harmonics, and Moment invariants. A comprehensive list and description 
of all methods can be found in [12]. A further discussion of the comparison between PR curves from 

the CTS method and PR curves from literature can be seen in the Results and Discussion section. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑
 

(4.1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠
 

(4.2) 

 

4.3 Precision at Specified Retrieval Sizes 

Precision is calculated for a predetermined size of retrieval. This metric is relevant due to the 
intended application of the CTS method for search and retrieval of solid models from a database. In 
context of search engines, this metric is used to determine the fraction of the first n results that are 
relevant.  

5 RESULTS AND DISCUSSION  

The results for the sensitivity analysis are presented first, along with a discussion of a 
recommendation for number of decimals and resolution to be used. Next, PR curves are constructed 
using the recommended parameters and superimposed on those from Jayanti and colleagues [12], 
and therefore provide a qualitative comparison of the CTS method with methods from literature. 

 
Precision at retrieval size of five was used as the metric to determine “performance” as this 

mimics a search engine that provides five results on its first page. Performance was analyzed for 
each combination of the four levels of resolutions and eight decimal places. The performance was 
found to have positive correlation (Pearson’s coefficient, r = 0.34) to resolution of STL files used, 
and negative correlation (Pearson’s coefficient, r = -0.40) to number of decimal places used to 
compute side lengths. A plot of the performance versus decimals and resolutions (Figure 4) shows 
that performance peaks at low decimal places before it lowers and plateaus at higher decimal places. 

This behavior is explained as follows. Reducing the number of decimals used to compute the triangle 
side lengths increases the probability of two triangles being deemed congruent. This, in turn, 
increases the probability of having a larger numerator in Equation (3.1), and thus having a higher 
similarity score. This is evidenced by the density of the M-by-M matrices for various decimal places 
(see Figure 5). The difference between matrix density for one decimal place and matrix density for 
two decimal places is large. This observation coupled with the high performance of solid models at 

70% resolution leads to the following parameters being recommend and used to compute CTS: a 
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medium tessellation resolution (70%) along with the use of one decimal place to compute side 
lengths. 

 

 
 

Figure 4: Average Precision for Various Decimals and Resolution Combinations 
 

 
 
Figure 5: Sparsity of Similarity Score Matrix Significantly Reduces when Number of Decimals 
Increase. 
  
Using these recommendations, PR curves were constructed for the ESB subcategories (see Figure 6, 
Figure 7, and Figure 8). Select curves were then superimposed on all available PR curves from [12], 

and the resulting data is presented in Figure 9. The proposed method’s performance was subpar in 
a few categories. This was further investigated, and a primary contributing factor was found – false 
negatives. A retrieved item could be deemed ‘irrelevant’ based on the subcategory it was classified 
into [12] although it was geometrically similar (and thus, ‘relevant’) to the query.  

The results from the aforementioned evaluation in conjunction with basic requirement of 

tessellated solid model representations (and no requirement of BREP data) makes the CTS method 
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viable to be used for search and retrieval of engineering solid models. Figure 16 shows examples of 
query and retrieved solid models using the recommended parameters for CTS. All PR curves, and 
search and retrieval examples can also be found at the following website: 
https://github.com/rahulrenu/CongruentTriangleSimilarity 

 

 
Figure 6: PR Curves for Flat Thin Walled Components Using CTS (70% Resolution, 1 Decimal Place). 

 
Figure 7: PR Curves for Rectangular Cubic Prisms Using CTS (70% Resolution, 1 Decimal Place). 

 

 
 

Figure 8: PR Curves for Solids of Revolution Using CTS (70% Resolution, 1 Decimal Place) 
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Figure 9: PR Curves Comparing CTS and Methods from Literature. 

6 CONCLUSIONS 

The ever-increasing use of solid models in the engineering domain (industrial and household) has 
resulted in large databases of solid models becoming available to engineers and additive 
manufacturing enthusiasts alike. Research has established that reusing existing designs from these 
databases has benefits that include: (1) Reduction of design iterations performed, thus reducing 

product realization lead times; (2) Increased probability of using existing manufacturing capabilities 
(and not having to invest in new manufacturing machines); (3) Enabled reuse of institutional 
knowledge. A natural mechanism that allows the reuse of existing designs is solid model similarity. 
Existing solid model similarity assessment methods either require more information than just mesh 
information (such as B-Rep data), or have high computational complexity, or use black box 
approaches. To overcome these deficiencies, in this work, the CTS method of computing solid model 
similarity is presented. The method is driven by Equation (3.1), is completely transparent, and works 

on triangularly tessellated files thus supporting solid models developed for additive manufacturing 
(see Figure 10). Further examples come from testing the method on crowd-sourced STL files [31].  

A thorough sensitivity analysis is performed to evaluate the effect of two parameters on the 
performance of CTS: (1) Number of decimals used to compute side lengths (2) Resolution of STL 
files used. Through nearly 24 million comparisons, it is found that the CTS methods performs best 
when one decimal place is used to compute side lengths and even when highest resolution/fidelity 

STLs are not available. The CTS method is also compared to methods from literature by 
superimposing the former’s PR curves on the latter. From these curves, it is seen that in all but one 
ESB subcategory (Prismatic Parts), the CTS outperforms most methods from literature.  

The work presented in this paper must be carried forward and employed within industry to assess 
its efficacy as a design reuse mechanism. In addition, this work must be extended to enable the 
search and retrieval of assembly files (comprising of several individual part files). 
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7 APPENDIX A 

 
 

Figure 11: Search and Retrieval Examples from NIST1,2 

 
1. https://www.nist.gov/system/files/documents/2019/09/27/belt_dive_stl_files.zip 
2. https://www.nist.gov/system/files/documents/2017/08/08/task2_stl_files.zip 
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Figure 12: Search and Retrieval Examples from Thingi10K. 
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