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Abstract. We propose an algorithm to compute and maintain the spatial proximities of
planar points continuously moving along prede�ned linear trajectories. The proximity in-
formation of moving points is captured and maintained via the well known Gabriel graph
adapted for the kinetic setting, called kinetic Gabriel graph (KGG). Kinetic Gabriel Graph
is built on top of the kinetic framework of Delaunay graph. Leveraging the positioning of
the Delaunay circumcenters relative to the corresponding Delaunay triangles, we formulate
`Gabriel certi�cates' that determine whether or not an edge of a Delaunay triangle is Gabriel.
Then we employ an edge tagging algorithm to maintain the set of all Gabriel edges from
the Delaunay graph as the points move. The proposed algorithm has been evaluated using
numerous test data, and various computational implications with respect to the topological
events occurring in the data structure during the points' movement have been discussed. We
also provide a conceptual demonstration of the practical potentials of the proposed algorithm
in video based monitoring systems.

Keywords: Kinetic Gabriel graph, Gabriel graph, Delaunay graph, Proximity graph, Tra�c
monitoring.
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1 INTRODUCTION

Spatial proximities of moving objects is a useful measure to predict and avoid object collisions in applications
such as tra�c control system [19], crowd simulation, and �uid �ow rendering, among others. Depending on
the application requirement, proximity graphs such as Delaunay graphs [5], Gabriel graphs [7], or Relative
Neighborhood Graphs [18] can be used to compute the geometric proximities of a set of objects. Proximity
graphs have been extensively studied in computational geometry and have several applications in GIS, wireless
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networks or computer graphics [9]. However, the past research on proximity graphs mainly focused on stationary
points with limited attention given to these structures for moving objects. An exception being the Delaunay
graph, which has been decently studied in the kinetic setting. A few work addressing the theoretical bounds
[1, 2, 15] and experimental treatment [12, 16] of kinetic Delaunay graph can be found in the literature. Recently,
Kerber et al. [10] described an algorithm to maintain the alpha shape [6] of a set of points moving along
piecewise algebraic trajectories. The kinetic alpha shape is designed on top of Kinetic Delaunay triangulation.
Inspired from [6], we design an algorithm to maintain Gabriel graph of a set of continuously moving points.
Before we proceed further, we informally de�ne the gabriel graph as follows. Gabriel graph of a set P of �nite
points in Euclidean plane consists of edges whose vertices are points from P and any closed disc for which
one of these edges as its diameter contains no other points of P .

In general, there are two approaches for handling kinetic data (i.e, moving data) - time discretization ap-
proach and continuous movement approach. The traditional time-discretization paradigm, in which a problem
involving moving objects is discretized into static instances, is inadequate in many applications as it ignores
temporal coherence and non-uniform nature of motion. By temporal coherence, we expect that the structure
does not change too much between two consecutive time steps and hence recomputing the structure from
scratch at each time step is wasteful. Kinetic data structure(KDS) introduced by Basch et al. [3], e�ectively
utilizes the temporal coherence of the moving objects. KDS is an algorithmic technique that maintains an
attribute of interest as a group of objects move continuously. Under KDS setting, the motion trajectories of
the moving points is known apriori which are given as functions of time. The combinatorial description of
the geometric structures (e.g., convex hull or Delaunay graph) is referred to as the con�guration function of
the system, which changes at discrete times when certain events happen among the moving objects. KDS
maintains not only the combinatorial structure itself but also some additional information that helps to �nd
out when the structure will undergo a real combinatorial change. These information, referred to as certi�cates,
are fundamental tests on the input objects with the additional property that as long as the outcomes of the
certi�cates do not change, the combinatorial structure does not change. The main ingredient of an e�cient
KDS is a set of certi�cates that, on one hand, ensure the correctness of the con�guration currently being
maintained, and, on the other hand, are inexpensive to maintain as the points move.

Figure 1: Gabriel graph (edges in red) at time (a) t=0 and (b) t >0 as all the points move in random
directions along linear trajectories. Please note that the underlying Delaunay graph (black and red edges) is
also shown for a better illustration of the concept.

In this paper, we consider the problem of maintaining the inter-object spatial proximities of a set of
moving objects via a kinetic Gabriel graph, e.g., see Figure 1. We design the Gabriel certi�cate functions that
determines whether or not a Delaunay edge is Gabriel. While identifying the Gabriel edges from Delaunay
graph in non-kinetic setting relatively straightforward, kinetic setting of this problem involves accurate �ndings
of the time of occurrences of Gabriel events, i.e., Gabriel to non-Gabriel transition of edges and vice versa,
and hence, represents a challenge. Combining the Gabriel certi�cates with the existing kinetic Delaunay
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triangulation framework, we propose an edge tagging algorithm to maintain the Gabriel edges of moving
objects. The algorithm has been evaluated using di�erent test data and a conceptual application of this
structure has been demonstrated. Furthermore, we discuss the computational implications with respect to the
topological events occurring in the data structure during the points' movement. Speci�c contributions of this
work are the following.

� Gabriel certi�cates: a robust certi�cate function for determining whether or not a Delaunay edge is
Gabriel.

� Edge tagging algorithm: an edge tagging algorithm which computes various topological events and
occurrence times, maintains the event queue, and performs timely updates on the Gabriel graph structure
as the points move.

2 PRELIMINARIES AND BACKGROUND

In this section, we de�ne the relevant geometric structures and describe the setting for the proposed kinetic
algorithm.

2.1 Notations and De�nitions

Let P be a set of n planar points in general position. Let B(x, y, r) be a closed disk of radius r passing
through two distinct points x and y and d(x, y) be the Euclidean distance between the points x and y. The
Gabriel graph of P , i.e. GG(P ) can be formally de�ned as follows.

DEFINITION 1 Gabriel Graph (GG(P ))
The Gabriel graph of P is the graph whose vertex set is P and that has an edge between two vertices x ∈ P
and y ∈ P if and only if there exists a disk B(x, y, r) such that:

1. r = d(x,y)
2 and

2. x and y are on the boundary of B(x, y, r), and

3. B(x, y, r)
⋂
P \ x, y = φ.

Variations of Gabriel graphs including locally Gabriel graph [11] and relaxed Gabriel graph [4] have been
proposed in the literature. In Euclidean plane, di�erent proximity graphs follow the relation: MST ⊆ RNG ⊆
GG ⊆ Del(P )[18], where MST, RNG and Del(P ) denote minimum spanning tree, relative neighborhood
graph and Delaunay graph of a set of points P . In particular to GG(P ) and Del(P ), on relaxing the �rst
condition of Gabriel graph (De�nition 1), we obtain Delaunay graph (De�nition 2).

DEFINITION 2 Delaunay graph (Del(P ))
The Delaunay graph of P is the graph whose vertex set is P and that has an edge between two vertices x ∈ P
and y ∈ P if and only if there exists a disk B(x, y, r) such that:

1. x and y are on the boundary of B(x, y, r), and

2. B(x, y, r)
⋂
P \ x, y = φ.

A Delaunay edge is called a boundary edge if it is incident to exactly one Delaunay triangle. Delaunay
edges which are shared by two Delaunay triangles are referred to as interior edges. Gabriel graph can be
extracted from a Delaunay graph in linear time. In De�nition 3, we present a unique property of triangles in
Delaunay triangulation, which is extensively used in our subsequent discussions.

DEFINITION 3 Empty circumcircle property
The circumcircle of any triangle in Del(P ) contains no points of P in its interior [13].

Computer-Aided Design & Applications, 18(2), 2021, 368-382
© 2021 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


371

p1
p3

p4

p2

p1

p2

p3

p4

(a) Co-circularity

Infinite edges
finite edges

p1

p2
p3 p1

p2

p3

(b) Collinearity

Figure 2: Edge �ipping due to di�erent con�gurations: (a)co-circularity-the point p4 moves into the circum-
circle of 4 p1p2p3 thereby, violating the de�nition and induces an edge �ipping. (b) due to collinearity: three
collinear boundary points along with in�nite vertex results in co-circular degeneracy results in an edge �ipping.
Dashed edges represent the in�nite edges [16].

2.2 Kinetic Setting

Let each point pi ∈ P moves along a linear trajectory with a constant velocity. We assume that the coordinates
of each point are linear functions of time.

pi(t) = (xi(t), yi(t))

xi(t) = xi(t0) + ∆xi.t

yi(t) = yi(t0) + ∆yi.t

The initial position of a point at time t0 is represented by pi(0) = (xi(t0), yi(t0)) and the velocity vector
vi = (∆xi,∆yi). We also assume that the trajectories do not meet each other, i.e., pi(t) 6= pj(t) for i 6= j
and all t for which both trajectories exist.

In kinetic setting, a data structure is maintained right from its initial con�guration at time t = t0 through
its �nal con�guration at time t = tk, by keeping a collection of certi�cates. The moment in time at which a
certi�cate changes its sign is referred to as an event. First, future events of the data structure are computed
and stored in a priority queue where the priority being the order in which they occur. A future event is detected
by �nding the smallest root of a non-zero certi�cate at time t with an additional constraint that the root is
greater than t. A topological event may generate new events and invalidate some of the already computed
events. In such cases, the new events are pushed into the priority queue and the invalid events are removed.
Like in [10], we also assume that no two events occur at the same moment in time.

2.3 Flip Events

As the proposed KGG algorithm is built on top of kinetic Delaunay triangulation (KDT), we review the relevant
certi�cate functions of KDT [16]. The main event that triggers a combinatorial change in the kinetic Delaunay
triangulation is �ip event [16] which happens due to either of the following two con�gurations.

� Co-circular: Four points of P lie on a circle that contains no other points of P
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� Collinear: Three points lie on a line, and one of the half planes bounded by this line contains no points
of P

These are degenerate con�gurations, whose e�ect on the combinatorial structure (Delaunay triangulation)
can be investigated by examining the non-degenerate local con�gurations at the preceding and following
moments of the degeneracies [10]. Consider a point moving into the interior of a Delaunay circle de�ned
by three other points. At a time instant, the four points becomes co-circular. Right after the co-circular
con�guration, the empty circumcircle property (De�nition 3) is violated. The topological correctness of the
local con�guration involving the two triangles is then regained via edge �ipping as shown in Figure 2. Further,
the KDT algorithm updates the certi�cates of the neighboring triangle pairs in the boundary of the quadrilateral
formed by the four points that triggered the event, i.e. �ve new certi�cate functions must be computed. Figure
2(a) shows an example of �ip event in which the point p4 triggers a topological event when it moves into the
Delaunay circle of 4p1p2p3 at time t3. This leads to an edge �ipping as shown in Figure 2 (a).

In computational geometry, many predicates are evaluated by determining the sign of an algebraic or
arithmetic expression on the coordinates of the primitive objects [8]. In the context of KDT, a transition at a
co-circular con�guration of any two adjacent Delaunay triangles are controlled through a certi�cate function
formulated over incircle test [17]. Consider a triangle,4p1p2p3 and a point p4. Let the coordinates of p1, p2, p3
and p4 are (x1, y1), (x2, y2), (x3, y3), and (x4, y4) respectively. To perform the incircle test, all the four points
are �rst lifted onto a paraboloid, where each projected point p̂i will get the coordinates (xi, yi, xi

2 + yi
2).

Then, the spatial location of p4 with respect to the circumcircle of 4p1p2p3 are determined by considering
a plane through p̂1, p̂2 and p̂3 and then determining whether the point p̂4 lies above, below or on this plane.
This is determined by evaluating the sign of the determinant given in Equation 1, which is zero when all the
four projected points are co-planar in the lifted space.

Ic(t) =

∣∣∣∣∣∣∣∣∣∣
x1(t) y1(t) x1(t)

2
+ y1(t)

2
1

x2(t) y2(t) x2(t)
2

+ y2(t)
2

1

x3(t) y3(t) x3(t)
2

+ y3(t)
2

1

x4(t) y4(t) x4(t)
2

+ y4(t)
2

1

∣∣∣∣∣∣∣∣∣∣
(1)

Incircle test returns positive if p4 lies inside the circle through p1, p2, p3 where the points appear along
the circle in counter-clockwise direction. However, if the points p1, p2, p3 reverses their orientation (clockwise
order), then the incircle test reverses the sign of its output, i.e., a positive sign will then corresponds to the
exterior of the circle.

Since it is convenient to deal with only triangular faces in many applications such as incremental Delaunay
construction, the convex hull edges of the triangulation is connected to a �ctitious vertex called in�nite vertex,
via in�nite edges. Three boundary points in the collinear con�guration together with the in�nite vertex give
rise to the co-circular degeneracy, which is resolved by an edge �ipping as shown in Figure 2 (b). Collinearity
among the boundary points can be determined using the certi�cate function (orientation test) in Equation 2.

Il(t) =

∣∣∣∣∣∣∣∣
x1(t) y1(t) 1

x2(t) y2(t) 1

x3(t) y3(t) 1

∣∣∣∣∣∣∣∣ (2)

Il(t) is evaluated to 0 when all three points are collinear.

3 THE ALGORITHM

In this section, we describe the additional certi�cate functions and rules to extend KDT to Kinetic Gabriel
Graph and present the edge tagging algorithm for maintaining KGG.
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Figure 3: Signs of the angle certi�cate function with respect to the edge (pq) for di�erent types of triangles.

Algorithm 1: KGG(P)

Input: A set of planar points P = {p0, p1, .., pn} where each pi ∈ P moves along a linear trajectory
with constant velocity

Output: Continually updated Gabriel graph of P , KGG(P )
1 Construct the Delaunay graph, DT (P ) and tag all the Gabriel edges;
2 Initialize KGG(P ) = DT (P ) and make it a global structure;
3 Let tcurr be the current time, E be a temporary event variable;
4 Let PQ be a global heap priority queue to hold future Gabriel and �ip events, sorted in the ascending

order of their time of occurrences;
5 foreach adjacent triangle pair Ti, Tj in KGG(P) do
6 Compute the next future �ip event ETij

= {Tij , tt} at time tt;
7 if ETij

exists & tt > tcurr then
8 PQ.push(ETij

);
9 end

10 end

11 foreach internal edge eij in KGG(P) do
12 UpdateGabriel(eij ,tcurr)(Algorithm 3);
13 end

14 while PQ not empty do

15 ProcessEevent(tcurr) (Algorithm 2);
16 end

3.1 Angle and Gabriel Certi�cates

Kinetic Gabriel graph is maintained via tagged Delaunay edges. Each Delaunay edge is equipped with a Gabriel
�ag that indicates whether or not the edge belongs to the GG. Edges are tagged based on the locations of
the circumcenters of the incident Delaunay triangles. We exploit the fact that the circumcenter of a right
triangle lies on its longest edge and the circumcenters of acute and obtuse triangles lie in the interior and
exterior of the triangles, respectively as illustrated in Figure 3. This immediately gives us a relation between
the circumcenter location and the angle at the opposite vertex with respect to any edge of a triangle. Let
pq and c be an edge and the circumcenter of a Delaunay triangle 4pqr. Let θ be the angle opposite to the
edge pq. For any edge pq of a triangle, if the circumcenter c and the vertex opposite to pq lies on the same
half plane bounded by the line pq, then θ is an acute angle. If c and the opposite vertex r lie on either side
of pq, then θ is an obtuse angle. We capture this con�guration using a predicate function indirectly de�ned
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over the angle (θ) opposite to the edge under consideration. The spatial location of the circumcenter c of
a triangle, 4pqr with respect to the edge pq is determined using the angle certi�cate function presented in
Equation 3. In Equation 3, the coordinates of the circumcenter (cx, cy) can be obtained from the coordinates
of the triangle vertices. If both, r and c lie on either side of the edge pq, then the orientation tests will return
di�erent signs. Consequently, Cθpq will be evaluated to negative quantity implying an obtuse θ (see Figure 3

(b)). A positive Cθpq indicates an acute θ (Figure 3 (c))and a right angle at r evaluates Cθpq to zero (Figure 3
(a)).

Cθpq = sign

∣∣∣∣∣∣∣∣
px(t) py(t) 1

qx(t) qy(t) 1

rx(t) ry(t) 1

∣∣∣∣∣∣∣∣× sign
∣∣∣∣∣∣∣∣
px(t) py(t) 1

qx(t) qy(t) 1

cx(t) cy(t) 1

∣∣∣∣∣∣∣∣ (3)

θ1
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p q

Cθ1
pq> 0 
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Cθ1
pq< 0 
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Figure 4: Gabriel certi�cates for interior and boundary Delaunay edges. (a) Gabriel edge, (b) Non-Gabriel
edge and (c)-(d)Gabriel certi�cates for boundary edges.

Cθ1pq Cθ2pq Cpq = sign(Cθ1pq)× sign(Cθ2pq)

> 0 > 0 Gabriel

< 0 > 0 Non-Gabriel

> 0 < 0 Non-Gabriel

< 0 < 0 Not valid

Table 1: Relation between the angle and Gabriel certi�cates for an interior Delaunay edge pq

Each interior edge in the triangulation has two angle certi�cates corresponding to its incident triangles.
Depending on the signs of the two angle certi�cates, four cases arise as shown in Table 1 and Figure 4. A
Delaunay edge is never shared by two obtuse triangles as it violates the empty circumcircle property and hence
we discard that case (fourth row in Table 1). We consider the remaining three cases. To tag the edges as
Gabriel, for each internal edge, we use the signs of its two angle certi�cates. The product of the signs of
the two angle certi�cates of an edge is referred to as Gabriel certi�cate(Cpq). Depending on the sign of this
certi�cate, we tag the edges as Gabriel or non-Gabriel. If its sign is positive, we tag the edge as Gabriel.
More speci�cally, a non-Gabriel to Gabriel transition of edge pq occurs at time t where t is the greatest of the
roots of the two associated positive angle certi�cates, i.e., Cθ1pq and Cθ2pq . Similarly, a Gabriel to non-Gabriel
transition of pq occurs at a time t where t is the smallest of the roots of the two associated negative angle
certi�cates. To make the algorithmic steps consistent, we use dummy certi�cate (refer to Figure 5) functions
corresponding to the in�nite triangles of the boundary edges. The dummy certi�cate functions are always set
to a positive quantity.
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Algorithm 2: ProcessEvent(tcurr)

Input: The current time, tcurr.
Output: Updated Gabriel graph and the event queue.

1 E ← root(PQ);
2 if E is a �ip event corresponding to Tij then
3 Let E.Ti = p1p2p3 and E.Tj = p1p4p2 be the two adjacent triangles involved;
4 if E.Ti is invalid or E.Tj is invalid then

5 Discard E and exit;
6 end

7 Swap the common edge of E.Ti and E.Tj , i.e., E.Ti = p1p4p3 and E.Tj = p2p3p4;
8 foreach triangle N sharing a common edge with E.Ti do
9 if a nearest future �ip event Ein = {Tin, tin} at time tin exists between E.Ti and N then

10 PQ.push(Ein);
11 end

12 end

13 foreach triangle N(N 6= Ti) sharing a common edge with E.Tj do
14 if a nearest future �ip event Ejn = {Tjn, tjn} at time tjn exists between E.Tj and N then

15 PQ.push(Ejn);
16 end

17 end

18 foreach edge eij in the quadrilateral p1p2p3p4 including the diagonal do
19 UpdateGabriel(eij ,tcurr)(Algorithm 3);
20 end

21 end

22 else if E is Gabriel event corresponding to edge eij then
23 if eij is non-Gabriel & E.tij ≤ tcurr then
24 Tag eij as Gabriel;
25 end

26 else if eij is Gabriel & E.tij ≤ tcurr then
27 Tag eij as non-Gabriel;
28 end

29 UpdateGabriel(eij ,tcurr)(Algorithm 3);

30 end

3.2 Kinetic Gabriel Graph Algorithm

Initialization. The pseudo-code for maintaining KGG for moving points is presented in Algorithm 1. Initially,
(at time t=t0) all the edges of the Delaunay triangulation are tagged (Gabriel or non-Gabriel) based on the
Gabriel certi�cates. Kinetic Gabriel graph (KGG) is then initialized to the edge tagged Delaunay triangulation.
All the events from the initial KGG are computed and stored in a heap based priority queue called event queue
where the events are ordered according to their times of occurrence. The time of occurrence (tt in line 6 of
Algorithm 1) of an event is obtained through solving the corresponding certi�cate function.

Event handling. During the simulation, the algorithm retrieves the next event from the root of the event
queue and handles it using the event processing routine. The algorithm continues this process (refer to the lines
14-17 of Algorithm 1) until the event queue is empty. The function for the processing of various events, i.e.,
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�ip and Gabriel events is presented in Algorithm 2. A �ip event results in �ve new �ip certi�cate updates (lines
7-16, Algorithm 2). Further, it also results in the update of �ve angle and Gabriel certi�cates corresponding to
the diagonal and the quadrilateral edges of the triangles involved in the �ip. All the new events as a result of
these updates are pushed into the queue in the order of their occurrences. Similarly, when an edge undergoes
Gabriel to non-Gabriel or vice versa transition (lines 21-27 of Algorithm 2), the corresponding Gabriel tag of
the edge is updated (Algorithm 3). Figure 5 presents a minimal illustration of the algorithm.

p1

p2

p3

p4 p1

p2

p3

p4 p1

p2

p4 p1

p2

p4

p3 p3
t0 t1 t2 t3

t1: Gabriel, Cp2p3

t2: Co-circular p1p2p3p4

t2: Co-circular p1p2p3p4 Updated Gabriel certificates
of all the five edges and co-circular
certificates of the quadrilateral.

Figure 5: An illustration of the event processing and topological updates : Events are popped of the event
queue and processed according to their time of occurrence (t1 & t2). Each event processing calls for an edge
�ipping or edge tag update in the graph. All the new events are pushed to the event queue at t3. Blue lines
indicate Gabriel edges. The time instants follow the order, t0 < t1 < t2 < t3.

Solving the certi�cates. The count and multiplicity of the roots of the equation corresponding to the
cocircular event depends on which points are moving and their velocities. Here, we are only interested in
�nding the future events. Thus, we do not have to search for all roots of the equation. We have to �nd only
those roots which are greater than or equal to the current time. Maintaining the Gabriel graph of moving
points involves solving equations corresponding to the co-circular, angle and Gabriel certi�cates. For solving
polynomial corresponding to co-circular event (degree up to 4), the equation Ic(t) = 0 (Il(t) = 0 for boundary
con�gurations, see Equation 2) needs to be solved where I_c(t) (Equation 1 represents the determinant
corresponding to the incircle test matrix. The method adopted to solve this equation is Sturm Sequences[14]
which enjoys the advantage that it gives the count of real roots in any interval [a,b] and their multiplicities.

The polynomial corresponding to the angle certi�cate (Equation 3) is a product of two polynomials of
degree two (assuming linear trajectories) and therefore, can be of degree up to 4. For triangulation data
structure with consistently oriented triangles, the angle certi�cates are primarily controlled by the respective
circumcenter positions and hence, the roots of the angle certi�cates are found by solving the degree two
polynomial formulated over the collinearity check of the circumcenter with the edge vertices. Gabriel certi�cate
is the product of the signs of two angle certi�cates. However, the event time of a Gabriel to non-Gabriel
transition is taken as the root of the negative angle certi�cates and the event time of a non-Gabriel to Gabriel
transition is taken as the largest root of the two corresponding positive angle certi�cates (refer to Algorithm3).
So, in e�ect, the KGG part of the algorithm needs to solve only degree 2 polynomials and a few checks on
certi�cate signs.

4 RESULTS AND DISCUSSION

The proposed algorithm for KGG is implemented in C# using Visual Studio 2017. The input is given as a set
of x, y coordinates of points along with their directional vectors. Points can be stationary (with velocity zero)
or moving.
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Algorithm 3: UpdateGabriel(eij , tcurr)

Input: The edge eij & the current time, tcurr.
Output: Updated tag for eij .

1 Compute new angle certi�cates Cθieij and C
θj
eij ;

2 Let Cθieij and C
θj
eij occur at times ti and tj , respectively;

3 if eij is non-Gabriel then
4 if max(ti, tj) ≤ tcurr then
5 Tag eij as Gabriel;
6 end

7 else

8 E = {eij ,max(ti, tj)};
9 PQ.push(E);

10 end

11 end

12 else

13 Let Cθieij be the negative angle certi�cate;

14 if ti ≤ tcurr then
15 Tag eij as non-Gabriel;
16 end

17 else

18 E = {eij , ti)};
19 PQ.push(E);

20 end

21 end

4.1 Sample Results

Shape Samples. Example kinetic Gabriel graphs for sets of points sampled from human and gira�e shapes
are shown in Figures 6 and 7, respectively. In Figure 6, all the points sampled from the hand part of the shape
as highlighted in the green box moves upward with a constant velocity. KGGs at various time instants have
ben showed in Figure 6. As the points move, the spatial proximities of the moving points with the stationary
points change and consequently, the Gabriel events occur thereby leading to updated Gabriel graphs. In Figure
7, we set the linear trajectory movements to the points sampled from the frontal leg of the gira�e shape.
Gabriel graphs of the gira�e shape samples at various time instants show the changed Gabriel status of the
edges within and in the premise of the frontal leg of the gira�e as highlighted in the green box. However, the
topological structures of the stationary points are minimally a�ected in both the examples.

Random Points. Figure 8 showcases an example of kinetic Gabriel graph for a set of 16 points. The input
set consists of static as well as kinetic points. Initially, at time t=0, all points have velocity zero and a
static Gabriel graph is shown in Figure 8(a). When t>0, the points with non-zero velocity move and the
corresponding Gabriel graphs are shown in Figures 8(b)-8(d). As the points move, the graph maintains the
Delaunay property and the edges satisfying Gabriel condition are highlighted (in red color). Figure 9 shows an
example of Gabriel graph maintained when all the input points move.
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Figure 6: Gabriel graph (edges in red) at time t= 0 (left), t= 1000ms (middle left), t= 2000ms (middle
right) and t= 3000ms (right). The samples along the hand part of the body shape move up along linear
trajectories. The underlying Delaunay graph (blue and red edges) is also shown.

Figure 7: Gabriel graph (edges in red) at times (left to right) t= 0, t= 1000ms, t= 2000ms, t= 3000ms
and t= 4000ms. The samples along the front legs of the gira�e shape move up along linear trajectories. The
underlying Delaunay graph (blue and red edges) is also shown.

4.2 Topological Events

Figure 10(a) represents the relation between number of points and number of events. Here, all the points are
moving with linear trajectories. The Gabriel events except those triggered by cocircular events are counted.
As the number of moving points increases, the number of events increases drastically. Also, we can see that
a considerable number of Gabriel events occur which are not triggered by cocircular events. Figure 10(b)
represents the number of executed and discarded Gabriel and cocircular events. This result was obtained from
a randomly chosen 100 points among which a certain percentage were moving along random linear trajectories.
The experiment was conducted for an interval of 10 seconds. Events are discarded when the triangles involved
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(a) t = t0 (b) As points move ( t = t1)

(c) t = t2 (d) t = t3

Figure 8: Kinetic Gabriel graph of 16 points, where two points in the middle move in linear trajectories. Red
and black lines indicate the Gabriel and non-Gabriel edges of the corresponding Delaunay graph, respectively.
The time instants follow the order, t3 > t2 > t1 > t0. The outward edges represent edges connected to the
in�nite vertex.

(a) t = t0 (b) As points move ( t = t1)

(c) t = t2 (d) t = t3

Figure 9: Kinetic Gabriel Graph where all points are moving : t3 > t2 > t1 > t0

in the event no longer exist. As we can see, the number of discarded events is always greater than the number
of executed events. Table 2 represents the number of certi�cate functions solved and processed during a
time period of 10 seconds where all the input points have a non-zero velocities. As the size of the point
set increases, number of Delaunay triangles increases which results in a monotonic increase in the number of
certi�cates, both co-circular and Gabriel.

4.3 A Potential Application

KGG can be used in video based collision avoidance systems. Let us consider the real time video feed from a
tra�c camera at a road intersection. Proximity information of the vehicles approaching the intersection can
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#Points #Certi�cates

50 1313

70 2158

100 3263

120 4612

150 5304

Table 2: Number of moving points and number of certi�cates solved
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Figure 10: Summary of various events including executed and discarded appeared in the kinetic Gabriel graphs
of di�erent point sets with varying sizes.

be captured via Gabriel graph. The vehicles in each frame can be detected using a robust object detection
algorithm from computer vision. The velocity vectors of the objects in a frame can be determined by inter-frame
object mappings (using the nearest neighbors and the directional vector of the previous frame). An object's
directional vector gets updated only when the directional vector considerably deviates from the previous one,
e.g., if the vehicle turns left or right. Any two vehicles connected by a red edge (Gabriel) with an appropriate
threshold are in collision zone and hence, call for evasive actions. Figure 11 showcases a few frames of a tra�c
video with the corresponding Gabriel graphs overlapped. Please note that this is a conceptual prototype,
and to realize this practically, many factors need further investigation, e.g., how to account for non-uniform
velocities and non-linear paths of vehicles.

5 CONCLUSIONS AND FUTURE WORK

We presented an algorithm to maintain Kinetic Gabriel graph of points moving along linear trajectories with
uniform velocities. The main contribution is the design of a new certi�cate function for determining Gabriel
edges from Delauny graphs. While this is quite straightforward for stationary points, the kinetic setting
demands a more elegant solution to accurately �nding the times at which topological changes to the Gabriel
graph occurs. We leverage the spatial locations of Delaunay circumcenters relative to the Delaunay triangles to
formulate the Gabriel certi�cate function. The current algorithmic design can still be improved in terms of speed
optimization. One way of improving the performance would be �nding the redundant and/or obsolete events
ahead, so that the polynomials for the same need not be solved, thereby saving considerable computational
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Figure 11: An illustration of how KGG can be used in video based collision avoidance systems. Kinetic Gabriel
graph of cars moving at an intersection overlaid on a set of corresponding images. Red edges indicate cars
in potential collision zone. When used with an appropriate threshold, the proposed data structure is useful in
similar collision avoidance applications in kinetic sceneraio.

time. Further extensions aside from kinetic Gabriel graph in 3D include addressing other types of point
movements such as quadratic or piece-wise linear trajectories and non-uniform velocities. As illustrated in the
discussion, adapting the algorithm for the collision avoidance applications is another promising direction to
pursue.
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