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Abstract. Automatic feature recognition technology is the key support of intelligent 

design and manufacturing. Using artificial neural networks (ANNs) to identify 
machining features is a significant interdisciplinary research direction. Although the 

ANNs have the ability to learn and generalize, and process faster, they can only 
process numerical input and perform arithmetic operations, not logical operations, 
thus restricting the application of ANNs in the field of CAD machining feature 
recognition. This paper establishes a new Visual-cognition-inspired Model (VCIM) 
for machining feature recognition by imitating the visual cognition process of the 

human brain and related neural mechanisms. The VCIM has a structure closer to 
the cerebral cortex than ANNs, uses a 3D CAD model as a direct input, and has 
three new activation functions that can perform logical operations. The VCIM have 
been tested and verified to identify four different types of machining features, and 
new features can be recognized by changing the activation function definition. 
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1 INTRODUCTION 

Automatic machining feature recognition is the key support of intelligent design and 
manufacturing. Feature recognition is an essential component in all CAD/CAM systems that rely on 

features for analysis and decision making. A feature is a set of geometric elements with semantics. 
Feature recognition is the mapping of geometric models to feature models of specific applications 
and manufacturing processes using various recognition rules or methods. On the one hand, the 
machining features are closely related to the machining process, involving machining methods, 
tool types, machining tool path, fixtures, etc. On the other hand, the features themselves are 
diverse, especially in the field of aircraft manufacturing, where aircraft structural parts contain a 

large number of complex structures. These matters make machining feature recognition 

an important issue in CAD/CAM. 
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In recent decades, feature recognition technology has developed rapidly and achieved rich 
research results. Among the many different types of recognition methods, the more classical 
methods are graph-based method [3], volume-based method [20], rule-based method [18] and 
hint-based method [6]. Although these methods have their own advantages and disadvantages, 

they generally have the following common problems: 
• No ability to learn and abstract; 
• Poor noise resistance for the CAD input models; 
• Focusing on the representations of specific types of CAD models and cannot be generalized 

to feature representations of other different representation methods; 
• Poor ability to handle variable features and intersecting features. 

These issues constrain the development of feature recognition methods, but they are 

compatible with ANN methods. First, ANNs have the ability to learn. Second, the ANN methods are 

data-driven methods. As long as a general mathematical expression method is established, the 
ANN can be used to identify different types of features. Again, ANNs have the ability to identify 
similar features without the need to predefine all feature instances. Therefore, since the end of the 
1990s, scholars at home and abroad have begun to study the use of ANNs to recognize machining 
features, and have achieved a series of remarkable results [16]. At present, the ANNs for 

machining feature recognition include Multilayer Perceptron (MLP), Back-propagation Neural 
Network (BPNN), Self-organizing Feature Map (SOFM), Adaptive Resonance Theory (ART) network, 
Hopfield Neural Network, Convolutional Neural Network (CNN), etc. These ANN methods have a 
common point: they need to preprocess and encode CAD models or features, convert them into 
numerical vectors (also called Representation Vectors, denoted as RVs) and input them into the 
ANNs for calculation. Through the literatures, the commonly used feature preprocessing and 
encoding methods are Attributed Adjacency Graph (AAG) encoding, Face Adjacency Matrix (FAM) 

encoding, Face Score Vector (FSV) encoding and voxelization methods, etc. 

For AAG encoding, the AAG is first decomposed into AAG subgraphs, then the AAG subgraphs 
are transformed into Adjacency Matrixes (AMs), and finally the elements of AM are selected to 
generate RV [5] [11-12]. Since AAG only defines the topology information of the model, the 
encoding method does not contain the geometric information of the model. FAM-based encoding is 
an improved version of AAG encoding. Compared with the AM, the FAM increases the encoding 
information of the surfaces, so that the adjacency relationship between the surfaces can be 

defined more accurately. Prabhakar and Henderson [15] used FAM to encode features, but failed 
to separate features with the same topology but different shapes. Considering that the AAG can 
only recognize plane and simple surface features, Ding and Yue [2] established the F-adjacency 
matrix and the V-adjacency matrix, which can identify the intersection features with common 
bottom surface. FSV encoding is the most commonly used feature preprocessing method. The 
method first defines the calculation formula of FSV and the score table of each component, and 

then defines the number of elements of RV and the corresponding face order, and then calculates 

the value of each feature surface according to the formula. Finally, each face value is used as an 
element value to generate an RV. Among them, the face value calculation formula is a function 
related to face, edge, vertex and their adjacency relationship [8]. The literatures [7], [9], [13-14] 
and [17] all use the FSV method to process and encode features. The voxelization method is a 
feature preprocessing and encoding method unique to 3D CNN. By dividing the CAD model into 
voxels, the voxels are assigned with binary numbers, these values constituting the input data of 

CNN [1] [4] [19]. However, the amount of parameters of the voxelization method is huge, which 
greatly increases the calculation cost of the network. Taking the literature [1] as an example, a 
simple hole feature model can create 1 billion voxels. 

In summary, before recognizing machining features, ANNs must perform the preprocessing 
and encoding operations to convert the features from CAD models to numerical representation 
information. However, the conversion of information may have the following problems: 

• Cannot accurately and completely express the geometric and topological information of the 

machining features; 
• May overlap when representing different types of features; 
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• May cause the loss of certain information of features and affect the recognition accuracy. 

Therefore, creating a reasonable and effective feature preprocessing and encoding method or 
designing a neural network that does not need to perform feature preprocessing are two methods 
to solve the above problems. This paper takes the latter as the starting point, gets inspiration from 

the visual cognitive process and neural mechanism of human brain, and establishes a new neural 
network structure VCIM for machining feature recognition. The VCIM uses the CAD 3D model as a 
direct input and does not require feature preprocessing operations, thus avoiding the three 
problems mentioned above. Since the objects processed by VCIM are face features, not numerical 
information, the new neural network performs logical operations rather than numerical calculations. 
This paper also establishes three different types of activation functions for the VCIM. 

2 RELATED WORKS 

The inspiration of VCIM comes from two aspects, one is the structure and function of the brain’s 
primary visual cortex (the V1 cortex), and the other is the brain’s visual processing flow. Through 
anatomical studies, it has been found that the V1 cortex is a tissue that contains both horizontal 
layer structures and vertical column structures. 

(1) Layer structures 

The V1 cortex consists of six horizontal layers, followed by the Molecular Layer (the I layer), 

the External Granular Layer (the II layer), the External Pyramidal Layer (the III layer), the 
Internal Granular Layer (the IV layer), the Internal Pyramidal Layer (the V layer), and the 
Pleomorphic Layer (the VI layer). There is a difference in the type and amount of cells in each 
layer, so the functions of each layer are different. Usually, after the nerve impulse is transmitted 
to the IV layer, it is spread to the layers based on the II layer and the IV layer, and finally 

outputted from the III layer, the V layer, and the VI layer. 

(2) Column structures 

In addition, cells in the V1 cortex with similar functional properties are located close together 
in columns that extend from the cortical surface to the white matter. The columns are concerned 
with functional properties and thus reflect the functional role of that area in vision. For example, 
some columns contain cells with similar selectivity for the orientation of stimuli.  

A piece of visual cortex tissue can be called a visual cortex module. There are a number of 
columns in the module. These columns have the following characteristics: the neurons in a column 
can respond to a specific functional characteristic, and columns capable of responding to similar 

characteristics are spatially adjacent and partially overlapped. Thus, a stimulus can activate a 
plurality of contiguous columns within the cortex that form a hypercolumn. A columnar module can 
contain a number of hypercolumns that enable remote control between the hypercolumns by 
means of horizontal connections. 

In summary, the tissue in the cortex has a hierarchical relationship of cortex→module→

hypercolumn→column→cell, and each column contains six horizontal layers with different functions. 

The brain’s visual processing is a parallel and phased process, and Figure 1 shows the parallel 
paths of visual system. In the figure, the pink pathway is the ventral pathway, also called what 
pathway, carrying information about shape and color, mainly related to object recognition, and the 
storage of long-term memory. The blue pathway is the dorsal pathway, also known as the 
where/how pathway, which is dedicated to visually guided motion, as well as to the representation 

of the position of the object and the control of the eyes and arms, since it contains cells that are 
selective for the direction of motion. The two pathways can meet in the same cortex; at the same 
time, one cortex can contain many different types of visual characteristics, such as color, direction 
and shape. Therefore, the same cerebral cortex can recognize multiple visual characteristics at the 
same time. 
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Figure 1: Parallel paths of visual processing system [10].  

3 STRUCTURES 

According to the above analysis of the visual processing mechanism, two rules can be 
summarized: 

• The structure of the cortex is in order of cortex→ module→ hypercolumn→ column→ cell, 

and the cells in the column are arranged in layers according to function. 
• The same cortical module can simultaneously recognize multiple visual characteristics. 

 

 
 

Figure 2: VCIM network structure.  
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Based on the above rules, this paper designs the VCIM network model shown in Figure 2. The 

VCIM is a four-layer neural network, consisting of 
1L  layer, 

2L  layer, 
3L  layer and 

4L  layer in 

sequence. Each layer contains several modules, each of which owns several columns. For some 
modules, there may also be hypercolumn structures composed of multiple columns. The relevant 
terms are explained below, and the variables and their definitions are given first. 
 

Variable Definition 

iL  i-th layer of the VCIM 

f  A face 

C  A column 

d
 Direction angle of a column 

t  Type of a column 

l  Outer loop of a column 

e
 External normal angle of a column 

G  Adjacent face set of a column 

H  A hypercolumn 

M  A module 

()g  Distribution function 

1,2,3,4,5iM i  IS-module, ES-module, B-module, T-module or E-module 

in  Number of columns in 
iM  

()i  Judgment function of 
iM  

m
 Maximum inclination angle of the ISide 

m
 Maximum inclination angle of the BFace 

m
 Maximum inclination angle of the TFace 

E  A set of excitatory columns 

I  A set of inhibitory columns 

1,2,3,4iM i  SF-module, PF-module, TF-module or CF-module 

im  Number of columns in iM  

()i  Selection function of iM  

 
Table 1: Variables and definitions. 

3.1 Column 

A column is used to store one face ( f ) of the CAD model. The column contains five components, 

each of which defines a category attribute of the face. The five attributes are the direction angle 

d , the type t , the outer loop l , the external normal angle e , and the adjacent face set G . If C  

is used to indicate a column, there is 

 d e, , , ,C t l G   (3.1) 

In Figure 2, each (red or blue) cylinder represents a column, and every column has a 
hierarchical structure, indicating the five attribute of a face. In this paper, the machining features 

in aircraft structural parts are mainly studied. Therefore, the types of faces are defined as three 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 17(2), 2020, 429-446 

© 2020 CAD Solutions, LLC, http://www.cad-journal.net 
 

434 

types, plane, ruled face (including cylindrical face) and other types of faces, which are represented 
by Planet , RuledFacet  and ElseFacet , respectively. 

Before determining the face direction with the normal direction, the direction of the CAD model 
is stipulated. The aircraft structural parts are generally flat, and the shape features are mostly 
concentrated on the front and back of the structural parts, as shown in Figure 3. The bottom 
surface is referred to as a horizontal plane (xy plane). The direction perpendicular to the horizontal 
plane is referred to as the vertical direction (z direction), and the forward direction (+z direction) 
is defined from the bottom surface of the model to the front side of the model. Therefore, the +z 
direction in Figure 3(a) is perpendicular to the bottom surface and points upwards, and the +z 

direction in Figure 3(b) is perpendicular to the bottom surface and points downwards. According to 
the above agreement, the direction component and the normal component of the face can be 
defined. 

 

 
 

Figure 3: An aircraft structural part: (a) the front side and (b) the back side. 
 

The direction angle 
d
 of the face refers to the angle between the face and the z-axis. If the face is 

a plane, then 
d
 is the angle between the plane and the z-axis. If the face is a ruled face, and then 

d
 is the angle between the generatrix of the ruled face and the z-axis. 

d
 is set as d 0,90 . The 

external normal angle 
e
 refers to the angle between the external normal of the face and the +z 

direction, and e 0,180 . 

The outer loop of the face is divided into three types according to the concavity and convexity. 
When the edges of the outer loop are all concave, the outer loop belongs to a concave loop, which 

is recorded as l cLoop . When the edges of the outer loop are all convex, the outer loop belongs 

to a convex loop, which is recorded as l vLoop . If the outer loop is neither a concave loop nor a 

convex loop, and then the outer loop is called a mixed loop, which is recorded as l mLoop . 

The adjacent face set refers to the set of faces adjacent to the outer loop of f . If there is a 

face 1f  in which the outer loop of f  is the inner loop of 1f , then it is expressed as 1G f . If the 

outer loop of f  is also the outer loop of 1f , it means 1G f . If f  has multiple outer loops, and 

the above two cases exist at the same time, it is expressed as 1 2,G f f . 

3.2 Hypercolumn 

For a set of columns 1,2, ,iH C i n , where n  is the number of columns, if H  can constitute a 

machining feature, such as a slot, a protrusion, etc., and then these columns are called a 

hypercolumn. In Figure 2, multiple columns clustered together represent a hypercolumn. The 
hypercolumn is a specific structure in the layer 4L , and each hypercolumn in a module is a 

machining feature. 
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3.3 Module 

A module is a more advanced set of columns/hypercolumns. Each module stores a class of 

columns with the same definition or similarity. If the module is marked as M , and then there is 

 1,2, , , 1,2, ,i jM C H i m j n   (3.2) 

Where 
iC  is the i -th column in the module, jH  is the j -th hypercolumn in the module, and m  

and n  are the number of columns and hypercolumns. For 2L  and 3L , the module does only contain 

columns, so jH . For 4L , the module contains hypercolumns, there is 
iC . In Figure 2, a 

rectangular block represents a module. 

3.4 Layer 

A layer is a more advanced form of a module. One layer contains one or more different modules. If 
the layer is marked as L , then there is 

 1,2, ,iL M i m   (3.3) 

Where m  is the number of modules in the layer. 

The VICM is a new type of neural network that can recognize machining features in different 
fields. The number of layers, modules and columns are optional. When towards the machining 
features of the aircraft structural parts, the VCIM is set to a four-layer network described above. 
For better understanding the layer structure, the model in Figure 2 is described here as an 

example in detail. 
 

 
 

Figure 4: CAD model to be recognized. 

 

(1) 1L  is the CAD model to be recognized. 

(2) 2L  has a module that stores all the 23 faces of the CAD model, each column representing a 

face with a number, and the faces marked by serial numbers can be seen in Figure 4. 

(3) 3L  has five modules. IS-module stores all the internal sides (ISides), which contains twelve 

faces (or columns) from 7 to 23. ES-module stores all the external sides (ESides), which contains 
five faces from 15 to 19. B-module represents the bottom face (BFace) module, storing Face 1 and 
Face 2. T-module represents the top face (TFace) module and stores Faces 3, 4 and 5. E-module 
stores all the “else faces (EFaces)” that do not belong to other modules, namely Face 6. 

(4) 4L  has five modules, which store slots, protrusions, through holes/opening, outer contour 

and other features, labeled SF-module, PF-module, TF-module, CF-module, and EF-module 
respectively. These modules can also be seen in Figure 2. 
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The VICM performs dynamic structure configuration. For different CAD models, the number of 
modules and the number of columns in each layer may not be the same. 

4 ACTIVATION FUNCTIONS 

The activation functions of the ANNs are used to calculate the weight of neurons, and introduce 

nonlinear characteristics to the network. Similarly, the VCIM activation functions are used for 
column calculations and are responsible for mapping the input of the column to the output. 
However, the activation functions of the ANNs process numerical calculations, but the activation 
functions of the VCIM are to perform logical operations on the faces of the CAD model, and 
different kinds of activation functions are used between different layers. 

4.1 Distribution Function 

STEP files express the geometric model with B-Rep, B-Rep defines a model as a closed boundary 
surface enclosing a limited space such that a part can be represented by its boundaries (a subset 
of surfaces), each face defined by edges [9]. The distribution function takes the topological data of 
CAD 3D model as input, assigns a column to each face, and stores the attribute information of the 

face. The distribution function acts between 
1L  layer and 

2L  layer. The output is the columns of 
2L . 

The distribution function is defined as 

 ( )i iC g f   (4.1) 

Where 
if  is the i -th face of the CAD model, and ()g  represents the distribution function. 

The algorithm flow of the distribution function is shown in Figure 5. The mark with 
“unvisited/visited” is for the purpose of distinguishing and identifying faces. 

 

 
 

Figure 5: Algorithm flow of the distribution function.  

4.2 Judgment Function 

The judgment function judges each column of the layer 2L , and calculates its relative position type 

to determine which module it belongs to. The result is stored in the corresponding module of the 

layer 3L . The related expression is defined as: 
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 ( ) T, 1,2, ,5, 1,2, ,i j i j iM C C i j n   (4.2) 

Where 
1M , 

2M , 
3M , 

4M  and 
5M  are IS-module, ES-module, B-module, T-module and E-module, 

1n , 
2n , 

3n , 
4n  and 

5n  indicate the number of columns in the corresponding module, and 
1() , 2() , 

3() , 4()  and 
5()  are the judgment functions of the five modules separately. If and only if the 

judgment function of a certain column is true, and then the column is the element of the module 
corresponding to the current judgment function. 

The five judgment functions are introduced below. 

(1) ISide judgment function 

The ISide is generally a plane or a ruled face. Usually, the plane is perpendicular to the 

horizontal plane, and the generatrix of the ruled surface is along the z-axis. However, there is also 
a case where the ISide is inclined, and generally the inclination angle is small. Therefore, assuming 

that the maximum inclination angle is m m 25 , the external normal angle of the ISide should 

be satisfied e m m90 ,90 . 

The judgment function 
1()  of 

1M  can be expressed as: 

 d m
1

e m m

0, Plane RuledFace
( )

90 ,90

t t
C

l mLoop
  (4.3) 

Specifically, there may be two external loops on the ISide, and the two external loops are both 
the inner loops of two faces in G , and the judgment function can be expressed as 

 
1 1 2( ) ,C G f f   (4.4) 

Equations (4.3) and (4.4) together serve as the judgment function of the ISide. 

(2) ESide judgment function 

The ESide is similar to the ISide. The only difference is that the outer loop is a convex loop. 

Therefore, the judgment function 2()  of 2M  can be expressed as: 

 d m
2

e m m

0, Plane RuledFace
( )

90 ,90

t t
C

l vLoop
  (4.5) 

Specifically, there may be two external loops on the ESide, and the two external loops are the 

inner loop of one face and the outer loop of the other face in G  respectively, and the judgment 

function can be expressed as 

 
2 1 2( ) ,C G f f   (4.6) 

Equations (4.5) and (4.6) together serve as the judgment function of the ESide. 

(3) BFace judgment function 

The type of a BFace is a plane, and the outer loop is a concave loop or a mixed loop. In 
general, the BFace is parallel to the horizontal plane. However, there is also a case where the 
bottom face is inclined, and generally the inclination angle is small. Therefore, assuming that the 

maximum inclination angle is m , the external normal angle of the BFace should be no greater 

than m , i.e. e m0, . The judgment function 3()  of 3M  can be expressed as: 

 d m
3

e m

0, Plane
( )

0,

t
C

l cLoop l mLoop
  (4.7) 

(4) TFace judgment function 
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The TFace is a plane or a ruled face, and the outer loop is a convex loop. Typically, the 
generatrix of the ruled face or the plane is parallel to the horizontal plane. However, there is also a 
case where the top face is inclined, and generally the inclination angle is small. Therefore, 

assuming that the maximum inclination angle is 
m

, the external normal angle of the TFace should 

be satisfied e m180 ,180 . The judgment function 
4()  of 

4M  can be expressed as: 

 d m
4

e m

0, Plane RuledFace
( )

180 ,180

t t
C

l vLoop
  (4.8) 

(5) EFace judgment function 

When a face does not belong to the above four types, it is stored in the E-module. The 

judgment function 
5()  can be expressed as: 

 1 2
5

3 4

( ) T ( ) T
( )

( ) T ( ) T

C C
C

C C
   (4.9) 

Through the above judgment functions, the columns of the layer 
2L  can be identified into the 

corresponding modules in the layer 
3L . 

4.3 Selection Function 

The selection function selects the appropriate module and its columns from the layer 
3L  to form 

different types of machining features, which are stored in the layer 
4L . The faces associated with 

the machining features can be divided into two types, one is element faces directly forming the 
machining features, and the other is limit faces adjacent to the element faces and playing a 
limiting role. Both the two types of faces collectively define the machining features (see Table 2).  
 

Machining feature Element face Limit face 

Slot ISide, BFace, EFace TFace, BFace 

Protrusion ESide, TFace, EFace BFace 

Through hole/opening ISide, EFace BFace, ESide 

Contour ESide TFace, ESide 

 
Table 2: Machining features with element faces and limit faces.  

 

By mimicking the excitatory stimulation and inhibitory stimulation of neurons, the columns that 

store the element faces in the VCIM are called excitatory columns, which are represented by a set 
E . The columns that store the limit faces are called inhibitory columns and are represented by a 

set I . Figure 2 shows excitatory columns and inhibitory columns. For the convenience of the view, 

inhibitory columns are shown in blue and excitatory columns are in red. As mentioned earlier, a 
feature is stored in a hypercolumn H , therefore H  can be represented as ( , )H E I . The 

construction expressions for various features of the layer 4L  are: 

 , , 1,2,3,4, 1,2, ,i j j i j j iM H H E I i j m   (4.10) 

Where 1M , 2M , 3M  and 4M  indicate SF-module, PF-module, TF-module and CF-module. 
im  

indicates the number of columns in the corresponding module. ()i   is the selection function of the 

corresponding module. 
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According to the composition information of various features in Table 1, the definition of the 
selection functions are 

 

1 1 3 5 4

2 2 4 5 3

3 1 5 3 5

4 2 4 5

, ,

, ,

, ,

, ,

E I E M E M E M I M

E I E M E M E M I M

E I E M E M I M I M

E I E M I M I M

  (4.11) 

As can be seen from Table 2 and Figure 2, certain features such as slots, protrusions, and holes all 
contain EFaces, which is due to the widespread presence of chamfered faces or fillets in machining 

features in aircraft structural parts. These faces are located in the E-module because they do not 

meet the other module definitions in the layer 
3L . For some stepped slots or slots having a nested 

relationship, the limit face of the lower slot is the BFace of the upper slot, so the limit face of the 
slot also includes the BFace. 

5 IMPLEMENT 

In this section we demonstrate how the VCIM works for machining feature recognition, and 
validate and analyze the performance. As CATIA® is a multiplatform CAD/CAM/CAE commercial 
software suite which provides processing solution to a wide variety of industries, we adopt it for 
testing and analysis. 

5.1 Procedure 

Based on the structure of the VCIM, the process of VCIM computing is divided into three phases. 

• Phase 1: With a CAD 3D model as input, distribute a column to each face according to 
distribution function in 4.1, with each component storing a face attribute. 

• Phase 2: Judge the individual columns of 2L  based on the judgment functions in 4.2, and 

place the columns that meet the conditions in the appropriate modules. 

• Phase 3: Select the appropriate columns in 3L  to form the E  and I  in hypercolumns, and 

finally identify all features. 
 

 
 

Figure 6: Algorithm flow of the two methods.  
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To compare the difference between the proposed method and other approaches, the literature [17] 
is used for discussion. The flow chart of the two algorithms is shown in Figure 6. After a CAD 
model is input into the system, the VCIM algorithm is carried out along the left process and the 

literature method is carried out along the right process. Three main differences can be found 
between the two approaches. One is the VCIM method does not need feature preprocessing like 
the MLP method. The second is that the MLP method can only recognize one feature at a time, so 
it is necessary to separate the features of the CAD model first, and then send the features to the 
MLP network for calculation. If the CAD model has n features, the neural network needs to be 
executed n times. Another thing to notice is that the MLP in Figure 6 is trained by default, but the 
VCIM does not need to be trained, because the activation function defines the topological 

relationship of a class of features, which is independent of the geometry and shape of the features, 

so it can accurately identify the type of feature. This is essentially different from MLP adjusting 
weights through errors. 

5.2 Examples 

In this section, three different experiments are conducted. Example 1 tests the results and 
validates the method accuracy. Example 2 and Example 3 use a simple model and a complex 
model to compare and analyze the proposed method and the literature [17] method. 

5.2.1 Example 1 

The first example is the CAD 3D model shown in Figure 2 and Figure 4. According to the 
agreement mentioned above, the model is positively placed and +z direction points upwards. 

Every cylinder in Figure 2 represents a column. In 
2L , the faces are distributed and numbered (the 

numbering results can see Figure 4). In 
3L , the faces are judged and placed in five modules. In 

4L , 

the faces are selected to find their correct machining features with E  and I . For the convenience 

of the view, inhibitory columns are shown in blue and excitatory columns are in red. Multiple 
columns clustered together represent a hypercolumn, namely a feature. 

In the experiment, six features are finally recognized. They are 3 slots, 1 protrusion, 1 through 
hole and 1 contour. The recognition results are shown in Table 3. The number before the 
parenthesis represents the face serial number, and the parenthesis shows the face positions in the 

modules 
3L  and 

4L . Table 3 does not show the limit faces of each machining feature. 

 

Feature result Face composition 

Slot 1 7(
31M ,

41M ),8(
31M ,

41M ),9(
31M ,

41M ),10(
31M ,

41M ),3(
34M ,

41M ) 

Slot 2 11( 31M , 41M ),12( 31M , 41M ),13( 31M , 41M ),14( 31M , 41M ),5( 34M , 41M ) 

Slot 3 21( 31M , 41M ),22( 31M , 41M ),23( 31M , 41M ),10( 31M , 41M ),4( 34M , 41M ) 

Protrusion 1 2( 33M , 42M ),19( 32M , 42M ) 

Through hole 1 20( 31M , 43M ) 

Contour 1 15( 32M , 44M ),16( 32M , 44M ),17( 32M , 44M ),18( 32M , 44M ) 

 
Table 3: Recognition results of Example 1. 

5.2.2 Example 2 

The second example is a simple part in Figure 7(a). According to the agreement mentioned above, 
the +z direction of the model is obliquely upward. There are seven features in this model, which 

are 5 slots, 1 blind hole and 1 external contour.  
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The VCIM used in the part is a four-layer network, but the architecture is different from that of 

the first example. From Figure 7(b), the VCIM has 62 columns in total. In 
3L , the part has 45 

ISides, 9 ESides, 1 TFace, 6 BFaces and 1 EFace. In 
4L , the faces constitute 6 machining features. 

49 columns form five slot features, and 9 columns form an external contour features. These 

numbers do not include the limit face numbers. The recognition result for one slot is given in 
Figure 7(c). 
 

 
 

Figure 7: Recognition results of Example 2: (a) the test part, (b) the network structure for the 
part, and (c) a slot recognition result. 
 

When comparing and analyzing the two methods, recognition accuracy and parameters are two 

important reference indicators. The recognition results are shown in Figure 8(a). It can be seen 
that compared with the features in the model (shown in green), both methods can recognize all 
the slots, but the VCIM method fails to recognize the blind hole, and the MLP does not recognize 
the contour. The reason for the failure of the VCIM is that the selection function does not define 
the blind hole. Equation (4.11) can add a selection function for blind holes, that is 

 5 1 5 3 5, RuledFace,E I E M E M t I M I M   (5.1) 

Where RuledFacet  is used to define that the ISide of the blind hole consists of a ruled surface so 

as to distinguish it from a slot. 

Parameters are another item to discuss. For a trained MLP, the parameters are related to the 
number of neurons of each layer. The MLP in [17] is a four-layer model with the number of 
neurons of 12-24-24-1. Therefore, if each feature is calculated only once, the calculation amount is 

12×24+24×24+24×1=888. For the VCIM, the parameters are mainly concentrated in 2L , 3L , and 
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4L . A face needs to be calculated at most five times to determine the module it belongs to in 
3L , 

and each face needs at most four times to calculate its feature in 
4L . Therefore, the calculation 

amount of a face is 1×5+1×4=9, and the calculation amount of a feature is 9×n, where n is the 
number of faces in a feature.  Based on the above discussion, the parameters of the two methods 

are shown in Figure 8(b). It can be seen that compared with the MLP, the VCIM method has an 
absolute advantage in terms of parameters. 
  

 
 
Figure 8: Comparison of two methods: (a) the number of features recognized, and (b) the 
parameters of two methods. 

5.2.3 Example 3 

The third example is a complex aircraft frame structure in Figure 9(a). According to the agreement 

mentioned above, the +z direction of the model is upward. There are 68 slot features, 14 through 
hole/opening features, 4 protrusion features and 1 external contour features in this model. Both 
the VCIM method and the literature [17] method can recognize all the features. 

The VCIM used in the part is a four-layer network, but the architecture is different from those 
of the first two examples. From Figure 9(b), the VCIM here has about 772 columns in total. The 

faces are numbered in 2L . In 3L , the part has 574 ISides, 18 ESides, 68 TFaces, 111 BFaces and 1 

EFace. In 4L , the faces are assembled to get machining features. There are four kinds of 

machining features in the model. 614 columns form the slot features, 8 column forms the 
protrusion features, 28 columns form the through hole/opening features and 14 columns form the 
external contour features. These numbers do not include the limit face numbers. The recognition 
result for one slot marked with red ellipse in Figure 9(a) is given in Figure 9(c). 

The features in third example are more complex and irregular. For example, the number of 

sides constituting slots is large and the side shapes are quite different, and Figure 10(a) is a 
typical instance. The feature is a slot and its sides and bottom faces have irregular shapes. 
However, it still satisfies the activation functions defined about slot, so that the VCIM can 
recognize it. According to the recognition results in Figure 10(b), this feature is identified as two 
slots. The green faces represent sides of slots. 

Also, there are some intersection features in the frame structure, such as intersection slots, 
which share some sides. This article takes the area enclosed by the red rectangle in Figure 9(a) as 

an example to illustrate. The area can be divided into 6 subareas, each of which is marked by the 
number 1 to 6. The two methods both decompose the intersection feature into single sub-features 
for recognition. As the activation functions and feature definitions are different, the recognition 
results are not the same, which can be seen in Figure 11(a). The VCIM identifies all features as 
slots, and the literature method identifies the same features as pockets/slots and steps 
respectively. The total number of features recognized by the two methods is the same. 
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Figure 9: Recognition results of Example 3: (a) the test part, (b) the network structure for the 
part and (c) a slot recognition result. 

 
 

 
 
Figure 10: A slot feature of Example 3: (a) the slot, and (b) the recognition results of the VCIM. 

 
Another thing to notice is the parameters of recognizing intersection features. As mentioned above, 
for a trained MLP, if a feature is calculated once in the MLP, and then the parameters are 888. For 
a subarea in Figure 9(a), the calculation amount is 888×n, where n is the feature number of the 

subarea. For the VCIM, the calculation amount of a face is 1×5+1×4=9, and the calculation 
amount of a feature is 9×m, where m is the number of faces in a feature.  Based on the above 

discussion, the parameters of the two methods are shown in Figure 11(b). It can be seen that the 
parameters of the VCIM method are much smaller than those of the MLP method, and the results 
are similar to those of Example 2. 
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Figure 11: Comparison of two methods: (a) the number of features recognized, and (b) the 

parameters of two methods. 

5.3 Analysis 

Through the three examples, this paper analyzes the VCIM functionally.  

(1) Feasibility 

As the VCIM is a new method of calculating, the feasibility of the HBIM is the basic 

performance towards its applications. From Example 1, Example 2 and Example 3, the VCIM can 
accurately recognize machining features both in simple parts and more complex aircraft structural 
part. This proves the feasibility of the VCIM. 

(2) Generality 

As a goal and an important characteristic of the VCIM, the generality of the VCIM is also the 
concern of this paper. The application scope of this method is machining feature recognition in the 
field of CAD/CAM, especially for aircraft structural parts. Feature is a region of functional interest 

on a part [17], and machining feature is a group of adjacent faces which are machined out and 
have corresponding processing meaning, not any faces in a CAD model. Generally, a kind of 
machining feature has a kind of topology, and this is also the main idea of activation functions in 
this paper. Therefore, the VCIM built on this basis can recognize this kind of feature, regardless of 
the specific shape and number of faces of the feature.  

In Example 1, the slot features only consist of planes, and the sides are surrounded by a 

standard rectangle. In Example 2, the slot features contain ruled faces, and the slot shapes are 
more natural, such as sector and pentagon. The features in Example 3 are more complex. There 
are many irregularities in the part, such as the slot in Figure 10(a) and the intersection slot 
features. Although these slots are different, they can be accurately identified. This is an important 

manifestation of the generality of the algorithm, that is, the feature recognition gets rid of the 
influence of shape and number of faces. However, if the system does not define the activation 
functions of a kind of feature, the VCIM will fail to recognize this feature, such as the blind hole in 

Example 2. Therefore, the activation functions are extremely significant for the VCIM. 

 (3) Unity 

The unity of the VICM is that the network system can recognize several different types of 
machining features. Using the one system, all recognition results can be output, without the need 
for each feature to create a recognition method. When the activation functions are changed, the 
VCIM can be used to recognize new features in other fields. More importantly, the number of 
columns in the input layer is dynamic and not fixed, so models of any size are applicable. The size 

of the model can be changed from 23 in Example 1 to 62 Example 2, or even 772 Example 3. 

(4) Comparison with MLP 

Compared with MLP, the VCIM has several differences. First, the VCIM does not need training. 
Although it has a structure similar to neural network, it is not a real neural network because the 
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neurons in VCIM are not weights, nor are they corrected by error functions. In fact, the neurons 
are faces with their attributes. The activation functions define the topological relationship of a class 
of features, which is independent of the geometry and shape of the features, so it can accurately 
identify the type of feature. Second, the VCIM has no learning ability. As the activation functions 

are similar to logical expressions to judge various faces, they do not adjust weights to obtain 
expected output, so that the VCIM does not have learning process. Third, the parameters of the 
VCIM method are much smaller than those of the MLP method, which can be seen from Example 2 
and Example 3. Fourth, the VCIM does not need feature preprocessing, and can recognize all 
features once, while the MLP separates the features of the CAD model first, and identify a feature 
at a time. At last, the structure of VCIM is variable, which reduces the amount of calculation to a 
certain extent, but the MLP is a network with fixed layers and neurons. 

6 CONCLUSIONS  

In this paper, a new network structure called VCIM is established for machining feature recognition 
in the field of such as aircraft structural parts, which is different from the traditional ANNs in the 
following innovations: 

• The VCIM has column, hypercolumn and module structures similar to cerebral cortex. 
• The VCIM creates three new activation functions for logical operations. 

• The configuration structure of each layer can be dynamically configured as needed. 
• New machining features can be identified once the definition of activation functions is 

changed. 
Future work will further verify the feature recognition of more complex CAD models, and study the 
identification of intersecting features and composite features. Also, the activation functions with 
more precise classification is a major concern. 
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