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Abstract.  For controlling the curvature variation with given 𝐺1  or 𝐺2   Hermite 

interpolation conditions, we propose intrinsically defined planar curves based on 
explicit Bézier curvature functions.  In the proposed curve, the curvature variation is 
specified by an explicit Bézier curve.  To perform 𝐺1 or 𝐺2 Hermite interpolation, 

some of control curvatures of the explicit Bézier curve are modified to fit the given 

conditions.  We have implemented the method in C++ and confirmed that curves 
can be generated in fully interactively.  We clarify how the viable regions for 𝐺2 

Hermite interpolation changes depending on the degree of explicit polynomial Bézier 
curves.  Applications of the proposed curves include the design of aesthetic curves 
for aesthetic shape desing as well as 2D illustrations. 
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1 INTRODUCTION 

In the design of highly aesthetic surfaces, such as the exterior of automobiles, designers design 

surfaces by evaluating the reflected images such as reflection lines.  To design aesthetic surfaces, it 
is also important to use aesthetic curves whose curvature varies monotonically within a specified 
region since the curvature variation dominates the distortion of reflected images.  Recently, Yan et 

al. have pointed out that curvature behavior is also important for illustrations [24].   

For controlling curvature variation as much as possible with given 𝐺1 or 𝐺2  Hermite interpolation 

conditions, we propose intrinsically defined planar curves based on explicit Bézier curvature 
functions.  We represent the curvature function in terms of explicit polynomial or rational Bézier 
curves and the curve is generated by computing integrals.  Our approach is most closely related to 
[21], but our approach is different and is more efficient than [21] because we show that arc length 
can be determined by  𝐺1 or 𝐺2 Hermite interpolation conditions.  Moreover, we use explicit Bézier 

curvature functions and clarify some characteristics including experimental viable 𝐺2 Hermite regions.  

Tangential angle parameterization curves [16, 23], where the curvature radius function is 

represented by cubic polynomials, is also related.  No numerical integration is required in their 

approach, but inflection points cannot be represented.  In our approach, although numerical 
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integration of an explicit polynomial Bézier curvature function is required once to generate a curve, 
we confirmed that the curves can be generated fully interactively.   

Log-aesthetic curves [9,10,25] are high quality curves whose curvature functions are relatively 
simple functions with monotonically varying curvature.  However, when performing  𝐺2 Hermite 

interpolation, they cannot match a wide variety of  𝐺2 Hermite interpolation conditions.  This work 

can be considered as a generalization of the curvature function of log-aesthetic curves in terms of 
explicit polynomial or rational Bézier curves.   

The contributions of this work is the following: 
(1) We present a framework for generating a curve segment based on an explicit polynomial or 

rational  Bézier  curvature function with given  𝐺1 or 𝐺2 Hermite interpolation conditions. 

To our knowledge, no other approaches have used explicit Bézier curvature functions.  As shown 
in Eqn. (7), the integration to compute the tangential angle can be simply computed using the 

average of control curvatures. 
(2) For given  𝐺1 Hermite interpolation conditions, our method can generate curves with various 

curvature variations. 
As shown in Fig. 2 (c), (d) and (e)-(g), various kinds of curvature variation can be generated for 
the same 𝐺1  Hermite interpolation conditions by modifying control curvatures that are not 

constrained.  It is also possible to generate curves for the same 𝐺2  Hermite interpolation 

conditions, if we use explicit Bézier curvature functions of degree higher than 3. 
(3) We have implemented our curves in C++ and confirmed that curves can be generated in real 

time. 

Curve segments can be generated fully interactively for explicit polynomial and rational Bézier 
curvature functions, if the degree is not too high. 

(4) For explicit polynomial Bézier curvature functions and given 𝐺1 Hermite interpolation conditions, 

we visualize the regions of curvatures at two endpoints where a curve segment with 

monotonically varying curvature (without an inflection point) can be generated. 
To our knowledge, no other papers have visualized such regions for intrinsically defined curves 
based on curvature functions.  This kind of visualization is important to see if the proposed curves 

can match a wide variety of 𝐺2 Hermite interpolation condition. 

This paper is organized as follows.  Section 2 describes the related work for controlling curvature.   
In section 3, our proposed curves based on explicit polynomial or rational Bézier curvature functions 
are described.  Section 4 describes 𝐺1 or 𝐺2 Hermite interpolation methods.  Section 5 describes the 

methods for finding an inflection point and checking if the curvature is monotonically varying.  
Section 6 shows the examples of generated curves with  𝐺1 and 𝐺2 Hermite interpolation conditions.  

In Section 7, the proposed curves are compared with curves based on curvature radius functions 
[16, 23].  Finally, conclusions and future work are presented in Section 8.  

2 RELATED WORK 

This section reviews works on controlling curvature of curves that can be divided into works (a) on 
freeform curves and (b) on curves generated from curvature or curvature radius.   

2.1 Controlling Curvature of Freeform Curves 

Freeform curves, such as Bézier curves and NURBS curves, are widely used in many applications 

including CAD system. In freeform curves, we are able to know the curvature variation after the 
curve shape is completely determined by computing the derivatives.  Sapidis and Frey presented a 
necessary and sufficient condition for monotonically varying curvature of quadratic polynomial Bézier 
curves [17].  Frey and Field shows the condition for curvature monotonicity of quadratic rational 
Bézier curves [5].  Dietz and Piper used precomputed tables to generate curves with monotonically 
varying curvature for cubic polynomial Bézier curves [2] and for cubic rational Bézier curves [3].  

Wang et al. showed the sufficient condition for polynomial Bézier curves of degree 𝑛  to be 

monotonically varying [21].  Farin proposed class A Bézier curves where both curvature and torsion 
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are monotonically varying [4].  Yoshida et al. proposed a method for interactively controlling planar 
class A Bézier curves [26] and 3D class A Bézier curves [27].  They showed that typical class A 
Bézier curves get closer to a logarithmic spiral when the degree gets higher.  Yan et al. proposed κ-

Curves where local maximum curvature is always placed at control points[24].  They used quadratic 

Bézier curves for interpolation, but it is not trivial to extend their method for cubic or higher degree 
Bézier curves that include inflection points.  κ-Curves are not G2-continuous because they are used 

for illustration.  In freeform curves, the curvature is computed by the norm of the cross product of 
first and second derivatives divided by the cubed norm of the first derivative.  The difficulty of 
controlling curvature of freeform curves is due to the complexity of computing the curvature.     

2.2 Curves based on Curvature 

Nutbourne et al. [11] and Pal et al. [12, 13] proposed methods for generating curves by specifying 

curvature plots.  In these works, the curvature is restricted to be (piecewise) linear with respect to 
arc length.  Thus, the generated curves are composed of Clothoid segments.  Ali et al. proposed a 
generalized Cornu spiral [1], which is a generalization of the Clothoid and logarithmic spirals.   Our 
proposed curves can also be considered as a generalization of this work in terms of explicit rational 
Bézier curvature functions.  Watanabe et al. proposed a method to generate planar curves based on 

cubic Bézier curves [21].  This work is closely related to our work, but our work is different in that 
we use explicit Bézier curves for curvature functions and the arc length is not used for an optimization 
parameter.   

Log-aesthetic curves [9,10,25] are curves whose logarithmic curvature graphs are straight lines.  
Because of the constraint of simple curvature functions [28] of log-aesthetic curves, it is not possible 
to use a single log-aesthetic curve for wide a variety of 𝐺2 Hermite interpolation conditions.  For a 

given 𝐺1 Hermite interpolation condition, we have changed the value of α to see how the curvatures 

at two endpoints change and confirmed that the curvatures change only slightly.  This means that a 

single log-aesthetic curve segment is not good for 𝐺2 Hermite interpolation.  Miura et al. have used 

more than one log-aesthetic curve segment for 𝐺2 Hermite interpolation [11].   However, it is not 

clear if the proposed curves can match a wide variety of 𝐺2 Hermite interpolation conditions.  There 

are several generalizations of log-aesthetic curves, such as generalized log-aesthetic curves by 
Gobithaasan et al. [6] and quadratic log-aesthetic curves by Yoshida et al. [30].  It is not clear if 
these curves can match a wide variety of 𝐺2 Hermite interpolation conditions.  

Wu et al. [23] have proposed curves whose radius of curvature is represented by a polynomial 
in terms of tangential angle.  They showed that the integration for computing curve points is in 
closed form (no numerical integration is necessary) and 𝐺1 Hermite interpolation can be simply 

performed by solving linear equations.  Saito et al. [16] have also worked on the same curve and 
they provide more detail analysis of viable 𝐺2 Hermite regions and non-polynomial radius curvature 

functions by using the principle of superposition.   Although the curve points can be simply computed 
and G1 Hermite interpolation is performed by solving a linear system, the curves cannot include an 

inflection point and a cusp may arise in a segment.  In the proposed curves, inflection points can be 
representable. 

3 CURVES BASED ON EXPLICIT BÉZIER CURVATURE FUNCTIONS 

Let 𝑠𝑡 be the arc length of a curve segment.  Let 𝑛 be the degree of an explicit Bézier curve and 

 𝜅𝑖(𝑖 = 0,1,⋯ , 𝑛) be the control curvatures.  An explicit polynomial Bézier curvature function 𝜅(𝑠) in 

terms of arc length 𝑠 is defined by 

𝜅(𝑠) = 𝑠𝑡 𝐾(𝜏)  (𝑠 ∈ [0, 𝑠𝑡]),     𝐾(𝜏) = ∑𝐵𝑖
𝑛(𝜏)

𝑛

𝑖=0

 𝜅𝑖   (𝜏 ∈ [0,1]), (1) 

where 𝐵𝑖
𝑛(𝜏) is the Bernstein polynomial and 𝜏 =

𝑠

𝑠𝑡
.  An explicit rational Bézier curvature function 

𝜅𝑅(𝑠) is given by  
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𝜅𝑅(𝑠) = 𝑠𝑡 𝐾𝑅(𝜏)  (𝑠 ∈ [0, 𝑠𝑡]),    K𝑅(𝜏) =
∑ 𝐵𝑖

𝑛(𝜏)𝑛
𝑖=0  𝑤𝑖𝜅𝑖

∑ 𝐵𝑖
𝑛(𝜏)𝑛

𝑖=0  𝑤𝑖
   (𝜏 ∈ [0,1]). (2) 

where 𝑤𝑖(𝑖 = 0,1,⋯ , 𝑛) are weights.  We use 𝜅𝐺(𝑠) to mean either 𝜅(𝑠) or 𝜅𝑅(𝑠).  We also use K𝐺(𝜏) to 

mean 𝐾(𝜏) or K𝑅(𝜏).  Arc length s and tangential angle θ are related by the following equation 

d𝜃 = κ(𝑠)d𝑠. (3) 

Integrating both sides of Eqn. (3), we get 

𝜃 (𝑠) = ∫ 𝜅𝐺(𝑡)d𝑡.
𝑠

0

(4) 

As will be shown in the next section, the integration of Eqn. (4) can be computed in closed form if  
𝜅𝐺(𝑠) is an explicit polynomial Bézier curvature function.  The curve position  𝐏(𝑠) in the standard 

form, where 𝐏(𝑠) is at the origin if s = 0  and its tangent vector is [1 0]T, is computed by 

𝐏(𝑠) =

[
 
 
 
 ∫ cos 𝜃 (𝑠)d𝑡

𝑠

0

∫ sin 𝜃 (𝑠)d𝑡
𝑠

0 ]
 
 
 
 

. (5) 

The curve in general position can be obtained by performing an appropriate similarity transformation 

to the curve generated by Eqn. (5). 

4 𝑮𝟏 OR  𝑮𝟐 HERMITE INTERPOLATION METHOD 

4.1 Computing the Arc Length 

To draw a curve segment, we need to know the arc length of the curve segment.  We show that the 

arc length of a curve segment can be computed from the tangential angle given in 𝐺1 Hermite 

interpolation conditions.  For explicit polynomial Bézier curvature functions, the arc length can be 

simply computed without using numerical integration.  For explicit rational Bézier curvature 
functions, numerical integration is necessary. 

Tangential angle 𝜃 and arc length 𝑠 are related by Eqn. (4).  Let 𝜃𝑑 and 𝑠𝑡 be the change of 

tangential angle and the arc length of a curve segment, respectively.  Putting Eqn. (1) into Eqn. (4) 
and replacing 𝜃 (𝑠) and 𝑠 with 𝜃𝑑 and 𝑠𝑡 respectively, we get 

 

𝜃𝑑 = ∫ 𝜅(𝑡)d𝑡
𝑠𝑡

0

(6)

            =  𝑠𝑡 ∫ 𝐾(𝑡)d𝑡
1

0

(7)

                         =  𝑠𝑡 ∑ 𝑘𝑖/(𝑛 + 1)
𝑛

𝑖=0
. (8)

 

Note that the modification from Eqn. (7) to Eqn. (8) is based on the characteristics of explicit 
polynomial Bézier curves [19].   Thus, once all the control curvatures and the change of tangential 

angle are known, arc length 𝑠𝑡 is computed by 

𝑠𝑡 =
𝜃𝑑(𝑛 + 1)

∑ 𝑘𝑖
𝑛
𝑖=0

. (9) 

The arc length  𝑠𝑡 is simply 𝜃𝑑 divided by the average of all the control curvatures. 

For explicit rational Bézier curvature functions, the arc length 𝑠𝑡 is computed by 

𝑠𝑡 =
𝜃𝑑

∫ 𝐾(𝜏)d𝜏
1

0

. (10) 
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To compute the denominator of the right-hand side of Eqn. (10), numerical integration is necessary 
because 𝐾(𝜏) is a rational function. 

4.2 𝑮𝟏 or 𝑮𝟐 Interpolation Method 

We consider 𝐺1 or 𝐺2 Interpolation in the standard form.  In 𝐺1 Hermite Interpolation in the standard 

form, we are given two points 𝐏𝑠, 𝐏𝑒 and their tangents 𝐭𝑠, 𝐭𝑒.  𝜃𝑑 is the change of tangential angle 

that is the angle formed by 𝐭𝑠 and 𝐭𝑒.  In the standard form, 𝐏𝑠 is at the origin, 𝐭𝑠 is directed toward 

the positive 𝑥-axis, and the 𝑦 coordinate of 𝐏𝑒 is greater than 0.  See Fig. 1.  In this section, without 

of loss of generality, we assume that  𝐏𝑠, 𝐏𝑒, 𝐭𝑠 and  𝐭𝑒  are given in the standard form.  By an 

appropriate translation and a rotation, any 𝐏𝑠, 𝐏𝑒, 𝐭𝑠 and  𝐭𝑒 can be transformed into the standard 

form.  If the 𝑦 coordinate of 𝐏𝑒 is smaller than 0, we perform a mirroring operation.  If we are given 

all the control curvatures 𝜅𝑖, the arc length of the curve segment can be computed by Eqn. (8) for 

polynomial curvature functions or by Eqn. (10) for rational curvature functions. 

Since Eq. (5) is in standard form, the positional constraint 𝐏(0) = 𝐏𝑠 and the tangential constraint  
d𝐏(𝒔)

d𝑠
|
𝑠=0

= 𝐭𝑠  at the start point s = 0 are automatically satisfied.   The endpoint tangential condition 

d𝐏(𝒔)

d𝑠
|
𝑠=𝑠𝑡

= 𝐭𝑒 is satisfied by using arc length 𝑠𝑡 computed using Eqn. (8) or (10).  The remaining 

condition for satisfying 𝐺1 Hermite interpolation condition is 𝐏(𝑠𝑡) to be equal to 𝐏𝑒.  This condition 

is satisfied by an optimization using two of 𝜅𝑖, typically 𝜅0 and  𝜅𝑛, as optimization parameters.  Other 

control curvatures are either user-specified or interpolated using 𝜅0 and  𝜅𝑛.  If we use a linear 

interpolation to compute 𝜅1, ⋯ , 𝜅𝑛−1, the generated curve will be the Clothoid curve.  

In 𝐺2 Hermite interpolation, curvature κ𝑠, κ𝑒 of start and end points are specified in addition to 

𝐺1 Hermite interpolation conditions.  𝐺2 Hermite interpolation is performed in a similar manner by 

setting κ0 = κ𝑠 and κ𝑛 =  κ𝑒.  𝜅1 and  𝜅𝑛−1 are typically used as optimization parameters and other 

control curvatures are either user-specified or interpolated using 𝜅1 and  𝜅𝑛−1.  Note that any 𝐺2 (and 

𝐺1) Hermite interpolation condition can be converted to the standard form shown in Fig. 1 by an 

appropriate similarly transformation.  If the control points are uniformly scaled by a factor 𝜎, the 

curvature at both endpoints must be scaled by a factor 
1

𝜎
. 

Figure 1:  𝐺1 Hermite Interpolation in the standard form. 

5 INFLECTION POINTS AND CURVATURE MONOTONICITY 

The curves generated by the proposed method may include an inflection point and the curvature 

may not to be monotonically varying.  The existence of an inflection point can be checked by applying 

Bézier clipping [18] to κ𝐺(𝜏) within 𝜏 ∈ [0,1] for the general case.  If the degree of κ(𝜏) is low, we can 

𝜃𝑑 

x 

y 

𝐏𝑠 

𝐏𝑒 

𝐭𝑒  

𝐭𝑠 

𝜃𝑑  
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directly compute 𝜏 such that κ(𝜏) = 0.  For rational Bézier curvature functions with positive weights, 

we only need to check if the numerator becomes zero within 𝜏 ∈ [0,1].  If κ𝐺(𝜏) becomes 0 within 𝜏 ∈
[0,1], the curve includes an inflection point within the curve segment. 

The curvature of the curve is monotonically varying if the first derivative of κ𝐺(𝜏) does not change 

its sign within 𝜏 ∈ [0,1].  The monotonicity of curvature can be similarly checked by applying Bézier 

clipping to see if there is a sign change within 𝜏 ∈ [0,1].  For low degree κ(𝜏), we can directly compute 

𝜏 such that κ′(𝜏) = 0.  For explicit rational Bézier curvature functions with positive weights of degree 

𝑛, we need check if the first derivative becomes zero within 𝜏 ∈ [0,1].  Suppose that the rational 

function κ𝑅(𝜏) = 𝑓(𝜏)/𝑔(𝜏).  The first derivative is 

κ𝑅
′ (𝜏) =

𝑓′(𝜏)𝑔(𝜏) − 𝑓(𝜏)𝑔′(𝜏)

𝑔(𝜏)
. (11) 

Although the degree of the numerator seems to be 2𝑛 − 1, it is known that the actual degree is 2𝑛 −
2 [15, 20].  Therefore, for an explicit rational Bézier curvature function of degree 𝑛, the monotonicity 

of curvature can be checked by computing the zeros of a polynomial of degree 2𝑛 − 2, such as using 

Bézier clipping.  If there is a sign change, the curvature of the curves is not monotonically varying. 

In the case where an inflection point is not desirable, a user can move control points and/or 

control curvatures.  Similarly, if a user wants the curvature to be monotonically varying and if the 
curve is not, the user can move control points and/or control curvatures so that the curvature to be 
monotonically varying.  In the case of using a rational curvature function, the user can also change 
the weights of the rational function. 

6 RESULTS 

This section shows the results of generated curves and their characteristics.  We have implemented 

our method in C++ and confirmed that curve segments can be generated in real time using an Intel 

Core i7 2.2 GHz computer.  In the figures, a red circle on a curve segment represents an inflection 
point whereas a blue circle represents a point of curvature extrema.  Curves are shown with their 
curvature combs.   

Fig. 2 shows various planar curves based on explicit polynomial Bézier curvature functions.  For 
𝐺1  Hermite interpolation shown in Fig. 2 (a)-(g), κ0 and κ𝑛, where 𝑛 is the degree, are used as 

optimization parameters.   In the example of Fig. 2 (h) where 𝐺2 Hermite interpolation is performed, 

κ1 and κ𝑛−1 are used as optimization parameters.  

Fig. 2 (a) is an example of a linear curvature function.  The generated curve is the Clothoid curve 

segment.  Fig. 2 (b) is an example where the curve has an inflection point.  Fig. 2 (c) and (d) are 
examples of using cubic Bézier curvature functions.  The constraint of κ0 = κ1 = κ2 is used in (c), 

whereas in (d) the constraint of κ1 = κ2 = κ3 is used.  Fig. 2 (e) and (f) are similar examples but 

quintic Bézier curvature functions are used.  The constraint of κ0 = κ1 = κ2 = κ3 = κ4 is used in (e), 

whereas in (f) the constraint of κ1 = κ2 = κ3 = κ4 = κ5 is used.  Fig. 2 (g) is an example of using cubic 

Bézier curvature function where the constraint of κ0 = κ1, κ2 = κ3 is given.  Thus in (g), 
𝑑κ

𝑑𝑠
= 0 at both 

endpoints.  Harada et al. [9] have pointed out that in many aesthetically pleasing connection 
between curve segments, the first derivative of curvature become 0.  Thus, the example of (g) is 
important for aesthetically pleasing connection between segments.   Note that in Fig. 2 (a), (c-g), 

the same 𝐺1 Hermite interpolation conditions are used.  Various kinds of curvature variation can be 

generated for the same 𝐺1 Hermite interpolation conditions.  Fig. 2 (h) shows an example of 𝐺2 

Hermite interpolation using cubic curvature function. 

For 𝐺2 Hermite interpolation, there is no guarantee that the curvature of generated curve is 

monotonically varying as shown in Fig. 3 (a).  As shown in Fig. 3 (b), by appropriately modifying 
weights of explicit rational cubic Bézier curvature function, we can generate a curve with 

monotonically varying curvature with the same 2G  Hermite interpolation conditions.  Thus by using 
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rational functions, the generated curves can match a greater variety of 𝐺2 Hermite interpolation 

conditions than using polynomial functions if the degree is the same.  

 
 

 

 

 

 

        
                (a) Linear                                             (b) Linear with an inflection 

          
                           (c) Cubic  (κ0 = κ1 = κ2)                                (d) Cubic (κ1 = κ2 = κ3) 

 
                (e) Quintic (κ0 = κ1 = κ2 = κ3 = κ4)     (f) Quintic with an inflection (κ1 = κ2 = κ3 = κ4 = κ5)               

 

             (g) Cubic (κ0 = κ1, κ2 = κ3)                            (h) Cubic, 2G  Hermite (κ𝑠 = 0.5, κ𝑒 = 1.5) 

 

Figure 2:  Generated curves based on explicit Bézier curvature functions. 

κ 

𝜏 

 

κ 

𝜏 

 

𝐏𝑠 𝐏𝑒 𝐏𝑠 𝐏𝑒 

κ 

𝜏 

 

κ 

𝜏 

 

𝐏𝑠 
𝐏𝑒 

𝐏𝑠 
𝐏𝑒 

κ 

𝜏 

 

κ 

𝜏 

 

𝐏𝑠 
𝐏𝑒 𝐏𝑠 𝐏𝑒 

κ 

𝜏 

 

κ 

𝜏 

 

𝐏𝑠 𝐏𝑒 𝐏𝑠 
𝐏𝑒 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 17(1), 2020, 77-87 

© 2020 CAD Solutions, LLC, http://www.cad-journal.net 
 

84 

    

(a) 𝐺2 Hermite using polynomial Bézier        (b) 𝐺2 Hermite using rational Bézier 

 

Figure 3:  𝐺2 Hermite Interpolation using polynomial and rational Bézier curves (κ𝑠 = 0.5, κ𝑒 = 2.0). 

 

For curves based on explicit polynomial Bézier curvature functions of degree 3, 5 and 10, Fig. 4 (b), 
(c), (d) show experimentally generated 𝐺2 Hermite interpolation regions of κ𝑠, κ𝑒 where curves with 

monotonically varying curvature are to be generated for the given 𝐺1  Hermite interpolation 

conditions shown in Fig. 4 (a).  κ1, κ𝑛−1 are used as optimization parameters and κ2, ⋯, κ𝑛−2 are 

linearly interpolated using κ1 and κ𝑛−1.  The hyperbolas shown in (b), (c), (d) show the theoretically 

viable regions where curves with monotonically varying curvature exist [1].  As the degree of the 
explicit Bézier curvature function increases, the viable region also gets larger.  

7 COMPARISON WITH CURVES BASED ON CURVATURE RADIUS FUNCTION 

This section compares the proposed curves with curves based on curvature radius functions [16, 
23].  We call curves based on curvature radius functions TAP (Tangential Angle Parameterization) 

curves.  The proposed curves and TAP curves have a similar property in that the curvature profile 
can be controllable under  𝐺1 or  𝐺2 Hermite interpolation conditions.  In TAP curves, no numerical 

integration is necessary and 𝐺1 or  𝐺2 Hermite interpolation can be performed by solving linear 

equations.  Although a cusp, which is a point of zero curvature radius, can be represented, an 
inflection point cannot.  In the proposed curves, numerical integration is required to compute the 
points on a curve and an optimization of two parameters is required for 𝐺1  or  𝐺2  Hermite 

interpolation.  However, as we have confirmed in our implementation, it is fast enough for interactive 

    
 (a) Hermite interpolation conditions       (b) 𝑛 = 3              (c) 𝑛 = 5             (d) 𝑛 = 10                          

 
Figure 4:  𝐺2 Hermite region for curves based on explicit polynomial Bézier curvature functions. 
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design of curve segments.  In TAP curves, a cusp may arise in 𝐺1 Hermite interpolation, whereas an 

inflection point may arise in the proposed curves which is more preferable in most cases.  See Fig. 
5. 

Both TAP curves and the proposed curves are related to log-aesthetic curves.  Let 𝛼 be the shape 

parameter of log-aesthetic curves and Λ be a constant.  See [25] for the details of 𝛼 and Λ. The 

curvature of log-aesthetic curves is represented by  

κ = {
𝑒−Λ𝑠 if 𝛼 = 0

(Λαs + 1)−
1
𝛼 otherwise

 . (12) 

TAP curves can exactly represent log-aesthetic curves with α = 2,
3

2
,
4

3
, … [16]. Log-aesthetic curves of 

α = −1,−
1

2
, −

1

3
, … can be exactly represented by the proposed curves, since Eqn. (12) becomes 

polynomial for such α.  Yoshida et al. have used Taylor expansion of the equation of log-aesthetic 

curves to approximate log-aesthetic curves in terms of polynomial Bézier curves [29].  Another way 
to approximate log-aesthetic curves is to use Taylor expansion of Eqn. (12) for approximating the 

curvature function in terms of explicit polynomial Bézier curves.  How to perform 𝐺1  Hermite 

interpolation for such an approximation is an area for future research. 

 

                

(a) TAP curve segment                                (b) Proposed curve segment 

 

Figure 5:  A TAP curve segment a proposed curve segment for the same 𝐺1 Hermite interpolation 

conditions. 

8 CONCLUSIONS 

This paper proposed planar curves based on explicit polynomial or rational Bézier curvature functions 
and a method for 𝐺1 and 𝐺2 Hermite interpolation.  We have implemented the method and confirmed 

that curves segments can be generated in real time.  In addition to examples of generated curves, 
we visualized the regions of curvatures at two endpoints where a curve segment with monotonically 

varying curvature can be generated for given 𝐺1 Hermite interpolation conditions. 

There are several directions for future work.  We first would like to extend our approach by using 
explicit B-spline curves so that the curves can match a wider variety of 𝐺2 Hermite interpolation 

conditions.  We would also like to generate curves that can cover all the possible 𝐺2 Hermite regions 

shown in Fig. 4 (b)-(d).  We are also planning to extend the idea to 3D curves by specifying curvature 
and torsion plots in terms of explicit Bézier curves.  Since there is no concept of tangential angle in 
3D, how to extend our idea to 3D curves in an efficient way is a problem for future work. 
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