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Abstract. This paper introduces a new approach for the generation of as-scanned 
point clouds of CAD assembly models. The resulting point clouds incorporate various 

realistic artifacts that would appear if the corresponding real objects were digitalized 

with a laser scanner. Such a virtual Reverse Engineering technique can produce a huge 
amount of realistic point clouds much faster than using classical time-consuming Re-
verse Engineering techniques on real physical objects. Here, there is no need to use a 
laser scanner and the post-processing steps are automatic. Using this technique, it is 
easy to create large databases of point clouds automatically segmented and labeled 
from the CAD models and which can be used for supervised machine learning. The 
proposed approach starts by generating a triangle mesh wrapping the CAD assembly 

model to be reverse engineered. The resulting watertight mesh is then sampled to 
obtain a more realistic distribution of points. The occlusion phenomenon is then simu-
lated using a hidden point removal algorithm launched from several viewpoints. A 
misalignment procedure can optionally be used to simulate the fact that in real-life 
Reverse Engineering the position and orientation of the laser scanner and/or real ob-

ject would have been changed to get a different scanning viewpoint. The virtual Re-

verse Engineering process ends by generating noise and by inserting outliers. The 
approach is illustrated and validated on several industrial examples.  

 
Keywords: as-scanned point clouds, scanning artifacts, surface wrapping, sampling, 
hidden point removal, noise and outliers, reverse engineering. 
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1 INTRODUCTION 

Over the last years, the use of artificial intelligence techniques to analyze and process geometric 
models has become a new trend in computer sciences. This is notably true when considering the 
segmentation and classification of 3D point clouds [5][9]. However, such techniques require the ac-

cess to large datasets which may also have to be labeled when considering supervised learning 
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techniques. Therefore, one of the key issues when defining such learning approach is to be able to 
rely on available and trustable large datasets. This is not straightforward as it can take a lot of time 
to generate and process all the data. Actually, in Reverse Engineering process [8] the acquisition and 
processing time can range from a few minutes to several hours [1]. This strongly depends on the 

adopted technology (e.g. LIDAR, laser scanner, structured-light scanner, RGB-D sensor), the acquisi-
tion procedure followed by the operator and the complexity of the object to be reverse engineered. 
For example, scanning a simple sonotrode from multiple viewpoints (Fig. 1.a1) and treating (e.g. 
cleaning, filtering, registration, simplification, meshing) the resulting point clouds (Fig. 1.a2) can re-
quire up to several tens of minutes. Thus, it becomes unreasonable to try to manually generate thou-
sands of point clouds using classical Reverse Engineering techniques on more complex existing phys-
ical objects or environments. Moreover, to be able to analyze and understand the impact of both the 

type of sensors and adopted control parameters, it is also important to have access to multiple point 

clouds of the same object following various acquisition scenarios. This further explodes the number of 
required acquisitions and associated treatments, thus justifying the need to develop the fully virtual 
Reverse Engineering technique presented in this paper.  

 
In the proposed virtual Reverse Engineering approach, point clouds are automatically generated 

from CAD models of parts or assemblies. Thus, our approach can make use of available databases 
containing a huge amount of CAD models (e.g. GrabCAD, TraceParts, 3DModelSpace). The resulting 
point clouds incorporate various realistic artifacts that would appear if the corresponding real objects 
were digitalized with a real acquisition device. If the CAD models are labeled or enriched with semantic 
information, the generated point clouds could easily inherit from the available information. The inher-
itance procedure is not developed in this paper which focuses on the way point clouds can be realis-
tically generated. As the approach is fully parameterized, for a given CAD model, several point clouds 

(Fig. 1.b1 to 1.b4) can be generated to simulate different scanning conditions (e.g. type of acquisition 
device and associated control parameters, environmental conditions, adopted acquisition sequence). 

As a consequence, a large variety of as-scanned point clouds can be generated in few second. 

 

          

 
Figure 1: Real sonotrode (a1) scanned to get point clouds that have been post-treated (a2). CAD 
model of a sonotrode (b1) virtually reverse engineered following three parameterizations of the pro-
posed framework (b2-b4).  
 
To generate realistic as-scanned point clouds, it is important to analyze and to understand the multiple 
artifacts which can appear during a real reverse engineering session. Actually, artifacts can result from 

more or less complex phenomena generated by, and/or between, the acquisition device (e.g. type, 
control parameters), the digitalized object (e.g. material, color, shape, size), the operator (e.g. acqui-

sition strategy, experience), and the environment (e.g. light, temperature, vibration). However, even 
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if the origins can be multiple, the impacts on the resulting point clouds can be classified according to 
five main categories (Fig. 2): non-uniform sampling, missing data, misaligned point clouds, noisy data 
and outliers [2]. 
     

(a)                        (b)                         (c)                            (d)                         (e) 
 

Figure 2: Different artifacts: (a) non-uniform sampling, (b) missing data, (c) misaligned scans, (d) 
noisy data and (e) outliers[2]. 

 
This paper introduces a modular framework for the generation of as-scanned point clouds incorporating 

the above mentioned artifacts. Section 2 introduces the overall framework and discusses some of its 
characteristics. The modules and associated control parameters are detailed in section 3. Section 4 
presents the tested configurations, the adopted evaluation criteria as well as the results on several 
industrial examples. The last section concludes this paper and introduces several perspectives.  

2 OVERALL FRAMEWORK 

The proposed approach is composed of several modules (Fig. 3). It starts by generating a triangle 
mesh wrapping the CAD model to be reverse engineered. The CAD model can either be a single part 

or an assembly of several parts. The resulting watertight mesh is then sampled to obtain a more 
realistic distribution of points. The occlusion phenomenon is then simulated using a hidden point re-

moval algorithm launched from several viewpoints. As a result, the resulting point cloud is incomplete 
and some data are missing. Then, a misalignment procedure can optionally be used to take into ac-
count the fact that in real-life reverse engineering the object is acquired from several viewpoints. Thus, 
this procedure can modify the position and orientation of the point clouds’ reference frames with re-

spect to the reference frame of the original CAD model. The virtual Reverse Engineering process ends 
by generating noise and by inserting outliers. 

 
Table 1 characterizes the different modules with respect to their ability to incorporate the above-

mentioned artifacts. It clearly shows the complementarity of the different modules to achieve the 
desired results, i.e. being able to generate as-scanned point clouds incorporating artifacts appearing 
when scanning real-life physical objects. The approach is modular and each module is controlled by 

parameters which are detailed in the next section.  
 

 

 

Figure 3: Virtual Reverse Engineering modular framework generating as-scanned point clouds from 
CAD assembly models. 
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Modules 

 Wrap-
ping 

Sam-
pling 

HPR Misalign-
ment 

Noise Outli-
ers 

A
r
ti

fa
c
ts

 Non-uniform sam-
pling 

Yes Yes Yes - - - 

Missing data Yes Yes Yes - - - 

Misaligned scans - - - Yes - - 

Noisy data - - - - Yes - 

Outliers - - - - - Yes 

 
Table 1: Characteristics of the modules with respect to their ability to incorporate artifacts appearing 
when scanning real-life objects. 

3 MODULES AND CONTROL PARAMETERS 

This section briefly introduces the principles underpinning the proposed modules as well as the differ-
ent control parameters which can be used to reflect as much as possible real scanning conditions. 

3.1 Wrapping 

The initial CAD model is wrapped to produce a watertight triangle mesh. As a result, some internal 

parts are not captured and some details of the resulting envelop can be simplified. This depends on 
the Grain accuracy and wrapCoverage ratio. The Grain characterizes the average distance between 
connected points of the resulting mesh. It can be set up according to the accuracy of the acquisition 
device to be simulated, for instance 50µm. The wrapCoverage determines the wrapping representa-

tion. A lower ratio will result in a thinner wrapping coverage. In the current implementation, the 
wrapping module makes use of CATIA V5 by Dassault Systèmes [4]. 

3.2 Sampling 

The watertight triangle mesh resulting from the wrapping is then sampled to get a more realistic 
distribution of points. The amount of points is defined by the densitySamp expressing the number of 
points per square units. It can be set up according to the accuracy of the acquisition device to be 
simulated. The current implementation makes use of CloudCompare [3] to perform the sampling. Fig 

4 illustrates the impact of the densitySamp parameter. 

 

 

 

 

Figure 4: Sampling module: (a) watertight triangle mesh, (b) densitySamp = 2.5, (c) densitySamp 
= 5. 
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3.3 Hidden Point Removal (HPR) 

To simulate multiple acquisition viewpoints, a simple and fast HPR operator can be run from several 

viewpoints. Following the approach of Khalfaoui et al. [7], a set of nbVWPts viewpoints are selected 
from a predefined list of positions around the object to be virtually reverse engineered. The removal 
of hidden points is performed using the approach of Katz et al. [6]. The adopted HPR operator deter-
mines the visible points of the point cloud, as viewed from a given viewpoint (Fig. 5.b and 5.c). An 
optimized version of this algorithm has been used to speed up the identification of hidden points using 
an octree-based decomposition. Through the Merging output option, the user can decide whether 

he/she wants to get multiple incomplete point clouds (Merging = 0) or if the point clouds are merged 
to get a single output point cloud (Merging = 1). However, this module does not try to filter overlap-
ping areas which may result from multiple viewpoints. This module is optional. 

 

       

 

 

Figure 5: Hidden Point Removal module: (a) initial point cloud, (b) visible points after the HPR oper-
ator running from a given viewpoint shown with a cone, (c) from two viewpoints without merge (Merg-
ing = 0). 

3.4 Misalignment 

Since the HPR operator simply flags the visible points, the resulting point clouds perfectly fit in each 
other and there is no need to run an ICP algorithm. This differs from a real scan for which the point 
clouds acquired from different viewpoints appear in different reference frames. Thus, to simulate the 
fact that point clouds acquired with a real scanner would never fit perfectly, this module slightly rotates 
the point clouds one after the others. Of course, it can only be used if several (at least two) point 

clouds have been generated by the HPR module. Actually, a slight rotation is performed between two 
point clouds PCi and PCi+1 generated from two successive viewpoints VPi and VPi+1. More precisely, 

PCi+1 rotates of an angle i+1 that is defined by randomly selecting a value smaller than a user-specified 

maxAngle. As a default, the axis of rotation goes through the barycenter of the reverse engineered 
CAD model, and its direction is given by the plan’s normal, defined by three points: the barycenter, 
the two viewpoints VPi and VPi+1. This misalignment procedure is run (nbVWPts – 1) times starting 
with the rotation of PC2. The barycenter used to define the axis of rotation can optionally be substituted 
by another user-specified Center. This can be of interest when the CAD model has widely varying main 

dimensions. Fig 6 illustrates the misalignment with three viewpoints. 

3.5 Noise 

Being able to insert noise is an important feature of the proposed virtual Reverse Engineering frame-
work [10]. Noise depends on many factors (e.g. type of acquisition device, material of the object, 
orientation of the sensor with respect to the surface) but it can be characterized by three main pa-

rameters: the type of distribution law, the amplitude of the noise, and the direction of the noise. In 

this work, the noise distribution law is a uniform one. 
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Figure 6: Misalignment module with three viewpoints, the barycenter as a rotation center and with 
the maxAngle = 3.5. 
 

The remaining control parameters levelNoise and dirNoise (either along the normal to the surface, or 
along the line of sight) describe the way points are moved. The amplitude of the noise introduced at 

a given point is equal to 2  levelNoise  (rand – 0.5) where rand returns a single uniformly distributed 
random number in the interval [0, 1]. Fig 7 illustrates the impact of the levelNoise parameter. 

    

 

Figure 7: Noise module moving points along the normal to the surface (dirNoise): (a) zoom window, 
(b) levelNoise = 0, (c) levelNoise = 0.03, (d) levelNoise = 0.1 

3.6 Outliers 

Outliers are commonly due to structural artifacts in the acquisition process. In some instances, outliers 
are randomly distributed in the volume, where their density is smaller than the density of the points 

that sample the surface. Outliers can also be more structured, however, where high density clusters 
of points exist far from the surface. This can occur in multi-view stereo acquisition, where view-
dependent specularities can result in false correspondences [2]. In the proposed approach, the idea 
is to identify a restricted set of points which can be duplicated and then moved randomly along the 
three directions of the space. Thus, the positioning of the outliers is driven by two control parameters: 

densityOut and levelOut. The first one is a percentage of points to be duplicated and moved. Points 
are uniformly selected among the points of the point cloud(s). Outliers then result from a duplication 
of those selected points which are then moved in the three dimensions of the space using three distinct 

amplitudes each of them being computed using the formula: 20  levelOut  (rand – 0.5). 

4 RESULTS 

This section presents several tests which have been performed to validate the proposed approach on 

several CAD assembly models to be virtually reverse engineered. 
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4.1 Tested configurations 

To analyze the influence of the previously introduced control parameters and to show the potential of 

the proposed approach, four configurations have been tested. The parameters associated to those 
configurations are summarized in Table 2. Each configuration can be considered as a setting charac-
terizing a scanning session (e.g. type of acquisition device, material of the object, lightning conditions, 
expertise of the operator) to be virtually simulated using the proposed approach. The links between 
the characteristics of a real scanning session and those parameters are not detailed in this paper. Due 
to space limitation, all the parameters are not tested. 

 

Steps Parameters 
Configurations 

1 2 3 4 

Wrapping 
Grain 0.5mm 0.5mm 0.5mm 0.5mm 

wrapCoverage 0 0 0 0 

Sampling densitySamp 5 5 8 1M pts 

HPR 
nbVWPts 1 4 2 6 

Merging 1 1 1 1 

Misalign-
ment 

maxAngle 0° 0° 0° 0° 

Center Default Default Default Default 

Noise 
dirNoise Normal Normal Normal Normal 

levelNoise 0 0.03 0.1 0.02 

Outliers 
densityOut 0.1% 0.1% 0.1% 0.1% 

levelOut 0 0.03 0.1 0.02 
 

 

Table 2: Parameters of four configurations characterizing different scanning sessions to be simulated 
using the proposed virtual Reverse Engineering framework. 

4.2 Evaluation criteria and results 

The point clouds resulting from the newly developed virtual Reverse Engineering framework are eval-
uated according to three criteria: the number of generated points, the deviation to the original CAD 
model (mean and max), and the coverage ratio. Actually, the coverage ratio represents the amount 
of available information when compared to what is available in the original CAD model. In our imple-

mentation, it corresponds to the ratio between the area of the final triangle mesh generated from the 
point cloud and the overall area of the initial CAD model. The coverage does not depend on the density 
of points but on the number of viewpoints which are to be used. Coverage has been computed with 
respect to the area of the entire CAD models (including hidden part) and the coverage with respect to 
the wrapping results (which could in this case reach 100%). The first coverage factor can be used also 

to analyze how complex the CAD models are, i.e. if they do have a lot of internal and hidden parts. 

The second coverage factor is used to analyze if a sufficient number of viewpoints has been used. 

Following the configurations of Table 2, the virtual Reverse Engineering technique is applied on 
three first CAD models. Results are presented in Table 3 and in Figures 1, 8, 9. Points are represented 
by spheres. To be able to visualize the points in a proper way, i.e. without having fully overlapping 
spheres, the number of points has been reduced in each figure. 
 

Models Parts 
(#) 

Config. Points 
(#) 

Deviation 
(mm) 

Coverage 
wrt wrap-
ping (%) 

Coverage 
wrt assem-

bly (%) 

Sonotrode 1 

1 18 936 0.000 (0.0) 30.8 30.8 

2 61 327 0.033 (2.2) 76.9 76.9 

3 44 631 0.127 (7.5) 53.8 53.8 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 16(6), 2019, 1171-1182 

© 2019 CAD Solutions, LLC, http://www.cad-journal.net 
 

1178 

Compressor 16 

1 54 831 0.00012 
(1.35) 

67.4 38.8 

2 91 950 0.00302 
(2.36) 

14.6 8.4 

3 163 241 0.07916 
(8.48) 

17.4 10.0 

Engine 82 

1 106 475 0.00023 
(1.14) 

24.1 11.7 

2 109 173 0.01145 

(3.85) 

29.1 14.2 

3 158 042 0.10563 
(8.27) 

32.9 16.0 

 

 
Table 3: Results of the virtual Reverse Engineering process applied on three first CAD models (sono-

trode, compressor, engine) and following three different scanning configurations. 
 

     

Figure 8: CAD model of a compressor reversed engineered with configurations 1 to 3. 

 

To further validate the efficiency and robustness, the proposed approach has been tested on additional 
CAD parts and CAD assemblies as shown in Fig 10. Again, points are represented by spheres, and the 

number of points has been reduced in each figure to improve the visualization. To keep the consistency 

in the results, the same evaluation criteria have been used. The parameters of the framework have 
been tuned using configuration 4 in Table 2, with a slight change in the way of sampling. Actually, to 
keep the same number of points for each example, parts are sampled with a fix number of points (1 
million points). Viewpoints are also fixed for HPR by freezing one viewpoint on every face of the CAD 
part bounding box (front, back, top, bottom, right and left). Performing HPR from these six viewpoints 
ensures maximum coverage of point cloud with less viewpoints. Level of noise and outliers are taken  

same for these new examples to see the resulting behavior. Due to the different sizes of the parts and 
assemblies, the level of noise and outlier may affect the results differently. This can be observed in 
the Fig 10 where more noise can be seen on the clutch plate as compared to the connecting rod which 
has larger dimensions. Actually, in real scanning, smaller parts are difficult to handle as compared to 
bigger parts due to level of accuracy of laser scanners. 

Table 5 represents the result of 9 examples shown in Fig 10. It can be seen that number of points 

have been reduced from 1 million, as there are many empty spaces in the resulting cloud due to HPR. 

It is not necessary that these six viewpoints will always cover the whole cloud, for full coverage we 
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may need many viewpoints as per complexity of CAD parts and assemblies. The values of coverage 
ratio also vary from product to product due to topologic configurations. 
 

 

Figure 9: CAD model of a RC engine reversed engineered with configurations 1 to 3. 

  

     

     

 
Figure 10: Results of the virtual Reverse Engineering process applied on CAD models following con-
figure 4 of Table 2, from left to right and top to bottom: clutch plate, connecting rod, clutch plate 

assembly, radial engine rod, hand wheel, wheel assembly, vice, machine element and stop valve as-

sembly. 
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As already explained coverage ratio corresponds to the ratio between the area of the final triangle 
mesh generated from the point cloud and the overall area of the initial CAD model, so it can never 
exceed 100 percent value. Due to same configuration of parts deviations are very close to each other. 
Deviations are calculated as mean distance of points in resulted point cloud to the mesh part.  

 

Models Parts 
(#) 

Con-
fig. 

Points 
(#) 

Deviation 
(mm) 

Coverage 
wrt wrap-

ping (%) 

Coverage 
wrt assem-

bly (%) 

Clutch plate 1 
4 525,822 0.0347 

(1.98) 
73.5 73.5 

Hand wheel 22 4 945,190 0.0185 

(3.11) 

90.6 42.9 

Machine element 14 4 873,182 0.0195 
(3.91) 

82.6 47.7 

Radial engine rod 1 
4 791,716 0.0196 

(3.58) 
79.1 79.1 

Clutch plate assem-
bly 

36 4 939,037 0.0190 
(4.75) 

89.7 23.9 

Stop valve assembly 35 4 880,576 0.0192 
(2.77) 

87.2 48.5 

Connecting rod  6 
4 703,292 0.0196 

(5.56) 
68.3 59.4 

Wheel assembly 6 4 748,718 0.0190 
(2.74) 

71.2 66.8 

Vice  8 4 895,662 0.0182 
(2.76) 

90.3 62.9 

 
Table 5: Results of the virtual Reverse Engineering process applied on CAD models according to the 
fourth scanning configuration of Table 2. 

4.3 Comparison with real-scanned point clouds 

After performing tests on different examples, a comparison has been also carried out to analyze the 
deviations between real-scanned and as-scanned point clouds. In this way, the parameters of the 
proposed approach have been tuned so that the deviations match. ROMER Absolute Arm 7520 SI (7 

axis and 2m volume, absolute encoders, RS1 laser sensor 30000pts / s, volumetric accuracy of 61μm) 
was used for data acquisition of the sonotrode (Fig 1). The point cloud obtained from the real scanning 
of the sonotrode has been compared with the point cloud generated with our method. Recorded devi-

ation values were used further to tune the parameters of proposed approach (e.g. noise, sampling 
density and level of outliers). After series of tests and adjustments in different parameters, one set of 
parameters resulted with a minimized deviation. The values of those tuned parameters are summa-
rized in Tab. 6. These parameters correspond to the defaults values that can be directly specified when 

the user chooses to simulate such a ROMER Absolute Arm 7520 SI. Of course, for a different device, 
the values could be different. 
 

Steps Parameters 
ROMER Absolute 

arm 7525 SI 
 

Wrapping 

Grain 0.1mm 

wrapCover-

age 

0 

Sampling densitySamp 10% 
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HPR 
nbVWPts 6 

Merging 1 

Misalign-
ment 

maxAngle 0° 

Center Default 

Noise 
dirNoise Normal 

levelNoise 0.006 

Outliers 
densityOut 0.1% 

levelOut 0.005 

 
Table 6: Default values of the framework’s parameters so that the generated as-scanned point clouds 
fit the ones obtained by a ROMER Absolute Arm 7520 SI.  

5 CONCLUSION 

This paper has introduced a new virtual Reverse Engineering technique able to generate as-scanned 

point clouds from CAD models. The method is very fast when compared to the traditional Reverse 
Engineering process. It does not require any tedious and time-consuming post-processing steps. It is 
controlled by several parameters which values can be used to insert artifacts commonly encountered 
when dealing with real acquisition devices. This technique has been tested on several examples from 
single parts to assemblies. Different configurations are used to represent the variety in data acquisition 

as if the point clouds are obtained from different scanners. Parameters used for generating these 
results can be fine-tuned with the parameters of scanners for sensitivity and accuracy. The CAD as-
semblies considered here are perfect (perfectly fitted interfaces, sharp edges etc) which of course is 
not the same for product that has been manufactured. Effectively this is a limitation that the digital 

mockups of CAD assemblies used for this framework do not contain defects caused by manufacturing 
processes. Similarly, type of material is also not directly considered in this framework but rather indi-
rectly through other parameters introducing artifacts which can be ascribed to surface properties. The 

proposed technique can be used to develop database of point clouds for educational and research 
purposes. This is a modular based approach and new capabilities can also be added to enrich the data. 
The next steps concern the definition of pre-defined configurations of the parameters so as to help the 
user instantiating them, the labeling of the point clouds while developing mechanisms able to capture 
and propagate the information from the CAD models, the generation of huge databases of as-scanned 
point clouds to be used for Artificial Intelligence applications. 
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