
985

Persistent Naming Based on Graph Transformation Rules to Reevaluate
Parametric Speci�cation

Anaïs Cardot1 , David Marcheix2 , Xavier Skapin3 , Agnès Arnould4 , Hakim Belhaouari5

1University of Poitiers, XLIM ASALI, anais.cardot@univ-poitiers.fr
2ENSMA, LIAS, david.marcheix@ensma.fr

3University of Poitiers, XLIM ASALI, xavier.skapin@univ-poitiers.fr
4University of Poitiers, XLIM ASALI, agnes.arnould@univ-poitiers.fr

5University of Poitiers, XLIM ASALI, hakim.belhaouari@univ-poitiers.fr

Corresponding author: Anaïs Cardot, anais.cardot@univ-poitiers.fr

Abstract. The ability of 3D modeling tools to generate automatically various versions of
a similar model is an increasing need in several and di�erent domains such as Archaeology,
Architecture or Geology. To address this issue, we propose to use both the Jerboa library
designed to assist the development of application-speci�c modelers and the reevaluation
methods used for parametric systems in the CAD domain. Unlike most approaches, Jerboa
is independent from any application domain and allows rapid development of new operations
using graph transformation rules to automatically check the consistency of di�erent objects
properties. But it does not support any reevaluation mechanism and especially not a per-
sistent naming system, that is used to identify entities of the initial model and match them
with entities of the reevaluated model. Using the capacity of graph transformation rules,
we address naming problems through a very precise characterization of the basic elements
forming the model.

Keywords: Parametric Speci�cation; Persistent Naming; Graph Transformation Rules; Gen-
eralized Maps.
DOI: https://doi.org/10.14733/cadaps.2019.985-1002

1 INTRODUCTION

For some years now, the ability of 3D modeling tools to generate automatically various versions of a similar
object has been an increasing need in several domains. For example, in the discipline of Archaeology, Geometry
Modeling based on fragmentary data requires the de�nition of several restitution hypotheses and the availability
of a tool to test these hypotheses quickly and simply.

In CAD domain, Parametric systems have been used for many years to enable automatic reevaluation of the
construction process, allowing to modify any part of an object construction history and to replay this history

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://orcid.org/0000-0003-4062-4232
http://orcid.org/0000-0003-4454-7756
mainto:anais.cardot@univ-poitiers.fr
mainto:david.marcheix@ensma.fr
mainto:xavier.skapin@univ-poitiers.fr
mainto:agnes.arnould@univ-poitiers.fr
mainto:hakim.belhaouari@univ-poitiers.fr
mailto:anais.cardot@univ-poitiers.fr
http://www.cad-journal.net

986

to produce a new result. In the architectural domain, Procedural generation grammars is another commonly
used process for creating several variants of the same building [11], [20], but it requires some rich corpus
information to produce grammars. Moreover, the same tool cannot be used for very di�erent case studies with
many speci�c features.

In this paper, we propose to use the Graph Transformation Rules formalism [9] through a Java library called
Jerboa [4], [1], designed to assist the development of application-speci�c modelers. Rule-based languages form
a standard approach for geometric modeling, from plant growth with the seminal L-Systems [19], to numerous
applications such as representing the internal structure of wood [17], [21] or buildings [11]. Unlike most
approaches, Jerboa is independent from any application domain and avoids any hand-coding of operations,
except rule writing. It allows rapid development of new operations to automatically check the consistency of
di�erent objects properties. All applications developed with Jerboa share the same topological model called
Generalized maps (or "G-maps") [14], describing a particular class of labeled graphs. Several applications
issued from Jerboa and/or G-maps already exist, for di�erent domains such as Architecture [12], Geology [10]
and Physics-based modeling [5].

But as it is, Jerboa does not support the rapid production of various similar geometrical models, using the
mechanisms of reevaluation inherent to parametric systems used in CAD domain. More precisely, a parametric
system is a two-fold data structure composed of a topologically-based geometric model de�ning the explicit
geometry of the designed object (called parametric object), and a mechanism able to reevaluate it when some
parameters are changed (called parametric speci�cation)[13]. Most current parametric modeling systems are
known as "history-based" because the parametric speci�cation may be regarded as an history of modeling
functions, which are attached via their parameters to topological entities de�ned in previous states of the
model. Such an approach requires ensuring the persistence of the referenced entities and avoiding systems
failure during the reevaluation phase when various kinds of topological changes occur. This issue, known as
persistent naming, is illustrated in Fig. 1. The initial parametric speci�cation is composed of three constructive
operations (Fig. 1a): (1) Cube creation; (2) Slot creation on face f (which is split into faces f1 and f2); (3)
Slot creation on f2. During reevaluation (Fig. 1b), the �rst slot is shortened, so f is not split and neither
f1 nor f2 are created. But since the second slot creation requires f2 as a parameter, the issue comes down
to try and �nd another entity to replace it. Persistent naming should enable both unambiguous identi�cation
of initial model entities and consistent matching between initial and reevaluated model entities (in Fig. 1, f2
should be matched with fx).

(a)

(b)

Figure 1: Parametric speci�cation. (a) Initial evaluation. (b) Reevaluation

Persistent naming is a much-debated problem in CAD domain [13], [7], [23], [22], [6], [18], [16], [2],[24],
but has never been investigated in conjunction with graph transformation rules. Our approach enables: (1)
to extend the persistent naming scope to modeling systems based on such graph transformation rules; (2)

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

987

to extend Jerboa by including the working mechanisms of parametric systems. We address naming prob-
lems through a very precise characterization of the basic elements forming the model and propose a naming
mechanism both general (independent of the model dimension) and homogeneous (independent of the entity
dimension), for which only the entities actually used in the parametric speci�cation are followed. Unlike others
methods, this follow-up is performed only during reevaluation (and not also during initial evaluation), in order
to optimize both time and memory consumption. Moreover, beyond static reevaluation with only parameter
modi�cations, we explore how to carry out parametric speci�cation edition (i.e. adding, deleting and moving
modeling operations).

In Sec. 2, we present the G-maps model, the graph transformation rules and our contribution to persistent
naming. In Sec. 3, we detail the di�erent parts of our works, from the persistent naming system to the
complete edition of a parametric speci�cation using generic bulletin boards and history records. We conclude
in Sec. 4 and propose some perspectives.

2 MAIN CONCEPTS

2.1 Generalized maps

Jerboa is based on the Generalized Maps topological model (or G-Maps [15]). In a nutshell, G-Maps describe
the decomposition of n-dimensional objects according to the successive dimensions of their boundaries, the
di�erent parts being linked by relationships noted αi. More precisely, αi relationships are involutions, that is
αi ◦ αi = id. For example, the 2D object in Fig. 2a is split into:

� faces linked by α2 (blue line, Fig. 2b);

� edges (faces sides) linked by α1 (red lines, Fig. 2c)

� vertices (ends of edges) linked by α0 (black lines, Fig. 2d).

A G-Map is therefore a graph whose nodes are called darts (represented as green disks in Fig. 2e) and arcs
represent various αi. Entities are described as speci�c sets of darts linked by dimension-speci�c αi: vertices
(dim. 0), edges (dim. 1) and faces (dim. 2) are respectively de�ned as set of darts linked by (α1, α2), (α0,
α2) and (α0, α1).

(a) (b) (c) (d) (e)

Figure 2: G-Map representation of 2D objects sharing an edge

We call orbit type the set {αi, ..., αn} describing any entity, denoted as 〈i...n〉: orbit type "Vertex" (resp.
"Edge", "Face") shown in Fig. 2 is thus denoted as 〈12〉 (resp. 〈02〉, 〈01〉). We call orbit the association of
a dart with an orbit type to designate a speci�c entity. Thus, Fig. 3a to 3c show each Face, Edge and Vertex
orbit associated with dart e, denoted respectively e.〈01〉, e.〈02〉, e.〈12〉 and composed, respectively, of 6, 4
and 4 darts. Less "traditional" orbits are de�ned in the same way; for example, Fig. 3d shows the orbit e.〈1〉

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

988

(the orbit composed of the two darts de�ning the part of the vertex belonging to the blue face) and the orbit
n.〈〉 (the orbit composed of the single dart n de�ning the part of the vertex belonging to the left edge of the
yellow face).

(a) (b) (c) (d)

Figure 3: Orbits related to darts. (a) face, (b) edge, (c) vertex and (d) various orbits.

To get a geometrical representation of the object featured in Fig. 2a, some embedding information can be
associated with its topological structure. This information is attached to speci�c orbits. For example, positions
are associated with vertices (orbit type 〈12〉) to represent geometrical points, while colors are associated with
faces (orbit type 〈01〉). The ability to de�ne embeddings to less "traditional" orbit types is very useful in
many applications. For example,the use of orbit type 〈1〉 to model di�erent springs joining on a same vertex,
enables a mass-spring system to be easily associated with the geometric model. In our framework, the entities
used in the parametric speci�cation will henceforth be expressed as orbits. They can be fully characterized by
their type and a selection of their darts. In the rest of the article, we will use an equivalent but more synthetic
representation of the G-Maps, as shown in Fig. 3, with α0 (resp. α1, α2) links pictured as black (resp. red,
blue) segments and darts symbolized by green disks.

2.2 Graph transformation rules

Jerboa is based on topological rules of graph transformation [4]. Each modeling operation is formally de�ned
as a rule applied on a G-Map. The application of successive rules allows to change the orbits of the G-
Map. Jerboa ensures by design that the topological consistency of the G-Map is maintained after each rule
application.

Rules are made up of two parts separated by a left-to-right arrow. The left (resp. right) part, which
describes the pattern to be �ltered (resp. the rewritten pattern), represents the model before (resp. after)
application. Patterns are de�ned by the orbit types of the rule nodes. For instance, Fig. 4a shows the rule
describing the creation of a triangular face from scratch: nodes m0 to m5 are generated from scratch and are
α0 and α1 to create a face as the one depicted in Fig. 5a.

Let us suppose we want to apply some triangulation on the face we have just created. We use another
rule, namely the Triangulation rule described in Fig. 4b. The left node n0 carries the orbit type 〈01〉, and thus
�lters the face associated with this node. More precisely: (1) For each dart of the orbit �ltered on the left
side, as many copies as there are nodes de�ned on the right side are created: in the case of the Triangulation
rule, three copies of each face dart are created. (2) The orbit type associated with each node on the left
side is updated for each αi and for each node on the right side: in Fig. 4b, the orbit type 〈01〉 of node n0 is
changed to 〈0_〉 for node m0: it means that α0 stays the same, while the initial α1 is deleted (noted "_").
Similarly, for node m1 (resp. m2) on the right side, the initial α0 is deleted (resp. replaced with α1); and for
both nodes, initial α1 is replaced with α2. (3) Finally, nodes on the right side are linked to supply for missing
αi: in Fig. 4b, nodes m0 and m1 (resp. m1 and m2) are linked by α1 (resp. α0).

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

989

(a) (b)

Figure 4: Graph transformation Rules. (a) Triangle creation; (b) Triangulation

Fig. 5 illustrates the creation of a triangular face, followed by the 3-step application of the Triangulation rule
on this face. (1) Each dart a0, b0,. . . f0 (Fig. 5a) spawns a triplet of copies [(a0, a1, a2), (b0, b1, b2), . . . (f0, f1, f2)]
(Fig. 5b). Each dart numbered i is the instance of the related node with the same number. (2) The orbit type
of each copy is updated (Fig. 5c). (3) The elements of each triplet are linked together by α0 and α1 (Fig. 5d).

a0 b0

f0

d0

c0

e0

(a) (b)

a0 b0

f0

d0

c0

e0

a1 b1

c1f1
e1 d1

a2 b2
c2
d2e2

f2

(c)

a0 b0

f0

d0

c0

e0

a1 b1

c1f1
e1 d1

a2 b2
c2

d2e2

f2

(d)

Figure 5: Triangulation rule applied on a face

Moreover, the right side of a rule may contain expressions that de�ne the new embedding of the rewritten
pattern. For example, in Fig. 4b, nodem2 contains the point expression, that calculates the barycentric center
of the �ltered face. The operation de�ned by the rule shown in Fig. 4b is thus the barycentric triangulation.

2.3 Persistent naming

Our method of persistent naming is grounded on both G-Maps and rewriting rules. Persistent naming ([13])
is meant to characterize the topological entities in a reliable way during the initial construction. Parameters of
parametric speci�cation operations are often topological references, so this mechanism is essential to produce
a valid reevaluation.

Various naming methods have been proposed to try and solve this problem.Most methods ([13], [7], [23],
[22], [6], [18], [16], [24]) use faces as reference to name all other entities, since in 3D, each entity can be
characterized by an intersection of faces and some additional geometric information [16]. However, these
naming algorithms are not generalizable in dimension n because this assumption is only true for 3D models.
Moreover, the di�erent entities each have their own naming algorithm (for example, a vertex will not be named
and matched using the same algorithm as an edge), so the naming is not truly homogeneous. It should be
noted that the works of Baba-Ali et al. [2] are based on edges and are more homogeneous (the same naming
and matching algorithm is used for entities whose dimension is higher than 1). In addition, even though
the design of persistent naming is well depicted in the literature, the way it can be used for reevaluation is
not always precisely de�ned. Furthermore and despite memory over-consumption, it is usually necessary to
trace the evolution of many entities during both initial evaluation and reevaluation, in order to perform the
matching between entities when reevaluating, even though many of them will not be used. For example, the
naming method proposed by [2], [13] [7], [23], [16] requires to trace or to propagate the evolution of all the

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

990

faces and edges of the model. Finally, because persistent naming methods rely on the follow-up of topological
entities and thus on the order of the operations applied during initial evaluation, most of published literature
focuses on parameters modi�cation, rather than parametric speci�cation edition (adding, deleting or moving
an operation before reevaluation); and even in the latter case, few details are provided about inner working.
We describe in the next section the various mechanisms that address these limitations.

3 REEVALUATION MECHANISMS

3.1 Parametric speci�cation and edition

To reevaluate a sequence of modeling operations, it is necessary to record them in the form of a parametric
speci�cation beforehand. Each operation corresponds to the call of a graph transformation rule as de�ned in
Sec. 2.2. Let us consider the sequence of modeling operations performed in the initial speci�cation, as shown
in Fig. 6: under each operation, the result of the operation is displayed in both topological (top) and geometric
(bottom) representation. In a classic way, operation parameters correspond to darts de�ned at previous steps.
But, the speci�cation cannot be limited to the simple recording of rule calls (physical identi�ers of darts being
inherently unstable from one reevaluation to another, they cannot be used directly). Darts must therefore be
labeled persistently. The use of rules makes it possible, both in the initial evaluation and the reevaluation,
to assign each dart a Persistent Id, rated PIa, PIb, . . . for darts a, b and so on.

Figure 6: Initial speci�cation

Rules are de�ned for any �ltered orbit, but only speci�c orbits are used by modeling operations as parameter
entities. To identify each of these entities in a persistent way, we de�ne the Persistent Names (PN) of entities.
Each PN is composed of a set of Persistent Identi�ers to keep track of all operations that have impacted
that entity (see Sec. 3.2.2). More precisely, PN = {PI}.〈o〉, where {PI} is a set of Persistent Ids of the
representative darts of the orbit, and 〈o〉 is the orbit type of the entity. For example, {PIa}.〈01〉 is the
Persistent Name of the face orbit a.〈01〉, where a is a dart.

The parametric speci�cation shown in Fig. 6 is: 1-SquareCreation; 2-Triangulation(PN1);
3-VertexInsertion(PN2); 4-VertexInsertion(PN3); 5-VertexInsertion(PN4); 6-Triangulation(PN5);
7-VertexInsertion(PN6, Blue, PN7, Green), where PN1, . . . , PN7 are respectively the Persistent Names
containing the Persistent Ids detailed in Table 1. Note that PN5, which represents the face triangulated by

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

991

the sixth operation, contains at the same time PIe, PIb and PIf : indeed, darts e, b and f all belong to the
same face and keep track of 1-SquareCreation and 2-Triangulation; but b also registers 3-VertexInsertion while
f registers 5-VertexInsertion. e doesn't register another operation, but it is kept as the dart designated by the
user to select the face. These PI are therefore complementary to characterize the rules that have impacted
the face and must be kept together.

PN PI O. type PN PI O. type

PN1 {PIa} 〈01〉 PN5 {PIe, P Ib, P If} 〈01〉
PN2 {PIb} 〈02〉 PN6 {PIg} 〈01〉
PN3 {PIc} 〈02〉 PN7 {PIa} 〈01〉
PN4 {PId} 〈02〉

Table 1: Persistent Ids and Orbit types related to operation parameters of the initial speci�cation.

To illustrate the behavior of our persistent naming mechanism in case of some parametric speci�cation
edition, we modify the initial speci�cation by placing 2-Triangulation after 4-VertexInsertion. This illustrates
our method to add, delete and move operations, as adding and deleting operations are encompassed by moving
operation. The reevaluation proceeds as shown in Fig. 7. For each operation, topological parameters PNi

need to be matched to darts in reevaluated model, in order to call the corresponding rule. Sec. 3.2.5 will
describe in a precise way how such a matching is done.

Figure 7: Speci�cation reevaluation

1. 1-SquareCreation is reevaluated the same way as in the initial evaluation (the related rule is applied).

2. The parameter PN2 of 3-VertexInsertion (corresponding to {PIb} in the initial set) needs to be matched
to darts in the reevaluated model. For this operation, 2-Triangulation is considered as deleted, as it is
moved after it.

3. 4-VertexInsertion is reevaluated. Just as 3-VertexInsertion, it considers 2-Triangulation as deleted.
Matching PN3, we �nd a dart representing the edge and call the related rule.

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

992

4. 2-Triangulation has been moved. This operation considers 3-VertexInsertion and 3-VertexInsertion as
added operations, as they are now applied before. Using PN1, the matching process �nds a dart
representing the face and applies the related rule.

5. 5-VertexInsertion is also reevaluated. Using PN4, we �nd a dart representing the edge and call the
related rule.

6. 6-Triangulation is reevaluated. We use PN5 to �nd the new darts representing the face.

7. Finally, 7-Coloring is reevaluated with a change to one of its color parameters.

Inside the parametric speci�cation, it is possible to characterize the e�ect of edition process on blocks of
modeling operations, with respect to their relative position to the edited operation. Fig. 8 shows these di�erent
blocks according to the type of edition (adding, deleting, moving up or moving down of a modeling operation
OP). For example, as shown in Fig. 8c, moving down OP from position p to q subdivides the parametric
speci�cation in 3 blocks. For every operation before p, this moving has no e�ect upon the reevaluation
process. For every operation between p and q, OP can be seen as "deleted" during the reevaluation process
(OP being reevaluated later at position q). For moved operation OP itself, all intermediary operations can be
considered as "added". Finally, every operation located after the new position q considers OP as "moved".

(a) (b) (c) (d)

Figure 8: Di�erent types of edition in a parametric speci�cation. (a) adding, (b) deleting, (c) moving down,
and (d) moving up an operation.

As shown above, determining the types of edition undergone by operations is mandatory to apply the reeval-
uation. But achieving entities matching also requires to determine how the Persistent Names of referenced
orbits have evolved.

3.2 Orbit evolution

We consider the evolution of orbits for both initial evaluation and reevaluation. First, we distinguish the
di�erent types of orbital evolution that may happen (Sec. 3.2.1). Then, in order to match evaluation and
reevaluation entities, we detail the structures of related Persistent Ids and Persistent Names (Sec. 3.2.2).
Finally, we propose a structure allowing to follow the entities during the evaluation and a tree structure
allowing to report the matching during the reevaluation (Sec. 3.2.3 to 3.2.5).

3.2.1 Evolution types

We de�ne the following types of orbit evolutions, some of which are shown in Fig. 6 and 7. (a) Creation:
creates a new orbit. (b) Deletion: removes an orbit, so no modeling operation can use it anymore. (c) Fusion:
merges several orbits. (d) Modi�cation: modi�es the orbit without any splitting or merging. (e) NoE�ect:
does not a�ect the orbit. (f) Split: splits the orbit.

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

993

3.2.2 Persistent naming

The Persistent Id (PI) of a dart is set at the time of dart creation, and then modi�ed each time the dart
is rewritten by rules. Each PI consists of the various operation numbers and rule nodes that have created
or rewritten the related dart. For instance, consider the operation 6-Triangulation in the initial speci�cation.
This operation takes PN5 as a parameter, and PN5 refers to PIc, PIb and PIf , according to Table 1. If
we focus on PIb for example, we note that before applying 6-Triangulation, b has been modi�ed by the node
m0 of the rule de�ning 3-VertexInsertion (Fig. 9): "3−m0" is thus a part of PIb.

Figure 9: Vertex Insertion rule

Before that, the face b belongs to has been triangulated when applying 2-Triangulation: the dart had been
modi�ed by the node m0 of the related rule, leading to another part of PIb : "2 −m0". Finally, the rule
corresponding to the �rst operation, 1-SquareCreation, has created the dart via one of its nodes; the rule for
Square creation is quite similar to the one related to Triangle creation (Fig. 4a): to create a square, 8 nodes
(denoted as m0, . . .m7) are created from scratch and linked by a succession of α0 and α1. In the current
case, node m3 corresponds to the dart we are interested in: the related part of PIb is "1 −m3". Thus,
concatenating those operations in chronological order, PIb is de�ned as {1 −m3; 2 −m0; 3 −m0} before
6-Triangulation is applied. The same procedure is applied to de�ne PIa, . . .PIf .

Note that before applying 3-VertexInsertion, PIb was de�ned as {1−m3; 2−m0}, so PN2 and PN5 do
not have the same de�nition as PIb. The same goes for PIa when used in PN1, which is de�ned di�erently
from PIa when used by PN7.

Dart b has been in the model since its creation, but darts which have been created later also have a PI.
Let us take the example of dart c, created by 2-Triangulation: c has been created by instantiating the node
m2 of the rule de�ning 2-Triangulation, but m2 itself results from the rewriting of node n0 (Fig. 4b), which
is associated with a dart de�ned as {1−m7}. Therefore, PIc is de�ned as {1−m7; 2−m2}.

PN are used as operation parameters (see Sec. 3.1). Thus, 3-VertexInsertion, which inserts a vertex in
the edge adjacent to dart b, has face's Persistent Name PN2 = {{1 −m3; 2 −m0}}.〈02〉 as topological
parameter. 6-Triangulation is also applied to an orbit adjacent to b, a face. However, PN5 is di�erent from
PN2 because the face (and therefore b) has been a�ected by 3-VertexInsertion as seen previously. What's
more, as seen in Sec. 3.1, e and f must also be used to describe this face (the �rst one because it was
designated by the user during initial construction to apply the triangulation, the second one because it is
modi�ed by 5-VertexInsertion, which doesn't modify e or b). Thus, PN5 = {{1−m3; 2−m2}, {1−m3; 2−
m0; 3−m0}, {1−m4; 2−m1; 5−m1}}.〈01〉.

Note that this naming mechanism is e�ective in an homogeneous way for all orbits, whatever the topological
dimension of the modeled objects. Indeed, identical persistent names are used for all entities dimension and
de�ned in a general way regardless of the model dimension.

3.2.3 Generic rule bulletin boards

Following orbit evolutions over the speci�cation entails determining how each operation partakes in this evo-
lution. We use structures called generic bulletin boards for that purpose.

Some commercial modelers like 3D ACIS provide bulletin boards to track entity creation, alteration, or
deletion ([8]). Indeed, high-level operations provided by APIs (boolean operations, chamfering, and so on) can
generate important modi�cations on topological entities. Bulletin boards, generated by those modelers' kernel,

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

994

can be read after each operation and the way to use them is well described in the APIs' documentation. But,
because it's proprietary information and despite the fact that it's essential to any monitoring system, little is
known on how exactly bulletin boards are generated.

Baba-Ali et al. ([3], [2]) uses G-Maps to build a bulletin board by associating each dart with two 4-tuples
of integers. The �rst (resp. second) 4-tuple contains the number of topological orbits the dart belongs to
before (resp. after) applying an operation. By comparing the pair of integers related to the same orbit, it
can be determined whether the corresponding entity has been modi�ed or not and the event is recorded into
the bulletin board. This approach is generic in all dimensions but requires to go through the sets of integers
before and after each modeling operation.

Our approach is rule-speci�c: a generic bulletin board is generated when the user creates a rule to account
for the di�erent types of evolution (Sec. 3.2.1). Fig. 10 shows the generic bulletin board for the Triangulation
operation. There is one box per orbit type. Inside each box, we describe the evolution types for the rewritten
nodes. Let 〈x〉 be an orbit type (〈〉, 〈1〉 and so on): we gather the nodes of the right side of the rule, whose
rewriting instantiates darts belonging to the same 〈x〉, then we search for the left-side nodes which have
rewritten these darts, and for which orbit type. A tree is then created for each set: the root contains the
nodes selected on the right side, and the leaves contain left-side nodes and the related orbit. The joining arcs
are labeled with the type of evolution carried out.

Figure 10: Generic Triangulation bulletin board

As an example, consider the orbit type 〈12〉 in the generic bulletin board displayed in Fig. 10. Fig. 5 shows
the output of the Triangulation rule applied on a triangular face. Fig. 11 focuses on vertices (orbit type 〈12〉):
three vertices are composed of darts instantiated by nodes m0 and m1 whereas the central vertex is made of
darts instantiated by node m2. Each vertex of the pair (m0, m1) is created with a pair of darts instantiated
by n0 on the left side of the rule and linked by 〈12〉. The type of evolution of these vertices is a modi�cation,
because we simply add darts to an already existing vertex. A tree is thus created with root labeled "n0.〈12〉"
and leaf labeled "m0, m1", linked by the "Modi�cation" arc. The other darts (forming the central vertex)
are issued from a dart instantiated by n0 on the left side of the rule and are bound by 〈01〉. A second tree is
thus created, with root labeled "n0.〈01〉" and leaf labeled "m2", linked by the "Creation" arc.

3.2.4 History Record

Generic bulletin boards are completed by history records to process the whole speci�cation. History records
analyze the successive generic bulletin boards of the rules that have impacted any dart. One carries out as
many history records as there are PI. Let PN = {PIa, P Ib, . . . }.〈x〉 be a Persistent Name. Let PIb =
{1−mi; ...; k −mj} be the Persistent Id of dart b. To create the history record of PIb, we scan its contents
in reverse order (from the most recent to the oldest). Therefore, we �rst consider 〈x〉 and k −mj (the last

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

995

Figure 11: Topological view of face vertices

rewriting of dart b by the node mj of the related rule set at step k). In the generic bulletin board of this
rule, we retrieve the box corresponding to 〈x〉 and we select the (unique) tree whose child contains mj. This
process is then repeated by going back up each operation constituting PIb, knowing that it retrieves, for the
(k− 1)-th operation, the box of the generic bulletin board corresponding to the orbit indicated at the root of
the tree used for operation k.

To illustrate this point, let us create the history record for 6-Triangulation applied to PN5 (see Fig. 6 and
7), that has {PIb} as one of its Persistent Ids (see Table 1). The result is shown in Fig. 12, with green and
red arrows labeling the 6-step process. As seen in Sec. 3.2.2, PIb = {1−m3; 2−m0; 3−m0} before applying
6-Triangulation. PN5 = {PIe, P Ib, P If}.〈01〉, meaning that 6-Triangulation is to be applied to orbit 〈01〉
(see the bottom of Fig.12a). Assume the last element of PIb (i.e. 3−m0, which is 3-VertexInsertion applied
through m0) has been initially recovered. Step 1: we look at orbit type 〈01〉 in the generic VertexInsertion's
bulletin board, that is the last rule having impacted b before triangulating. At this stage, b is rewritten by
node m0. Step 2: The excerpt of the generic bulletin board of VertexInsertion in Fig. 12a shows that, for
orbit type 〈01〉, m0 results from a modi�cation of n0.〈01〉. Step 3: using this orbit type 〈01〉 as an index in

(a) (b) (c)

PIb

Figure 12: History record of PN5 for PIb = {1−m3; 2−m0; 3−m0}

the generic bulletin board of the previous operation recorded (that is, 2-Triangulation), we search among the
trees related to this entry, the one which contains m0, since the corresponding identi�er in PIb is 2 −m0

(Step 4). We obtain a tree with n0.〈0〉 as root (Fig. 12b). We repeat the process once again: at Step 5,
we go through the generic bulletin board associated with the previous recorded operation (1-SquareCreation).
Using the orbit type 〈0〉 as an entry, we search for the related tree which contains m3, since the corresponding
identi�er is 1−m3 (Step 6). This tree has Empty as root (see Fig. 12c), meaning that there is no previous
operation. To get the complete history record of PN5, we add the history records of both PIe and PIf .

Every Persistent Name's history record is carried out in a similar way. Fig. 13 shows the history records
related to some of the Persistent Names we use.

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

996

PIb

(a)

PIf

(b)

PIa

(c)

PIg

(d)

Figure 13: History records of (a) PN2 for PIb = {1 −m3; 2 −m0}, (b) PN5 for PIf = {1 −m4; 2 −
m1; 5−m1}, (c) PN1 for PIa = {1−m4}, (d) PN6 for PIg = {1−m4; 2−m1; 5−m0; 6−m0}.

3.2.5 Entity matching

Performing reevaluation entails matching evaluation entities with reevaluation entities and we refer, in this
section, to operations shown in Fig. 7 to describe various scenarios. In order to perform this matching, for
each history record, a matching tree is built, with a Persistent Id as root and orbits as leaves. A matching
tree allows to determine which darts of the reevaluation will be used for each orbit designated in the initial
speci�cation.

For each modeling operation, branches of the matching trees impacted by the related rule are updated by
using the orbits stored in the leaves and parts of the corresponding history records. When a speci�c edition
occurs, the way to construct the matching trees depends on the type of edition which has impacted each
operation (see Fig. 8).

In case of deletion (for example, operation 2 is considered as deleted by operations 3 and 4 after it has
been moved down, or operations directly deleted by the user during reevaluation), the impacted tree branches
are updated with a label pre�xed by "not" in order to indicate that the corresponding parts of history records
have not been applied.

In case of addition (for example, operations 3 and 4 are considered as deleted by operation 2 after it has
moved down, or operations directly added by the user during reevaluation), the generic bulletin board of the
related rule is used to update the matching trees according to the orbits impacted by this addition.

In case of moving (for example, operation is 2 considered as having moved by operations 5, 6 and 7), the
history records of all the operations impacted by and after the moved operation are rebuilt for the intermediary
operations and the moved one, by taking into account their new positions.

To illustrate this di�erent cases, we now detail step by step the reevaluation in Fig. 7 for every persistent

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

997

name.

1-SquareCreation reevaluation

Since this operation has no parameter, it is reevaluated in the same way as for the initial evaluation. As
the matching trees of PN1 to PN7 are all impacted by this operation, they are all updated. Fig. 14 shows
the model after applying the rule, and the impact on the matching trees. History records shown in Fig. 13
are scanned, one operation after another, to match darts and orbits in the reevaluated model. Consider PN2
for instance (see Fig. 14): the history record of PIb (Fig. 13a) indicates that to process 1-SquareCreation,
one must �nd the newly created orbit type 〈02〉, associated with the instance of node m3. A branch of the
matching tree labeled "Creat." (for "Creation") is thus built, related to the orbit found in the reevaluated
model (b′.〈02〉 is indeed the orbit corresponding to the single dart b′ which instantiates m3). Similarly for all
other Persistent Names, one matching tree is generated for each dart's Persistent Id.

Figure 14: Matching trees (left), topological and geometric model (right) after 1-SquareCreation reevaluation

2-Triangulation reevaluation

This operation is moved. For 3-VertexInsertion and 4-VertexInsertion, 2-Triangulation is considered as
deleted. Fig. 16 shows that the trees corresponding to PN2 and PN3 (the Persistent Names used by
operations 3 and 4) have been updated (the pre�x "not" means that the operation has not been applied).

As said previously, for operations 5, 6 and 7 positioned after the moved operation (2) and if the Persistent
Names (PN4, PN5, PN6 and PN7) contain this operation (i.e. the number 2 appears in the PI associated
with the Persistent Names), we modify the Persistent Names according to the new order of the operations and
we recalculate the corresponding history record. For example, the moved operation 2 appears in PN7 = {{1−
m4; 2 −m0; 3−m0; 6−m0}}.〈01〉. The modi�ed name is PN7 = {{1−m4; 3−m0; 2 −m0; 6−m0}}.〈01〉.
We recreate the corresponding history record as we have created the original one (see Sec. 3.2.4). The result
for PN7 is illustrated in Fig. 15. The branch label "Change" indicates that the following sub-tree corresponds
to a recreated history record. We do the same for PN5 and PN6.

After the history records have been changed, we select every dart of the former orbit to keep following
every possible outcome. For example, the orbit b′.〈0〉 in PN5 contains both darts a′ and b′, so when we
change the history record, we select a′ and b′ as leafs for the considered tree. As can be seen in Fig. 16, the
label "Change" on several arcs means that the related history record has been modi�ed.

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

998

PIa

Figure 15: Recalculating PN7's history record. Top: History record built using the initial Persistent Name.
Bottom: update according to the new positions of operations

Figure 16: Matching trees (left), topological and geometric model (right) after moving 2-Triangulation.

3-VertexInsertion reevaluation

This operation is reevaluated on PN2. Since PN2 is no longer used afterwards, its matching tree can
now be removed. For 2-Triangulation has PN1 as topological parameter, the operation is considered as an
addition. At this step (i.e. just after applying 1-SquareCreation), the leaf of PN1 is labeled a′.〈01〉, so we
look at the generic bulletin board of Vertex Insertion (Fig. 17) for the type of orbit 〈01〉, in order to update
the matching tree. The instance we take is chosen among the resulting nodes (here, m0 and m1): we decide
to keep a′, which is an instance of m0.

Figure 17: Generic bulletin board excerpt of the VertexInsertion rule

Matching trees are updated accordingly, as shown in Fig. 18: a branch has been added to the tree related
to PN1. This branch is labeled "add Modif.", meaning that the vertex insertion has modi�ed the orbit type

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

999

〈01〉 (that is, the face) associated with a′.

Figure 18: Matching trees (left), topological and geometric model (right) after 3-VertexInsertion reevaluation

4-VertexInsertion reevaluation

This operation should be reevaluated on PN3 only. But PN3 is matched through a creation which has
not been applied. In such a case, we consider that the tree is not to be followed. Therefore, we do not apply
4-VertexInsertion and the matching tree of PN3 is not processed anymore. The result of this reevaluation is
displayed in Fig. 19.

Figure 19: Matching trees (left), topological and geometric model (right) after 4-VertexInsertion reevaluation

2-Triangulation reevaluation

This operation is reevaluated as would be any other, the fact that it is moved has an impact only when
the decision to move it has been taken (3 steps ago in this case). The result is shown in Fig. 20.

5-VertexInsertion and 6-Triangulation reevaluation

Those operations are reevaluated. We follow the history records of the Persistent Names left to get the
new darts and orbits that match them. The result is shown in Fig. 21.

7-Coloring reevaluation

This operation colors blue the face designated by PN6, and colors green the one designated by PN7.
Here, the parameter "Blue" is changed to "Yellow". Since it is the last operation of the speci�cation, no more
matching tree is to be updated. The result is illustrated in Fig. 22.

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

1000

h

h

Figure 20: Matching trees (left), topological and geometric model (right) after 2-Triangulation reevaluation.

Figure 21: Matching trees (left), topological and geometric model (right) after 5-VertexInsertion and 6-
Triangulation reevaluation

4 CONCLUSION AND PERSPECTIVES

In this paper, we present a new persistent naming system and an entity matching algorithm combining the
strong points of graph transformation rules and G-Maps to create and reevaluate new models using parametric
speci�cation. Using those tools, we lay the foundation to develop 3D modeling systems independent from any
application domain and avoid any hand-coding of operations, except rules writing.

The proposed persistent naming system is based on Jerboa and graph transformation rules. But currently,
Jerboa only provides the use of elementary rules, such as object creation or deletion, split of topological
entities, triangulation, extrusion, and so on. Jerboa is still under development to allow the manipulation of

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net

1001

Figure 22: Topological and geometric model after 7-Coloring reevaluation

more complex rules, based on rules scripts that combine many elementary rules. This update will enable a
real and precise comparative study with other methods in terms of computation times and storage needs,
that is di�cult to evaluate at the moment with only elementary rules. However, even if it is only used on
elementary rules, our article lays the foundations of the naming system, and shows the mechanisms used and
the advantages of this approach. It makes it possible to extend the persistent naming scope to modeling
systems based on such graph transformation rules and to extend Jerboa by including the working mechanisms
of parametric systems. Through a very precise characterization of the basic elements forming the model, it
enables naming all types of entities in an homogeneous (independent of the entity dimension) and general
(whatever the dimension of the model) way. It de�nes unambiguously Persistent Identi�ers of darts and
Persistent Names of entities, using the information returned by transformation rules. Unlike most others
methods, it follows the evolution of a limited number of entities during reevaluation, in order to achieve
matching. Only entities that are actually referenced in the parametric speci�cation are traced, and only during
the reevaluation phase. This allows us to hope for space and time savings, but as stated before, a comparative
study will have to be carried out in future works. To follow entity evolution after applying an operation, we
de�ned precisely the mechanisms used to track each orbit, that consist in using the generic bulletin board
associated with the rule de�ning this operation. At this time, generic rule bulletin boards have to be designed
by the (human) rule designer; it would be interesting to generate them automatically. Finally, beyond static
reevaluation with only parameter modi�cations, we show the impact of parametric speci�cation edition (i.e.
adding, deleting and moving operations) on the persistent naming system, and we propose in this paper an
accurate method to carry out this edition.

ORCID

David Marcheix, http://orcid.org/0000-0003-4062-4232
Hakim Belhaouari, http://orcid.org/0000-0003-4454-7756

REFERENCES

[1] Jerboa. http://xlim-sic.labo.univ-poitiers.fr/jerboa/.

[2] Baba-Ali, M.: Système de nomination hiérarchique pour les systèmes paramétriques. Ph.D. thesis, 2010.

[3] Baba-Ali, M.; Marcheix, D.; Skapin, X.; Bertrand, Y.: Generic computation of bulletin boards into
geometric kernels. Conference on Virtual Reality, Computer Graphics, Visualization and Interaction in
Africa, 85�93, 2007.

[4] Belhaouari, H.; Arnould, A.; Le Gall, P.; Bellet, T.: A graph transformation library for topology-based
geometric modeling. Conference on Graph Transformation, 269�284, 2014.

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://orcid.org/0000-0003-4062-4232
http://orcid.org/0000-0003-4454-7756
http://www.cad-journal.net

1002

[5] Ben Salah, F.; Belhaouari, H.; Arnould, A.; Meseure, P.: A general physical-topological framework using
rule-based language for physical simulation. 12th International Conference on Computer Graphics Theory
and Applications, 2017. http://doi.org/10.5220/0006119802200227.

[6] Bidarra, R.; Nyirenda, P.; Bronsvoort, W.: A feature-based solution to the persistent naming problem.
Computer Aided Design and Applications, 2(4), 517�526, 2005.

[7] Capoyelas, V.; Chen, X.; Ho�mann, C.: Generic naming in generative, constraint-based design. Computer-
Aided Design, 28(1), 17�26, 1996.

[8] Corney, J.; Lim, T.: 3D Modeling with ACIS. Paul & Company Pub Consortium, 2001. ISBN
9781874672142. https://books.google.fr/books?id=x_JMSgAACAAJ.

[9] Ehrig, H.; Ehrig, K.; Prange, U.; Taentzer, G.: Fundamentals of Algebraic Graph Transformation, 2006.

[10] Gauthier, V.; Arnould, A.; Belhaouari, H.; Horna, S.; Perrin, M.; Poudret, M.; Rainaud, J.F.: A topologi-
cal approach for automated unstructured meshing of complex reservoir. 15th edition of the European Con-
ference on the Mathematics of Oil Recovery, 2016. http://doi.org/10.3997/2214-4609.201601789.

[11] Haegler, S.; Muller, P.; Van Gool, L.: Procedural modeling for digital cultural heritage. Journal on Image
and Video Processing - Special issue on image and video processing for cultural heritage, 2009.

[12] Horna, S.; Meneveaux, D.; G., D.; Bertrand, Y.: Consistency constraints and 3d building reconstruction.
Application of Graph Transformations with Industrial Relevance, 41(1), 13�27, 2009. http://doi.org/
10.1016/j.cad.2008.11.006.

[13] Kripac, J.: A mechanism for persistently naming topological entities in history based parametric solid
models. Proceedings of the 3rd ACM symposium on Solid Modeling and Applications, 21�30, 1995.
http://doi.org/10.1145/218013.218024.

[14] Lienhardt, P.: Topological models for boundary representation: a comparison with n-dimensional gener-
alized maps. Computer-Aided Design, 23(1), 59�82, 1991. http://doi.org/10.1016/0010-4485(91)
90082-8.

[15] Lienhardt, P.: N-dimensional generalized combinatorial maps and cellular quasi-manifolds. International
Journal of Computational Geometry and Applications (IJCGA), 04, 275�324, 1994.

[16] Marcheix, D.: A persistent naming of shells. International Journal of CAD/CAM, 6(1), 125�137, 2006.

[17] Mech, R.; Prusinkiewicz, P.: Visual models of plants interacting with their environment. 23rd Conference
on Computer Graphics and Interactive Techniques, 1996.

[18] Mun, D.; Han, S.: Identi�cation of topological entities and naming mapping for parametric cad model
exchanges. International Journal of CAD/CAM, 5(1), 69�81, 2005.

[19] Prusinkiewicz, P.; Hanan, J.: Lindenmayer systems, fractals, and plants, 1989.

[20] Quattrini, R.; Baleani, E.: Theoretical background and historical analysis for 3d reconstruction model :
Villa thiene at cicogna. Journal of Cultural Heritage, 16, 119�125, 2015.

[21] Terraz, O.; Guimberteau, G.; Merillou, D., S.and Plemenos; D, G.: 3gmap l-systems: an application
to the modelling of wood. Formal Methods in Software and System Modeling, 25(2), 165�180, 2009.
http://doi.org/10.1007/s00371-008-0212-5.

[22] Wang, Y.; Nnaji, B.: Geometry-based semantic id for persistent and interoperable reference in feature-
based parametric modeling. Computer Aided Design, 37(10), 1080�1093, 2005. http://doi.org/10.
1016/j.cad.2004.11.009.

[23] Wu, J.; Zhang, T.; Zhang, X.; J., Z.: A face based mechanism for naming, recording, and retrieving
topological entities. Computer-Aided Design, 33(10), 687�698, 2001.

[24] Xue-Yao, G.; Jia-Qi, L.; Hao, G.; Yun-Feng, G.: Name and maintain topological faces in rotating and
scanning features. International Journal of Grid and Distributed Computing, 9(3), 21�26, 2016.

Computer-Aided Design & Applications, 16(5), 2019, 985-1002
© 2019 CAD Solutions, LLC, http://www.cad-journal.net

http://doi.org/10.5220/0006119802200227
https://books.google.fr/books?id=x_JMSgAACAAJ
http://doi.org/10.3997/2214-4609.201601789
http://doi.org/10.1016/j.cad.2008.11.006
http://doi.org/10.1016/j.cad.2008.11.006
http://doi.org/10.1145/218013.218024
http://doi.org/10.1016/0010-4485(91)90082-8
http://doi.org/10.1016/0010-4485(91)90082-8
http://doi.org/10.1007/s00371-008-0212-5
http://doi.org/10.1016/j.cad.2004.11.009
http://doi.org/10.1016/j.cad.2004.11.009
http://www.cad-journal.net

	INTRODUCTION
	MAIN CONCEPTS
	Generalized maps
	Graph transformation rules
	Persistent naming

	REEVALUATION MECHANISMS
	Parametric specification and edition
	Orbit evolution
	Evolution types
	Persistent naming
	Generic rule bulletin boards
	History Record
	Entity matching

	CONCLUSION AND PERSPECTIVES

