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ABSTRACT 
 

Generally finite element mesh generation work is well established for homogenous 
objects where object-geometry is the main criteria for meshing an object. The effect 

of variation of material property as happens in case of FGMs, on mesh size is largely 
remains untouched. Present work considers the elastic property gradient as criteria 
for meshing and studies its impact on the convergence of the analysis result. A one 
dimensional functionally graded bar was considered, and the meshing is done for 
different elastic modulus variation within the bar. It was observed that elastic 
gradient basis for element size will have positive effect on convergence if a different 
gradient relationship is chosen for the meshing. The relationship between the elastic 

property variation function and the mesh size variation function was established. It 

was observed that for an optimum convergence result, the gradient power taken for 
meshing is in general different from the power that represents the material property 
variation. This work is a unique and is expected to have significant in improvement 
in the finite element meshing and convergence of FGM. 
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1. INTRODUCTION 

Functional graded material is composite material form of two or more constituent phases with a 
continuously variable composition. Many live systems have mechanical properties that vary 

continuously as a function of position such as bones, wood, cellulose etc. The mechanical benefit of 
such a system becomes obvious to designer and consequently there has been a growing interest in 

producing man made non-homogeneous material for specific application/s, often referred as 
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functionally graded material or in short FGM. Graded material with a gradual variation of material 
and material properties have come into play to replace homogeneous materials in the situation 
where there is a need for varied properties such as in the case of rocket engine or turbine blade 
[1],[4],[11]. 

Similar to design methods, the computational simulations are important tool for the development 
because of their potential to reduce expensive experimentation. Finite element simulation is a vital 
tool for analysis and mesh generation is an essential part of it. Extensive work is available in the 
area of mesh generation algorithms and handling complex geometric objects but only few papers 
are available on meshing based on varying material property; termed here as graded mesh. The 
summary of the papers related to mesh generation of FGMs is as follows. 

Cheng et al. [2] has put parent pattern module method to generate the graded mesh by allowing 

for gradation in both coordinate directions. They generated quadrilateral elements, with no 
restriction on the distributionof mesh density. Peter et al. [8] presented an algorithm which can be 
used to triangulate geometries represented by parametric coordinates. The parameterization used 
to define all curves as non-uniform rational B-Spline (NURBS) to automatically triangulate a region 
with a graded mesh. Mezzanotte et al. [7] focused on a graded meshing strategy to minimize the 
coarseness error. They defined two types of cell sizes, large and small and graded mesh is applied 

from small size cell that increased with a constant factor to large cell size. Chiu et al. [3] implemented 
quad-tree mesh generation method to separate the interface region of different materials within an 
object and generated a triangular mesh. Zhang et al. [14] describes an approach for automatic 
unstructured tetrahedral and hexahedral meshes of composite domain made up of heterogeneous 
materials by introducing the notion of a material change edge and minimizer point method for 
identifying the interface boundary and interface node between different materials. Kallemeynet al. 
[6] separated different component of the cervical spine with a triangulated surface region of the 

structure and using a multi-block method for mesh generation. Sullivan et al. [12] developed a three 
dimensional mesh generation method which is well suited for adaptive situations. A template of 
elements is superimposed upon the boundary of the model and elements that are straddled at the 
boundary are adapted to conform to the boundaries of the model. Internal and distinct materials are 
retained in the final mesh. 

FE analysis of heterogeneous object is relatively current topic in research. Piseet al. [10] 
simulated static loading of bio-objects like human femur with B-Spline based modelling, meshing 

and its 3D finite element analysis with material based graded element. Pfeiler et al. [9] employed a 
direct conversion of CT Hounsfield units to material property (Young’s modulus and Poisons ratio) 
and minimize user interaction for mesh smoothing to produce FEM analysis model. Yang et al. [13] 
proposed heterogeneous lofting for modeling of a multi-material object, and for analysis, a graded 
B-spline finite element solution procedure. 

The work done by researchers so far available in public domain is focused on utilizing certain 

material based criterion for meshing the object. No systematic study is available so far to study the 
effects of the material based meshing methods on the convergence characteristics of a FEM analysis 
procedure.  

The present work is aimed to study the effect of material gradient based meshing on the 
convergence of the FE analysis. The present paper considers a FGM bar of varied material 
composition and simulates material gradient based meshing strategy and its effect on the 
convergence characteristics of the FE analysis.  

2 MATERIALS AND METHODS 

2.1 Problem Statement 

We start with a very basic and well known one dimensional bar example. Let length of bar be L, and 
the area of cross section A. As shown in Fig. 1, one end of the bar is fixed and a tensile load of P is 
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applied at another end. The bar is composed of two materials with the elastic properties assumed to 
be 𝐸1 and 𝐸2 respectively (𝐸2>𝐸1) at the ends respectively. It is assumed that the variation of modulus 

of elasticity E(X) at a distance X from the fixed end within the bar is governed by a power law function 

as follows: 

 

                                              E(𝑋) = 𝐸1 + (𝐸2 − 𝐸1) (
𝑋

𝐿
)

𝑛
    

 (2.1) 

 

Let 𝑥 =
𝑋

𝐿
, 𝛾𝑚𝑎𝑥 =

𝐸2

𝐸1
, and𝛾(𝑥) =

𝐸(𝑋)

𝐸1
 

 

Where 𝑥 is termed as non-dimensional length andγas non-dimensional modulus of elasticity. Using 

non dimensional parameters, Eqn. (2.1) reduces to: 
 

                                                                     𝛾(𝑥) = 1 + (𝛾𝑚𝑎𝑥 − 1)𝑥𝑛                                                                                               (2.2) 
 

In Eqn. (2.2), n is any real positive number called material variation power. For all simulation it is 
presumed that the each of the parameters: height h, breadth b and load P are of 1 relevant unit. 
 

 
 

Figure 1: The Basic Configuration. 
 

The material property distribution within the longitudinal direction for different values of n is shown 

in Fig. 2. 
 

 
Figure 2: Material Property Variation. 
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2.2 Meshing Style 

Most of the meshing style available so far, take FGM material as a combination of piecewise 

homogeneous region and then meshing each region separately. For homogeneous objects, the mesh 
size is dependent primarily on the geometry of the object. It is presumed that for FGM, the 
appropriate mesh size is also dependent on the material property gradient along with the geometry. 
For the simple bar, the only material property considered here is the modulus of elasticity of the 
object, i.e. E(X). 

Let the rod be divided into N number of elements for geometric mesh, since the area of cross 
section is constant, all elements are considered of equal size. Thus the non-dimensional length of 

each element is 1 (N. A)⁄ . A standard finite element formulation was done and displacement u at the 

load end of the beam was checked for convergence study. 

The second study was done using the material based graded meshing approach as follows. Let 
the number of elements be N. Now for the material based graded element, the element size will be 
determined by equal increment in modulus of elasticity (E) along X direction. Each node will have 
an increment on modulus of elasticity of(E2 − E1) N⁄  with respect to the previous node. So the nodes 

will be placed at the locations of successive increment of (E2 − E1) N ⁄ in the value of E. Let the value 

of E at a node be E(X).The non dimensional distance corresponding to non dimensional modulus of 

elasticity can be determined by: 

                                                                        𝑥 = (
𝛾(𝑥) − 1

𝛾𝑚𝑎𝑥 − 1
)

1

𝑛

                                                                                                          (2.3) 

 
Fig. 3(a) and Fig. 3(b) indicate the length of each element e(i), i = 1 to 6, for different values of n (2& 

1/2 respectively). 

 

 
(a)                                                                    (b) 

 
Figure 3: Location of Nodes Based on Equal Variation in E: (a) for n=2, and (b) n=1/2. 

 
So it is evident that this style of meshing strategy will give unequal element length for the value of 

n≠1.  

3 FE ANALYSIS WITH GRADED ELEMENT 

The variation in elastic property E with an element can be handled in different ways. The convention 

method is to assume the value of E within the element constant is shown in Fig. 4 and its value is 
the average of the nodal values of E thus:  
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                                                                                 Ee =
EX1

+ EX2       

2
                                                                                                     (3.1) 

 

 
Figure 4: Constant E, Average Element. 

 

 
The element with averaged E value is termed as average element. The average element meshing 
strategy is equivalent to the homogeneous region based meshing method that is used by most of 

the researchers. 

Another method, which may look more attractive and accurate, is taking with account the 
variation of E across the element, E(X).  This method is being named here as “graded element” 

method. In this case the elemental stiffness matrix ⌈k⌉eis expressed as: 

 

                                                                [𝑘]𝑒 = ∫ [𝐵]𝑇
1

0

[𝐸(𝑋)][𝐼][𝐵]𝐴𝑑𝑋                                                                                            (3.2) 

 

Where [B] is the strain displacement matrix and can be expressed as: 
 

 B =
1

X2 − X1

[−1 1]                                                   

 

[k]e = ∫
E(X)A

(X2 − X1)2 [
1 −1

−1 1
]

X2

X1

dX                                                                                                (3.3)  

 

     [k]e = ∫
E1γ(x)L

(x2 − x1)

x2

x1

[
1 −1

−1 1
] dx                                                      

 

In non-dimensional form,  
 

[k]e = E1L ∫
γ(x)

(x2−x1)

x2

x1

[
1 −1

−1 1
] dx                                                                                             (3.4) 

 
Elemental Equations are assembled to get global properties of structure by using following system 
equations: 
 
                                                                          {k}e{δ}e = {P}e                                                                                                                   (3.5) 

 

Where {𝛿}𝑒 nodal displacement is vector of the element and {𝑃}𝑒 is nodal load vector. The global 

Equation can be presented as: 
 
                                                                                  [K][δ] = [P]                                                                                                                (3.6) 
 

e E
x1

 E
x2

 

x
1
 

x
2
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Where [K] is the global stiffness matrix [δ] is the global displacement vector and [P] is the global 

load vector. 

3.1 Closed Form Solution of the Problem 

For validation purpose closed form solution of the problem can be taken from standard literature [5]. 
The displacement (u) on the free end can be found by the Eqn. (3.7). 

 

                                                                   u = ∫
P

AE(X)

L

0

dX                                                                                                                     (3.7) 

 
Since A=1 and L=1, 

 

          u = ∫
P

E1γ(x)
dx                                                                       

1

0

 

 

                                                                  u =
P

E1
∫

1

γ(x)
dx

1

0

                                                                                                                    (3.8) 

 
Eqn. (3.8) is solved using the symbolic computation tool available in Matlab for different value of the 
power n, and value of 𝐸1 & 𝐸2. The value of displacement thus obtained will be used to compare 

convergence results of the FE analysis. 

4 COMPARISON OF RESULTS FOR AVERAGE ELEMENT WITH GRADED ELEMENT 

In this section, we present some numerical examples which show the behaviour of the graded 
element vis-a-vis average element. For numerical study in this section  γmax is taken as 2. 

4.1 Comparison of Results for Average Element with Graded Element with Equal Element Size 

The first numerical simulation is done to understand the effect of the graded element vis a vis the 
average element with equal mesh size. The absolute error defined as: 

 

                                                       Error(%) = |
Simulated value − Exact value

Exact value
| ∗ 100                                                            (4.1) 

 
The value of Error (%) is plotted in Fig. 5 for different value of n. For same number of elements, 

graded element has superior convergence characteristics. The error increases as n deviates from 1 

on either direction i.e. n<1 & n>1as shown in Fig. 5. 
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(a)                                                  (b)                                             (c) 
 

 
(d)                                                (e)                                             (f) 

 

Figure 5:  Error Plot for Average Element, Graded Element and Closed Form Solution for γmax = 2: (a) 

n=1, (b) n=2, (c) n=3, (d) n=0.2, (e) n=0.4, (f) n=0.6. 

4.2 Comparison of Results for Average Element with Graded Element with Unequal Element Size 

The second simulation is done to understand the effect of changing the mesh size in accordance with 
the material based graded meshing approach as described in section 3. For comparison purpose, the 

mesh size obtained for material based graded meshing is taken equal to that for the average element 
analysis. The results in Fig. 6 indicate that for the same mesh size, the graded element approach is 
superior to average element approach, so taking graded element (that is varying material property 

within an element) is advantageous for convergence. 
 

 
(a)                                               (b)                                             (c) 

 

 
(d)                                                (e)                                             (f) 

 

Figure 6: Error Plot for Average Element, Graded Element and Closed Form Solution for γmax = 2: (a) 

n=1, (b) n=2, (c) n=3, (d) n=0.2, (e) n=0.3, (f) n=0.6. 
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It also indicates that as n deviates from the value 1, the material based graded meshing gives faster 
convergence. 

5 COMPARISON OF THE CONVERGENCE CHARACTERISTIC OF ‘MATERIAL MESH’ ELEMENT WITH 
GEOMETRIC MESH (EQUAL LENGTH ELEMENT) 

This section compares the convergence characteristic of material mesh and geometrical mesh. In 
both cases, the element is considered graded. 

5.1 Convergence Comparison for Constant 𝛄𝐦𝐚𝐱 

For constant  γmax, the convergence of the FE analysis was studied by varying n. The results for γmax =
2 are shown in Fig. 7. It is interesting to note that geometrical mesh is effective for n>1 whereas 

material mesh is effective for 0<n<1. The reason for this effect can be attributed to the effect of 

different mesh size and different γmax values on the convergence. To further analyse the cause, it is 

considered necessary to see the effect of γmax variation on the convergence characteristics. 

 

 
(a)                                               (b)                                              (c) 

 

 
(d)                                               (e)                                            (f) 

 
Figure 7: Displacement Results: (a) n=1, (b) n=2, (c) n=3, (d) n=0.2, (e) n=0.3, (f) n=0.5. 
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5.2 Effect of Variation of  𝛄𝐦𝐚𝐱 

This simulation is similar to that in section 5.1, except that value of γmax is also varied from 1 to 100; 

material mesh, geometrical mesh and exact solution were compared for different values of n.Some 

representative results are shown in Fig. 8. 

It seems that, for different γmax ratios, the results obtained in both cases for 1<n<5 & 0<n<1 

have the same pattern as given in section 5.1. This analysis gives us a direction that probably 
meshing the element with the element with the same power 'n' needs to be revisited. 

6 TAKING DIFFERENT POWER INDEX FOR MATERIAL MESHING 

Section 4 & 5 also indicate that if we take the material mesh based on the power-law index n for 

material distribution, the convergence is general may not be optimal. Thus it makes sense to use 

some other power say ‘m’ for meshing, which is in general different from the power index  'n’. 

For creating mesh, a power ‘m’ is used to create material mesh and the results in Fig. 9 shows 
convergence result in between power-law index n versus m for constant γmax. The value of m for 

best convergence is taken from the graph and termed as mopt. 
 

 
(a)                                               (b)                                              (c) 

 

 
(d)                                               (e)                                            (f) 

 
Figure 8: Displacement Results: (a)  γmax=2, n=2, (b) γmax=3, n=2, (c) γmax=5, n=2, (d) γmax =2, 

n=0.2, (e) γmax =3, n=0.2, (f) γmax =5, n=0.2. 
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(a)                                               (b)                                              (c) 

 
Figure 9: Displacement Results for γmax=2: (a) n=2 versus m=1.35, 1.5, 1.6, and 1.7, (b) n=3 versus 

m=1.88, 2.2, 2.4, and 2.6, (c) n=4 versus m=2.4, 2.7, 3, and 3.3. 
 

Fig. 10 shows the plot between n and mopt  for γmax. This plot is fairly linear and can be expressed as: 

 
                                                                          mopt = 0.52n + 0.32                                                                                       (5.1) 

 
Similar numerical study is done for varying γmaxand it is shown in Fig. 11, which shows a relationship 

between n and mopt for different values of γmax. The nature of the graph is linear for n>1 it becomes 

non linear for the value of n between 0<n<1 as shown in Fig. 12(b). It is true that the relationship 

between ‘m’ and ‘n’ is linear for 𝐸2 𝐸1⁄ > 1 and is non-linear in case of  𝐸2 𝐸1⁄ < 1. However, in real 

world applications, whenever 𝐸2 𝐸1⁄ < 1, the direction of x can be reversed locally, such that the new 

𝐸2 𝐸1⁄  in the reverse x direction become less than one. In that case the linearization with reverse 

direction of x will hold good. 
 

 
 
 

Figure 10: Actual Powers used for Defining FGMs n versus Optimal Power used mopt . 

7 RESULTS USING OPTIMUM VALUE OF M (𝐦𝐨𝐩𝐭) FOR MESHING 

In this section, we implement the meshing based on the power for meshing mopt as explained in 
Section 6. The result for different values of n and γmax = 2 are shown in Fig. 13. All the results indicate 
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that the convergence using material mesh is superior for all the cases. Similar results were obtained 
for higher values of γmax but are not shown here because of the space constraint. It was also shows 

that the convergence is now not affected by the power n, which is in contrast to section 5.1 where 
we have different results n<1 and n>1. 

 

 
 

 
Figure 11: Relationship between Powers used for Defining FGMs (n) versus Power used for Mesh 

Creation (m) for Gradient Mesh Generation. 

 

 
(a)                                               (b)                                              (c) 

 
Figure 12: Actual Powers used for Defining FGMs (n) versus Power used for Mesh Creation (mopt) for 

Gradient Mesh Generation  γmax = 100: (a) 0<n< 5, (b) 0<n< 1, (c) 1<n<5. 

8 DISCUSSION 

The goal of this study was to study the effect of the material based meshing on convergence of FE 
analysis results. Our study clearly indicates the superiority of the material based meshing vis a vis 
conventional meshing with mopt as a basis for meshing. Error can be reduced to more than 50% in 

some cases, with the same number of elements; alternatively, convergence can be achieved with 

fewer elements that is a huge computational advantage. More the index n increases from unity, 
more is the utility of mopt based meshing. 

9 CONCLUSIONS 

Based on the simulation it can be concluded that material based graded element where the element 
size dependent on the power ‘n’ that defines material property gives faster convergence in most of 
the cases. It is also concluded that for material based graded meshing, it is recommended to use 

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5

P
o

w
e

r 
u

se
d

 f
o

r 
m

e
sh

 
cr

e
at

io
n

 (
m

o
p

t)

Power used for defining FGMs (n)

ϒmax
=2
ϒmax
=3
ϒmax
=5

0

0.5

1

1.5

0 1 2 3 4 5

mopt

n

mopt vs n

ϒmax=100, 0<n< 5 

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

mopt

n

mopt vs n 
ϒmax=100, 0<n<1

0.3

0.5

0.7

0.9

1.1

1.3

0 1 2 3 4 5

mopt

n

mopt vs n

ϒmax=100, 1<n<5

http://www.cad-journal.net/


581 
 
 

 

Computer-Aided Design & Applications, 16(3), 2019, 570-582 
© 2019 CAD Solutions, LLC, http://www.cad-journal.net 

 
 

mopt for meshing in place of power index n. Using mopt as power for meshing gives faster convergence 

in comparison to the power index n based meshing. 

This work was done for one dimensional stress analysis under tension only. This work is being 
extended for different type of load conditions and for higher dimensional elements. 

 

 

(a)                                               (b)                                              (c) 

 

 
(d)                                               (e)                                            (f) 

 

Figure 13: Displacement Results between Geometrical Mesh, Material Based Gradient Mesh, Meshing 
Based on the mopt : (a) n=1, (b) n=2, (c) n=3, (d) n=0.2, (e) n=0.3, (f) n=0.5. 
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