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ABSTRACT 

 
The aim of this paper is to provide a review of the characteristics of 3D solid 
modeling software libraries – otherwise known as ’geometric modeling kernels’ in 
non-manifold applications. ’Non-manifold’ is a geometric topology term that means 
’to allow any combination of vertices, edges, surfaces and volumes to exist in a 
single logical body’. In computational architectural design, the use of non-manifold 

topology can enhance the representation of space as it provides topological clarity, 
allowing architects to better design, analyze and reason about buildings. The 
review is performed in two parts. The review is performed in two parts. The first 

part includes a comparison of the topological entities’ terminology and hierarchy as 
used within commercial applications, kernels, and within published academic 
research. The second part proposes an evaluation framework to explore the 

kernels’ support for non-manifold topology, including their capability to represent a 
non-manifold structure, and in performing non-regular Boolean operations, which 
are suitable for non-manifold modeling.  

 
Keywords: Architectural Design, Non-Manifold Topology, Geometric Kernels, 
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1 NON-MANIFOLD TOPOLOGY 

1.1 Definition 

Mathematically, Non-Manifold Topology (NMT) is defined as cell complexes that are subsets of 
Euclidean Space [38]. Practically, topology refers to the spatial relationships between the various 
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entities in a model and it describes how geometric entities are connected [53]. ’Non-manifold’ is a 
geometric topology term that means ’to allow any combination of vertices, edges, surfaces and 
volumes to exist in a single logical body’ [22]. Such models allow multiple faces meeting at an edge 
or multiple edges meeting at a vertex. Coincident edges and vertices are merged. Moreover, non-

manifold topology models have a configuration that cannot be unfolded into a continuous flat piece 
and are thus non-manufacturable and not physically realizable [4]. On the contrary, a manifold body 
without internal voids can be fabricated out of a single block of material [1]. In addition, in a 
manifold object if one were to draw spheres centered on the points of the object’s surface, these 
would be divided into two pieces; one inside and one outside the object [55]. Examples of manifold 
and non-manifold geometry are shown in Fig. 1 and further information on the difference between 
manifold and non-manifold modeling are provided in [10]. 

Non-manifold supports a form of modeling, which removes constraints traditionally associated 

with manifold solid modeling forms by embodying all of the capabilities of wireframe modeling, 
surface modeling and solid modeling forms in a unified representation and extending the 
representational domain beyond that of the above modeling forms [59]. One of the very first ideas 
proposed by Kjellberg [30] and his team in the late 1970s was that, having a unified modeling 
framework with a mix of different representation techniques would allow the user to represent 

different stages and levels of models. Non-manifold modeling in ℝ3 can be considered as 

exhaustively decomposing the ℝ3 into disjoint sets of elements of zero, one, two, and three 

dimensional point sets, i.e., vertices, edges, faces, and regions respectively [13], [16]. 

 

 
Figure 1: Examples of manifold and non-manifold geometry. 

1.2 Applications 

NMT has been successfully applied in the ship building industry, the medical field, architectural 
design, 3D modeling, computer-aided engineering analyses, as well as digital fabrication 
exploration. 

Ship building industry: NMT has been successfully used in the ship-building for ’compartment’ 
design, that is how the overall hull is subdivided into enclosed potentially watertight spaces, and the 
representation of these subdivision as a complex hull structure [35]. In this field, the use of NMT 

allows designers to segment a complex overall form into more cellular zones and spaces in a 
consistent manner. 

Medical field: NMT has been successfully used in the medical field to model complex organic 
structures with multiple internal zones [7], [42]. In these applications, a non-manifold mesh is often 
generated from a Magnetic Resonance Imaging (MRI) scan of human organs as a basis for further 
analyses, for example using the Finite Element Method (FEM).  

3D modeling: Non-manifold geometric models can maintain additional data, which may not 

appear in the resultant shape. This is one of their most useful characteristics, as it allows hybrid 
representation, including characteristics of both Constructive Solid Geometry and Boundary 

Representation 3D modeling [39].  

Computer Aided Design (CAD)/Computer Aided Engineering (CAE)/Computer Aided 
Manufacturing (CAM): NMT can also be used in engineering analyses, as it can handle cellular 
structures and abstracted mesh models [34]. Some studies [51], [52] have used non-manifold 
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topology for structural modeling and finite element analyses and others have demonstrated the 
partitioning of cells leading to cellular representations which are then used for structural analyses 
[43]. Moreover, non-manifold spatial models are considered to be suitable for early structural 
analysis, as horizontal and vertical edges can be used to define beams and columns respectively, 

while internal or external faces can be used to define floors, roof elements and interior or exterior 
walls, facades and partitions [1]. The opportunities offered and limitations overcome by non-
manifold systems in CAD/CAE/CAM applications have been reported in various studies. For example, 
Lipson and Shpitalni [36] introduced a topology invariant while providing a basis for a modeling 
system for sheet metal parts. With this invariant, it is possible to query manufacturing processes, 
such as number of components and configuration of bend lines and weld lines, using a single 
qualitative model of the product. This capability is particularly useful in the early stages of the 

design. Mikchevitch and Pernot [40] studied typical issues when transferring non-manifold 3D 

models between CAD systems and proposed a methodology for reconstructing 3D partitions that 
might be lost from exported non-manifold models, which they then successfully validated on 
academic and industrial models. Vivodtzev et al. [57] introduced a method for topology preserving 
mesh simplification, which ensures the consistency of CAD/CAM models. Lee [33] established a 
more integrated environment for the design and analysis of plastic injection moulding parts through 

the development of a feature-based design system based on a non-manifold modelling kernel 
supporting feature-based multi-resolution and multi-abstraction modelling capabilities. In that 
system, the CAD and CAE systems work under a single model in a NMT schema and for design 
changes, the design and analysis models are modified simultaneously. 

Digital Fabrication: the potential of NMT has been investigated in terms of the design and 
additive manufacturing of conformal cellular structures [25]. It was found that the consideration of 
topology and more importantly the establishment of topological queries could improve the efficiency 

of their design. 

Architectural design: Considering the above applications, it would be possible to transfer NMT’s 
success from the ship-building and the medical fields to architecture in order to enhance the 
representation of architectural space [23]. The complexity of a ship, including its scale and its 
spatial organization, or that of an organic structure, including its multiple internal zones, could be 
well compared to the complexity of a building. One of the advantages of the NMT technique is the 
topological clarity that it provides, which allows architects to better design, analyse, reason about, 

and produce their buildings. The potential of NMT in the early design stages is already acknowledged 
and research has been undertaken with regard to the advantages of NMT’s application for energy 
analysis in the early design stages [22], [24]. NMT has already been applied together with 
parametric and associative scripting to model the spatial organization of a building [1]. This 
information was then used to create different analytical and material models of a building. 

2 TOPOLOGICAL CHARACTERISTICS OF NON-MANIFOLD OBJECTS 

2.1 Topological Elements and Data Structures 

Topological elements of non-manifold objects are hierarchically interrelated and a lower-dimensional 
element is used as the boundary of each of several higher dimensional ones [59]. A topological 
element does not include its own boundary [38]. An example of a hierarchical structure of non-
manifold topological elements is presented in Fig. 2(a). The bottom-most element is a vertex, which 

geometrically equals to a point. A vertex can be detached from other structures, or located at the 
ends of an edge, which implies a line. This, however, is the end of the similarity with the traditional 
surface boundary representation, as open and closed loops can be created from the detached as well 
as inter-connected vertices and edges. Loops can be integrated to produce a face/surface, while 

faces can be combined to build a shell. It should be noted, however, that a shell may contain 
isolated vertices, edge, and faces. Then, a volume can be generated from a set of adjacent shells. A 

complex finally lies at the top of the hierarchy. It can constitute any other elements including 
volumes, faces, edges, and vertices. 
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Figure 2: (a) An example of hierarchical structure of non-manifold topological elements [38], (b) 
Basic data structure, adapted from [56]. 

 

Geometric algorithms involve the manipulation of objects, which are not handled at the machine 
language level. The user must therefore organize these complex objects by means of the simpler 
data types directly representable by the computer. These organizations are universally referred to 

as data structures, which are ways to organize information, which, in conjunction with algorithms, 
permit the efficient and elegant solution of computational problems [46]. A basic data structure is 
presented in Fig. 2(b). Expanded data structures and topological relationships allow for a richer 

representation of loci, centrelines, elements, surfaces, volumes and hierarchical structures that are 
usually found in architectural compositions. 

2.2 Boolean Set Operations for Non-Manifold Objects 

Boolean set operations are common set operations that are used to combine solids in order to create 

more complex objects. They are usually applied to two bodies at a time [3]. The main Boolean 
operations are union, intersection and difference and can be regular or non-regular. In the union 
operation, the resulting solid occupies the space previously occupied by all the original solids. In the 
intersection operation, the resulting solid occupies the space previously occupied simultaneously by 

all the original solids. In the difference operation, the resulting solid occupies the space previously 
occupied by one of the original solids that the other solids did not occupy [3]. Generally a regular 
Boolean operation removes any external faces of the input bodies that are within the resulting body, 

while a non-regular Boolean operation maintains any external faces of the input bodies that are 
within the resulting body [1]. As a result, regular operations lead to a manifold result, while non-
regular operations lead to a non-manifold result. The manifold or the non-manifold property of the 
output body cannot be informed by the input bodies’ property, as manifold and non-manifold inputs 
can lead to manifold or non-manifold outputs, but not respectively [3]. This is also observed in Fig. 
3, which shows the result of different regular or non-regular Boolean operations with manifold 
inputs. As observed, some operations (union and intersection) are symmetric, while other 

operations (difference, impose) are asymmetric. With asymmetric operations there is the convention 
that the inputs are referred to as the ’part’ (A) and the ’tool’ (B) respectively [1]. As an example, in 
the impose operation, all parts of A which are within the region of B are removed. Similarly, in the 

imprint non-regular operation, all parts of B that are not within A are removed. Both these 
operations lead to non-manifold results. 
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Figure 3: The result of different regular or non-regular Boolean operations with manifold inputs 
(adapted from [1]). 

3 METHODOLOGY 

The intention of this research was to review academic literature and geometric modeling kernels 

supporting non-manifold topology. A geometric modeling kernel is a 3D solid modeling software 
library that provides geometric and topological data structures, as well as algorithms to model an 
architectural space, a building or an artefact. The study included the investigation of the topological 
entities used in thirteen data structures, as well as in other proposed class hierarchies suitable for 
non-manifold modeling, in terms of the levels they support and the terminology used for each level 
(Section 4.1). In addition, twelve geometric modeling kernels that support NMT have been 
evaluated (Section 4.2) and they have been assessed according to three characteristics, namely 

their license types, including whether they are commercial or open source (Section 4.2.1); the 
topological entities hierarchy they support (Section 4.2.2); and the supported topological operations 
(Section 6). Inconsistencies were expected to be found regarding the terminology and the supported 
levels in both the academic research and the kernels, and thus the aim of this research is two-fold; 

first, to summarize the academic overview and the review of the modeling kernels in a new 
terminology and class hierarchy standard (Section 5) and then to also propose a testing framework 

to assess the kernels’ support for non-manifold structures based on the new terminology (Section 
6). More specifically, the tests, using the Open CASCADE Technology (OCCT) kernel, aim to identify 
the provided structural representations of a non-manifold structure and operations involving these 
structures. OCCT 7.2.0 64-bit was used due to its status as one of the most outstanding open 
source geometry kernels with well-established community base, and its advertisement of non-
manifold support. In addition, OCCT was found to provide a richer environment to work in, 
compared with other open-source kernels, as it provides a higher level of entities, which allows 

flexibility and versatility in its use. 
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4 REVIEW ON ENTITIES’ TERMINOLOGY IN NON-MANIFOLD MODELING 

4.1 Academic Research 

The advantages of non-manifold representation have been recognized in various studies, such as 
[16], [39] and several representation schemes have been proposed for 3D modeling. This section 
focuses on the review of the research papers whose authors proposed a non-manifold class 
hierarchy or used an existing one. However, it is acknowledged that some of these frameworks have 
been based on precursors that are suitable for manifold modeling. The review included the following 
publications. 

 
 Weiler’s [60] radial edge structure 

 Rossignac and O’Connor’s [50] Simplicial Geometric Complexes 
 Gursoz et al.’s [17] vertex-based data structure 
 Yamaguchi and Kimura’s [62] coupling entities data structure 
 Cavalcanti et al.’s [8] Complete Geometric Complexes 

 Lee and Lee’s [34] partial edge structure 
 Karasick’s [26] star-edge boundary representation 
 Higashi et al.’s [20] cycle structure 
 De Floriani and Hui’s [14] non-manifold indexed data structure with adjacencies 
 Hui and De Floriani’s [21] incidence simplicial data structure 
 Hachenberger et al.’s [18] SNC (Nef complex) structure, 

 Zeng et al.’s [63] Q-complex data structure 
 Boguslawski and Gold’s [6] dual half-edge data structure 

 

The review also included other researchers, who either proposed their own hierarchy, such as [1], 
[15], [32], [36], [39], [45], [47], adopted an existing one [5], [11], [22], [32], [38], [41], [45], 
[49] or proposed extra structures in existing data structures, such as in Luo and Lukacs’ [37] work, 
which removed the ambiguities1 found in the radial-edge structure. A matrix regarding the entities’ 

terminology used in the above studies can be found in the Appendix A (Tab. 5).  
Considering the above, various entity names have been used considering different topological 

frameworks, which are as follows. 
 complex, body, model or group for the higher level of the hierarchy for the 8th level; 
 solid, primitive or component for the 7th level; 
 volume, region or cell for the 6th level; 
 shell, polyhedron or tetrahedron for the 5th level; 

 face, dangling face or facet for the 4th level; 

 loop, wire, genus or cycle for the 3rd level; 
 edge or wire-edge for the 2nd level; and 
 vertex for the 1st level. 

 
The number of studies (academic papers) that use each of the aforementioned entity names are 

presented in Fig. 4. It is seen that vertex is used in all studies, while a set of basic elements [61] 
including vertex (1st level), edge (2nd level), loop (3rd level), face (4th level) and shell (5th level) is 
shared in almost every scheme. The higher levels in the topological hierarchy present larger 
diversity and it seems that region, solid and complex is the preferred terminology for the 6th, 7th and 
8th level respectively. 

 

                                                      
1 More information regarding the ambiguities can be found in [56]. 
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Figure 4: Number of occurrences of entity names in non-manifold academic research (authors’ own). 

4.2 Non-Manifold Geometry Kernels 

The main requirement for the geometric kernel to support conceptual design is to provide a non-
manifold topology so that mixed-dimensional geometry can be allowed [28]. Twelve geometric 
modeling kernels that support non-manifold topology have been put to the test and they are 
assessed according to three characteristics, namely the topological entities hierarchy they support 

(Section 4.2.1); their license types, including whether they are commercial or open source (Section 

4.2.2); and the offered topological operations (Section 5). A table including the information 
presented in this section in a concise format is attached in Appendix A (Tab. 6). The following 
geometric kernels are reviewed in this paper. 

 ACIS, by Spatial Corporation 
 SOLIDS++, by IntegrityWare 
 Parasolid, by Siemens 

 ARCHMIND, by Theo Athanasiadis 
 BMesh, by various contributors 
 Open CASCADE Technology (OCCT), by Open CASCADE SAS 
 OpenVolumeMesh (OVM), by RWTH Aachen University 
 CGAL, by various contributors 
 LibIGL, by the Interactive Geometry Lab of ETH Zürich 

 Rhino SDK, by McNeel and Associates 

 ASM, by Autodesk 
 SMLib, by Solid Modeling Solutions 

4.2.1 Topological entities hierarchy 

The topological elements used in each kernel vary and so does the hierarchy they use. All kernels 
support vertices and faces (CGAL uses the term ‘facet’ instead of ‘face’), while all except LibIGL 

support edges. Compared to the review on the entities terminology from the academic perspective, 
the geometry kernels make distinct use of loop and wire, with the loop indicating a closed wire. This 
distinction creates an extra level in the entity hierarchy. Some kernels have the notion of the shell 
and it seems that the naming from the next level upwards varies, as shown in Tab. 1. For the 7th 
level, names such as volume, region, cell, lump and solid are being used with region being the most 
preferred one to signify the space inside a closed shell. In the 8th level, which refers to two closed 

shells linked by their faces, ‘CompSolid’ is used by OCCT and ’solid’ by ASM and Rhino SDK. As for 
the 9th level, which includes the collection of any of the lower entities, the dominant terminology is 
‘body’, used by ACIS, Parasolid and ASM. Other naming for this level includes ‘compound’, ‘model’ 
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and ‘brep’. The variant number of entities used by each kernel suggests that some kernels provide a 
richer environment to work in, while others, such as LibIGL, ARCHMIND or BMesh are simply mesh 
representation libraries. 
 

Level Entities 

Kernels 
No of 

instances OCCT OVM CGAL LibIGL ARCHMIND BMesh ACIS SOLIDS++ Parasolid ASM 
Rhino 

SDK 
SMLib 

9th 

body        •  • •   3 

compound •            1 

model            • 1 

brep         •     1 

8th 
CompSolid •            1 

solid          • •  2 

7th 

volume   •          1 

region         •  • • 3 

cell  •     •   •   3 

lump       •      1 

solid •            1 

6th shell •  •    • • • •  • 7 

5th face • • • • • • • • • • • • 12 

4th loop   •   • • • • • • • 8 

3rd wire •      •      2 

2nd edge • • •  • • • • • • • • 11 

1st vertex • • • • • • • • • • • • 12 

No of entities 8 4 6 2 3 4 9 6 7 8 6 7  

 

Table 1: Use of entity terminology in non-manifold geometry kernels (authors’ own). 

4.2.2 Licensing 

Whether a kernel is open-source or proprietary has a direct association to the licensing terms under 

which it is distributed. There is no one license that presents no limitations; it is useful, however, to 
be aware of the strengths and limitations of each when using open-source tools. 

OCCT, OpenVolumeMesh, CGAL, LibIGL, ARCHMIND and BMesh are open-source kernels, which 
means that they provide a freely available source code. This can be considered an advantage, as 
open-source tools facilitate interoperability, having the capability for direct integration in various 
software products. The source code of the open source kernels can be distributed to anyone under 
various licensing terms and conditions preserving the provenance and openness of the engine. 
These terms address the freedom to run the engine for any purpose, the freedom to study how it 

works and to adapt it to one’s needs, the freedom to redistribute copies of it and the freedom to 
modify it to add further capabilities and distribute any improvements to the public [48].  

On the other hand, SOLIDS++, Parasolid, ACIS, Rhino SDK, ASM and SMLib are proprietary 
ones, meaning that under commercial licenses they have closed source codes that are not freely 

accessible. It should be noted, however, that ACIS offers a University program, under which ACIS 
can be made accessible for one year with the possibility to renew the contract. More information on 
the advantages and disadvantages of open-source and proprietary tools can be found on the White 
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Paper provided by Optimus Information [44]. The above information is also included in Appendix A 
(Tab. 6). 

5 PROPOSAL OF A STANDARDIZED ENTITIES’ TERMINOLOGY 

As briefly described in Section 1.2, NMT (as well as its manifold counterpart) has benefited various 

disciplines in creating spatial building models, material building models, structural models, 
mechanical models or building services models. However, community members across different 
areas may refer to the same NMT concepts using different terminologies, and may use them for 
different purposes. For example, in a spatial building model a location could actually be the alias for 
a vertex, the centre curve the alias for an edge and a path the alias for a wire. The cell could be 
used as a space or as a thermal zone in a spatial building model, a wall or a floor in a BIM model, as 

well as a slab or a beam in a structural model.  

In light of a more standardized topological framework with regard to the naming and hierarchy 
of topological elements, a class hierarchy is proposed in Fig. 5. The terminology is proposed to 
provide a common concept for the diverse discipline-specific terminologies, including the ones for 
conceptual architectural design, structural design, energy analysis, spatial reasoning and digital 
fabrication. The terminology is proposed according to the following principles: to reduce ambiguity, 
to increase distinctiveness, to use simple words, to use words that do not imply a specific discipline, 

and to use independent descriptors between topological and geometric entities. The entities up to 
the level of a shell use the currently preferred terminology in academia and in commercial 
applications. From then on, a cell implies a region of a bounded space that can be either filled (solid) 
or void. This entity resembles real-life cells such as a biological cell and a prison cell. A CellComplex 
indicates a series of connected cells and resembles a building complex. A cluster can contain 

heterogeneous elements, and is a familiar concept in a number of areas including biology (e.g. a 
cluster of cells), architecture (a cluster of buildings), and set theory (an unordered cluster of 

objects). 

 

 

 
Figure 5: Topological elements class hierarchy with examples (authors’ own). 
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6 A TESTING FRAMEWORK FOR NON-MANIFOLD TOPOLOGY: A STUDY CASE WITH OCCT 

As a component of the geometry kernels’ review written in Section 4.2, this section presents a 
proposed testing framework to assess the kernels’ support for non-manifold structures. The tests 
particularly aim to identify the provided structural representations of a non-manifold structure and 

operations involving these structures. Structural representations are examined using construction 
tests (Section 6.1), in which a structure is created from simpler primitives; and exploration tests 
(Section 6.2), in which traversals are done between sub-entities of a shape. Operation tests are 
focused on merge (Section 6.3) and slice (Section 6.4) operations, which are two non-regular 
Boolean operations supported by OCCT. The discussions cover the correctness of the resulting 
shapes and the operations’ performances. Performance tests were conducted using a machine with 
Intel Core i7-7600U@2.80 GHz processor, 16 GB of RAM, and Windows 10 Pro. OCCT 7.2.0 64-bit 

was used and the kernel was built using Visual Studio 2017. Experimentations with other non-
manifold kernels regarding kernel capabilities and applications are reported in various studies [2], 
[12], [19], [31], [33], [54]. 

6.1 Construction Tests 

OCCT provides methods to construct various predefined shapes. A box can thus be created as a cell 
by using a built-in class and passing, for example, either two extreme corners of the box or one 
corner and the dimension of the box. Alternatively, a similar box structure can be manually built in a 
bottom-up manner using the following steps. 

1. Create 8 corners of the box 
2. Connect the corners into 16 edges 
3. Connect every 4 edges on each side on the box into a wire 

4. Create the box faces based on the wires 

5. Create a shell from the encompassing faces 
6. Create a solid from the shell 

Fig. 6 shows a performance comparison between the two methods. It can be seen that the built-in 
class significantly outperforms the manual method. This was expected, as the built-in method pre-
allocates memory in the most optimal way, while the manual method reallocates memory along the 

testing process. It is yet a useful test to explore different ways of creating a topological shape. It 
also shows the difference in time and thus gives an idea of the time saved when using built-in 
methods, which can be extrapolated according to the size of the model. The first one requires less 
than 5 ms even to construct up to 900 cubes, whereas the manual method grows linearly up to 
around 10 seconds to generate the same number of cubes. 
 

 
 

Figure 6: The time complexities of the cubes construction processes using OCCT’s built-in class and a 
manual construction method. 
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6.2 Exploration Tests 

Topological explorations in this paper are divided into three categories: 

1. Upward explorations, involving traversals from a higher level to a lower level sub-entity. 
2. Downward explorations, involving traversals from a lower level to a higher level sub-entity. 
3. Sideways explorations/adjacency queries, involving traversals between sub-entities at the 

same hierarchical level. 
OCCT allows both downward and upward explorations, respectively giving access to a sub-entity’s 
parents and children at any level. Downward explorations can start from any type of sub-entities, 

and an iterator of the children of the parent sub-entity will be provided. Upward exploration is 
available; however, it requires a higher level entity which provides context to the navigation, and 
contains both the input sub-entity and its desired parents. In fact, the implementation of upward 
navigation performs downward navigation from the higher-level entity to find the sub-entities that 

have the requested types and are parents to the input sub-entity, rather than relying on an explicit 
relationship from a child to its parents. Despite these two features, OCCT does not provide a direct 
means to directly perform sideways explorations. For example, to iterate through a series of 

connected edges, the parent wire must firstly be examined before the constituent edges can be 
checked for adjacency. A mechanism that allows traversal between connected edges would therefore 
be convenient to the library users. 

6.3 Merge Operation 

The merge operation was examined by uniting two cubes in 11 configurations, according to the 
various ways they could be linked. These configurations are shown in Appendix B (Tabs. 7 and 8). It 
was found following this testing that OCCT satisfactorily returned the correct number of sub-entities. 
In addition, it could be verified that the cube and the tetrahedron in Test 11 shared exactly one 

vertex, which was the tetrahedron’s vertex lying on the cube’s face. Shifting this vertex slightly 
outside the cube will result in no intersection, whereas shifting it inside will slice the tetrahedron and 
create a new cell, which is the portion of the original tetrahedron that is inside the cube, akin to 

Tests 7 and 8. 

The time complexity of this functionality was tested by performing the merge operation on three 
arrangements (1D, 2D, and 3D) of overlapping cubes as visualized in Fig. 7. These arrangements 
were designed such that the same number of input cubes will result in different numbers of sub-
entities. It was found, as depicted in Fig. 8, that while all processing times similarly rose 
polynomially, the most significant rise occurred with the 3D arrangements, which created the most 
complex structures, followed by the 2D and finally the 1D arrangements. 

 

 
 
Figure 7: Three types of cubes arrangements that were used to assess the merge operation’s 
performance. 
 

6.4 Non-Regular Slice Operation 

The non-regular slice operation available in OCCT was assessed by successively slicing a box with 
parallel finite planes, each regularly arranged within an interval of 1 unit from the other. Fig. 9 
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shows three arrangements of planes that were designed, and in each arrangement the planes were 
perpendicular to 1, 2, and 3 axes of the coordinate system. After each iteration, the new shape’s 
topology was checked, and the numbers of sub-entities should abide the equations written in Tabs. 
2–4. The derivation of the equations presented in these tables are given in Appendix C (Tabs. 9–

11). It can be seen from the same tables that this operation produced the correct numbers of sub-
entities. 
 

 
 
Figure 8: The merge operation’s performance given different numbers of cubes in three 
arrangements. 

 

 

 
Figure 9: Illustrations of the slice operation evaluation. More slicing planes were inserted to the cube 
along the directions of the arrows as the evaluation progressed. 

 

Sub-

entity 

Topological 

equation 

Actual numbers of sub-entities on after n slices  

0 1 2 3 4 5 6 7 8 9 10 

Vertex 8+4n 8 12 16 20 24 28 32 36 40 44 48 

Edge 12+8n 12 20 28 36 44 52 60 68 76 84 92 

Face 6+5n 6 11 16 21 26 31 36 41 46 51 56 

Wire 6+5n 6 11 16 21 26 31 36 41 46 51 56 

Shell 1+n 1 2 3 4 5 6 7 8 9 10 11 

Cell 1+n 1 2 3 4 5 6 7 8 9 10 11 

 

Table 2: The expected and the actual topologies of the resulting shapes after the cube is sliced with 
planes perpendicular to one axis. 
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Sub-

entity 

Topological 

equation 

Actual numbers of sub-entities on after n slices on each 
direction 

0 1 2 3 4 5 6 7 8 9 10 

Vertex 8+8n+2n2 8 18 32 50 72 98 128 162 200 242 288 

Edge 12+16n+5n2 12 33 64 105 156 217 288 369 460 561 672 

Face 6+10n+4n2 6 20 42 72 110 156 210 272 342 420 506 

Wire 6+10n+4n2 6 20 42 72 110 156 210 272 342 420 506 

Shell (1+n)2 1 4 9 16 25 36 49 64 81 100 121 

Cell (1+n)2 1 4 9 16 25 36 49 64 81 100 121 

 

Table 3: The expected and the actual topologies of the resulting shapes after the cube is sliced with 
planes perpendicular to two axes. The number of slicing planes is thus equal to n multiplied by 2. 

 

Sub-

entity 

Topological 

equation 

Actual numbers of sub-entities on after n slices on each direction 

0 1 2 3 4 5 6 7 8 9 10 

Vertex 8+12n+6n2+n3 8 27 64  125 216 343 512 729 1000 1331 1728 

Edge 12+24n+15n2+3n3 12 54 144 300 540 882 1344 1944 2700 3630 4752 

Face 6+15n+12n2+3n3 6 36 108 240 450 756 1176 1728 2430 3300 4356 

Wire 6+15n+12n2+3n3 6 36 108 240 450 756 1176 1728 2430 3300 4356 

Shell (1+n)3 1 8 27 64 125 216 343 512 729 1000 1331 

Cell (1+n)3 1 8 27 64 125 216 343 512 729 1000 1331 

 
Table 4: The expected and the actual topologies of the resulting shapes after the cube is sliced with 

planes perpendicular to three axes. The number of slicing planes is thus equal to n multiplied by 3. 

 

The same planes arrangements were used to assess the operation’s performance. The recorded 
times are shown in Fig. 10 with respect to the corresponding number of planes and the arrangement 
types. Similar to the merge’s performance, the processing times for the non-regular slice also rose 

polynomially, with operations involving 3D planes arrangements rising more steeply than the other 

arrangements due to the resulting shapes’ complexity. 
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Figure 10: The slice operation’s performance given different numbers of planes in three 
arrangements. 
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and in the industry is shown in Tabs. 5 and 6. 
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Researcher(s) 
Data structure 
(if available) 

Extended 
by 

Adopted by Topological entities hierarchy 
Entity 

no 
Further 
entities 

Requicha and 
Voelcker [47] 

- - - body - - - face - edge vertex 4 - 

Weiler [58] Radial-edge structure Gursoz, 
Choi, and 
Prinz [16], 
Lee and Lee 
[34] 
Luo and 
Lukacs [37] 

Crocker and Reinke 
[11], Muuss and 
Butler [41], 
Cavalcanti, Carvalho, 
and Martha [9] 

model - region shell face loop edge vertex 7 - 

Masuda et al. [39] - - Masuda [38], 
Jabi [23] 

complex - volume shell face loop edge vertex 7 - 

Rossignac and 
O’Connor [50] 

Simplicial Geometric 
Complexes 

- Rossignac and 
Requicha [49] 

complex - - - face - edge vertex 4 - 

Karasick [26] Star-edge boundary 
representation 

- - - - - shell face cycle edge vertex 5 - 

Gursoz, Choi, and 
Prinz [16], [17] 

Tri-cyclic cusp 
structure (Vertex-
based data structure) 

- - - - region shell face loop edge vertex 6 zones, 
disks 

Kiumarse Zamanian, 
Fenves, and Levent 
Gursoz [29] 

- - - - solid - shell face cycle edge vertex 6 - 

Higashi et al. [20] Cycle structure - - - - region shell face loop edge vertex 6 - 

Gueorguieva and 
Marcheix [15] 

- - - complex
/ 
object 

primitive volume shell face loop edge vertex 9 scene 

Yamaguchi and 
Kimura [62] 

Coupling entities data 
structure 

- - - - region shell face loop edge vertex 6 - 

Cavalcanti, Carvalho, 
and Martha [9] 

Complete Geometric 
complexes 

- - - - region shell face loop edge vertex 6 - 

Lipson and Shpitalni 
[36] 

- - - - compo-
nent 

volume - face genus edge vertex  6 edge, 
bend, 
weld 

Lee and Lee [34] Partial edge structure - - model - region shell face loop edge vertex 7 - 

de Floriani and Hui 
[14] 

Non-manifold 
indexed data 
structure with 
adjacencies 

- - - - - tetrahedro
n 

dangling 
face 

- wire
-
edge 

vertex 4 - 

de Arruda et al. [3] - - Pereira et al. [45] group solid region shell face wire edge vertex 8 - 

Hui and de 
Floriani[21] 

Incidence Simplicial 
Data Structure 

- - complex - - - face - edge vertex 4 - 

Hachenberger, 
Kettner, and 
Mehlhorn [18] 

SNC(Nef complex) 
structure 

- - - - volume shell face/ 
facet 

loop edge vertex 6 - 
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Aish and Pratap [1] - - - body solid cell shell face loop edge vertex 7 - 

Zeng et al. [63] Q-complex data 
structure 

- - body - region shell face loop edge vertex 7 - 

Landier [32] - -  - - cell polyhedron face - edge vertex 4 - 

Boguslawski and 
Gold [6] 

Dual half-edge data 
structure  

- Basanow et al. [27] complex - cell shell face loop edge vertex 7 - 

 
Table 5: Topological entities’ hierarchy found in academic research for non-manifold modeling. 

 
 

Developer 
Open-
source 

License 

Topological entities hierarchy Ent no 
Extra 

entities 9th level 8th level 7th level 6th level 5th level 4th level 3rd level 2nd level 
1st 

level 
9 

OCCT 
Open Cascade 
SAS 

YES LGPL compound 
CompSoli

d 
solid shell face - wire edge vertex 8 - 

OpenVolumeMesh 
Rwth Aachen 
University 

YES LGPL - - cell - 
face 

(half-face) 
- - 

edge 
(half-
edge) 

vertex 4 
half-face, 
half-edge 

CGAL various YES 

Dual license: 
open source 
(LGPL, GPL) 
/commercial 

- - volume shell 
facet 
(half-
facet) 

loop 
- 
 
 

Edge 
(half-
edge) 

vertex 6 
half-facet, 
half-edge 

LibIGL ETH Zurich YES MPL2 (Mozilla) - - - - face - - - vertex 2 - 

ARCHMIND 
Theo 
Athanasiadis 

YES Zlib - - - - face - - edge vertex 3 - 

BMesh (Blender) various YES GPL - - - - face loop 
- 
 

edge vertex 4 - 

ACIS 
Spatial 
Corporation  

NO commercial body - lump 
shell, 

(subshel
l) 

face loop wire 
edge 

(coedge) 
vertex 8 

subshell, 
coedge 

SOLIDS++ IntegrityWare NO commercial 
brep 

object 
- region shell face loop - edge vertex 7 - 

Parasolid Siemens NO commercial body - region shell face loop - fin, edge vertex 7 Fin 

ASM Autodesk NO commercial body - cell shell face loop - edge vertex 7 - 

Rhino SDK 
McNeel and 
Associates 

NO commercial - solid region - face loop - edge vertex 6 - 

SMLib 
Solid Modeling 
Solutions 

NO commercial model - region shell 
face 

(faceuse) 

loop 
(loopuse

) 
- 

edge 
(edgeuse) 

vertex 
(verte
xuse) 

7 

faceuse 
loopuse 
edgeuse 

vertexuse 

 

Table 6: Characteristics of 3D geometry kernels. 
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APPENDIX B TWO-BOX CONFIGURATIONS FOR THE MERGE OPERATION 

The eleven two-box configurations used in testing the merge operation are shown in Table 7. 
 

No. Configuration Description Expected 
Topology 

Actual Topology 

1 

 

Two disjoint boxes V: 16 

E: 24 
W: 12 

F: 12 

S: 2 
C: 2 

V: 16 

E: 24 
W: 12 

F: 12 

S: 2 
C: 2 

2 

 

Two boxes sharing a vertex V: 15 

E: 24 
W: 12 

F: 12 

S: 2 
C: 2 

V: 15 

E: 24 
W: 12 

F: 12 

S: 2 
C: 2 

3 

 

Two boxes with partially 
overlapping edges 

V: 16 

E: 25 
W: 12 

F: 12 

S: 2 
C: 2 

V: 16 

E: 25 
W: 12 

F: 12 

S: 2 
C: 2 

4 

 

Two boxes sharing a whole 
edge 

V: 14 

E: 23 
W: 12 

F: 12 

S: 2 
C: 2 

V:14 

E: 23 
W: 12 

F: 12 

S: 2 
C: 2 

5 

 

Two boxes with partially 
overlapping faces 

V: 16 

E: 26 
W: 13 

F: 14 

S: 2 
C: 2 

V:16 

E: 26 
W: 13 

F: 13 

S: 2 
C: 2 

6 

 

Two boxes sharing a whole 
face 

V: 12 
E: 20 
W: 11 

F: 11 
S: 2 
C: 2 

V: 12 
E: 20 
W: 12 

F: 11 
S: 2 
C: 2 

7 

 

Two boxes with partially 
overlapping edges, faces, 
and cells  

V: 22 
E: 36 
W: 18 

F: 18 
S: 3 
C: 3 

V: 22 
E: 36 
W: 18 

F: 18 
S: 3 
C: 3 

8 

 

Two boxes sharing a whole 

edge, and with partially 
overlapping edges, faces, 
and cells 

V: 20 

E: 34 
W: 18 

F: 18 

S: 3 
C: 3 

V: 20 

E: 34 
W: 18 

F: 18 

S: 3 
C: 3 
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9 

 

Two boxes sharing a whole 

edge and face, and with 
partially overlapping edges, 
faces, and cells 

V:16 

E: 28 
W: 16 

F: 16 

S: 3 
C: 3 

V:16 

E: 28 
W: 16 

F: 16 

S: 3 
C: 3 

10 

 

Two co-located boxes V: 8 

E: 12 
W: 6 

F: 6 

S: 1 
C: 1 

V:16 

E: 12 
W: 6 

F: 6 

S: 1 
C: 1 

11 

 

A tetrahedron with its apex 
touching a box’s face 

V: 12 

E: 18 
W: 6 

F: 6 

S: 2 
C: 2 

V: 12 

E: 18 
W: 6 

F: 6 

S: 2 
C: 2 

 
Table 7: Eleven two-box configurations with their expected and actual topologies. Initial 
descriptions: V = Vertices, E = Edges, W = Wires, F = Faces, S = Shells, C = Cells. Mismatches are 
in bold. 

APPENDIX C DERIVING THE TOPOLOGICAL EQUATIONS FOR THE SLICE OPERATION 

Slicing a cube with a series of planes in different arrangements yield new topologies as a result of 
intersecting and splitting the cube’s sub-entities with the slicing planes. This section is dedicated to 

explain the number of those topological sub-entities created by one-axis, two axes, and three-axes 
slicing planes arrangements. The set of planes parallel to the Y- and Z-axes (in other words, 
perpendicular to the X axis) are called YZ-planes. The other two sets of planes are referred to as XY-
planes and XZ-planes. The one-axis plane arrangement (Tab. 8) entirely uses YZ-planes. On the 
other hand, the two-axes arrangement (Tab. 9) employs XZ- and YZ-planes, whereas in the three-
axes arrangement (Tab. 10) all sets of planes are in action. 

In the aforementioned tables, it is assumed herein, without any loss of generality, that the cube 

is axis-aligned. The edges parallel to the X, Y, and Z axes will respectively be referred to as X-
edges, Y-edges, and Z-edges. The faces parallel to the XY, YZ, and XZ planes are called XY-faces, 
YZ-faces, and XZ-faces (similarly, XY-wires, YZ-wires, and XZ-wires for the wires). 
 

Sub-entity Description Quantity 

Vertex 

 

The cube’s original vertices 

The intersections between the planes and the cube’s X-edges 

8 

4n 

Total 8+4n 

Edge 

The cube’s original Y- and Z-edges, left untouched by the planes 

The cube’s original 4 X-edges each split into n+1 new X-edges 

The planes’ edges merged into the topology 

8 

4(n+1) 

4n 

Total  12+8n 

Wire/Face 

The cube’s original YZ-wires/faces 

The cube’s original 4 XY- and XZ-wires/faces each split into 1+n new wires 

and faces  

The planes themselves, merged into the topology 

2 

4(1+n) 

n 
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Total  6+5n 

Shell/Cell 

The original cube’s shell/cell 

The new shells/cells as a result of the planes slicing the cube 

1 

n 

Total  1+n 

 
Table 8: The numbers of sub-entities as a result of slicing a cube with a one-axis arrangement of n 

YZ-planes. 
 

Sub-entity Description Quantity 

Vertex 

 

The cube’s original vertices 

The intersections between the XZ-planes and the cube’s Y-edges 

The intersections between the YZ-planes and the cube’s X-edges 

The intersections between the XZ- and YZ-planes on the cube’s XY-
faces 

8 

4n 

4n 

2n2 

Total 8+8n+2n2 

Edge 

The cube’s original Z-edges, left untouched by the planes  

The original 8 X- and Y-edges each split into (1+n) edges  

The planes’ edges on the cube’s XY-faces, merged into the topology. 
The edges in turn split each other, and each of the plane’s edge is split 

into n+1 edges. There are n initial edges from the XZ-planes and 
another n edges from the YZ-planes, so as many as 2n×(n+1) edges 
are created on each XY-face. 

The plane’s edges on the cube’s initial XZ- and YZ-faces, merged into 
the topology. A total of n edges are created on each face. 

The internal intersections of the XZ-and YZ-planes inside the cube 

4 

8(1+n) 

4n(1+n) 
 

 
 
 

4n 
 

n2 

Total  12+16n+5n2 

Wire/Face 

The cube’s XZ- and YZ-faces each split into 1+n faces  

The cube’s 2 XY-faces each split into (1+n)2 faces.  

The internal intersections between the XZ- and YZ-wires/planes. There 

are a total of 2n wires/planes, each split into 1+n wires/faces. 

4(1+n) 

2(1+n)2 

2n(1+n) 

Total  6+10n+4n2 

Shell/Cell 

The initial shell/cell split each n times into n+1 new shells/cells, for both 
the X- and Y-axes. This includes the shells/cells bounded by the internal 
intersections between the slicing XZ- and YZ-planes. 

(1+n)2 

Total  (1+n)2 

 
Table 9: The numbers of sub-entities as a result of slicing a cube with a two-axis arrangements of n 
XZ-planes, n YZ-planes, and n XZ-planes. 
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Sub-entity Description Quantity 

Vertex 

 

The cube’s original vertices 

The intersections between the slicing planes and the cube’s edges. 
There is always an intersection between every pair of edge and 
slicing plane. 

The intersections between the plane’s edges on the cube’s faces, n 
2 vertices inside each face (that is, excluding the intersections on 
the cube’s edges which are written above) 

The internal intersections between the planes inside the cube (i.e. 
excluding the vertices on the faces as written above). A vertex is 

created at every location where three perpendicular planes. 

8 

12n 
 

6n2 

 

 

n3 

Total 8+12n+6n2 +n3 

Edge 

The original 12 edges each split into (1+n) edges 

The planes’ edges on the cube faces. There are 2n of these edges 
on each face, each split by other edges into n+1 edges. 

Edges created by the internal intersections of the slicing planes 
inside the cube. Every inter section edge between two 
perpendicular planes is further split into 1+n edges. There are a 
total of 3n2 of such intersection edges. 

12(1+n) 

12n(1+n) 
 

3n2(1+n) 

Total  12+24n+15n2 

+3n3 

Wire/Face 

Each of the cube’s wire/face is split into (1+n) 2 wires/faces. 

Each of the slicing planes is divided by other intersecting planes 
into (1+n) 2 wires/faces. There are in total 3n planes. 

6(1+n)2 

3n(1+n)2 

Total  6+15n+12n2 
+3n3 

Shell/Cell 

The initial shell/cell split each n times into n+1 new cells for all 
axes. This includes the shells/cells bounded by the internal 

intersections between the slicing planes. 

(1+n)3 

Total  (1+n)3 

 
Table 10: The numbers of sub-entities as a result of slicing a cube with a three-axis arrangement of 
n XZ-planes, n YZ-planes, and n XZ-planes. 
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