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ABSTRACT 

 
A mobile mapping system (MMS) is effective for capturing dense point-clouds of 

roads and roadside objects. In order to create 3D models from huge point-clouds, it 
is necessary to efficiently extract objects from point-clouds. However, since points 
captured using the MMS are highly anisotropic, it is difficult to detect local 
connectivity between points using a constant threshold.  In this paper, we discuss 

the method to define adaptive thresholds for local connectivity of highly anisotropic 
point-clouds captured using the MMS. In our method, point-clouds are mapped on 
the 2D lattice and they are connected on the lattice. Then we introduce adaptive 
thresholds by simulating laser scanning with the MMS and comparing the simulated 
point intervals with actual ones. By using the adaptive thresholds, continuous 
surfaces can be stably extracted from large-scale point-clouds. 
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1 INTRODUCTION 

A mobile mapping system (MMS) is an equipment on which as laser scanners, cameras, GPSs, and 
an IMU are mounted. Fig. 1. shows the MMS that we used to capture point-clouds. The MMS 
determines the own positions and attitudes using the GPS and IMU, and measures 3D coordinates 

on objects by emitting laser beams.  The MMS typically outputs point-clouds and the trajectory of 
the laser scanner. Each point has a 3D coordinate, an intensity value and a GPS time. The GPS time 
is the time sent from the satellite and represents when the point was captured. The trajectory of the 
laser scanner is represented as a series of 3D coordinates with GPS time.  

Point-clouds captured using the MMS are useful to create 3D models, such as buildings [19], 
roads [9], pole-like objects [15], and so on. In recent years, the performance of the laser scanner 

has been greatly improved. The laser scanners on the MMS can measure from 300,000 to 1 million 

points per second. When the MMS measures points for several hours, billions of points can be 
obtained. In order to create 3D models from huge point-clouds, it is necessary to efficiently and 
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robustly segment point-clouds and extract surfaces. If surfaces can be detected, object shapes are 
reconstructed combining surfaces.  

However, points are highly anisotropic because the intervals of points depends on the vehicle 
speed, the setting of the laser scanner, and the distances from the scanner positions. Fig. 2. shows 

an example of points captured using the MMS. In this case, the point intervals in the traveling 
direction of the vehicle are ten times or larger than the scanning direction of the laser beam. For 
processing point-clouds captured using MMS, it is required to cope with highly anisotropic point-
clouds. 

When primitive surfaces, such as planes and cylinders, are extracted from point-clouds, it is 
necessary to estimate the local connectivity of points.  So far, many researchers have proposed 
methods for estimating local connectivity of point-clouds. However, most of them are not suitable 

to process highly anisotropic point-clouds. Local geometric features based on eigenvalues of the 
principal component analysis (PCA) are often used for segmenting point-clouds into each surface [5; 
24]. For calculating local geometric features, it is very important to adequately determine 
neighborhood sizes.  When point-clouds are isotropic, a fixed neighborhood size can be used and 
neighbor points can be detected using a sphere with the fixed radius [11], or k-closest points with 
fixed k [12]. On the other hand, when point-clouds are anisotropic, the optimal neighborhood has 

to be adaptively estimated for each point. Pauly, et al. estimated neighborhood sizes using multi-
scale surface variation based on eigenvalues [21]. Mitra, et al. estimated neighborhood sizes using 
the local sampling density and the local curvature [17]. Demantke proposed the dimensionally-based 
scale selection method, in which local geometric features are calculated using multiple neighborhood 
sizes and the optimal size is selected using Shannon entropy [3]. These methods are useful when 

        

Figure 1: Mobile mapping system: (a) Vehicle with an MMS, (b) Close-up of MMS, (c) Laser 

scanner. 

 

 

Figure 2: Anisotropic point-clouds captured by an MMS. 

 

http://www.cad-journal.net/


468 
 

 

Computer-Aided Design & Applications, 16(3), 2019, 466-477 

© 2019 CAD Solutions, LLC, http://www.cad-journal.net 
 

adequate neighborhood sizes depending on the distances from the scanner position. However, point-
clouds captured using the MMS, point-density is largely different in the scanning direction and the 
travelling direction at each point, as shown in Fig. 2. In such cases, existing methods do not work 
well, because they assume that points are locally isotropic. 

The region growing is also often used for segmenting point-clouds. Voxel-based region growing [4; 
20; 25] or octree-based region growing [23] can be used for point-clouds. Random sample 
consensus (RANSAC) [6] is also popular for segmenting point-clouds [22]. Since this method is 
robust to noises, it is often used for noisy point-clouds [21; 26]. These methods also require 
thresholds for local connectivity to extract surfaces, but it is difficult to adaptively estimate 
thresholds of local connectivity for highly anisotropic points.   

For fixed terrestrial laser scanners (TLS), local connectivity can be estimated using the azimuth 

and latitude angles of laser beams.  Masuda, et al. used this approach for region growing [13] and 
the RANSAC method [14]. Since laser beams are spherically emitted at the equal angle intervals 
from the source of the laser beam, each point-cloud can be projected onto 2D lattice in angle space. 
In these methods, the threshold for local connectivity was adaptively estimated depending on the 
distances from the laser scanner. Although this method is very effective and stable, it cannot be 
applied for MMS data, because the scanner position on the MMS is always moving. 

The method for the fixed TLS is based on the simulated laser scanning. To extend this method 
to MMS, it is necessary to simulate laser scanning for MMS. Simulated laser scanning is mainly used 
for artificial point-clouds. Gschwandtner, et al. implemented a tool for simulating point-clouds for 
fixed TLSs with various parameters [8]. Fukano, et al. simulated point-clouds to be captured by a 
MMS and created training data for classification [7]. However, these methods were not developed 
for estimating local connectivity.  

In this paper, we propose a new method for estimating local connectivity of point-clouds 

captured using a MMS. Our method is based on 2D mapping and simulated point-clouds for the MMS. 
First, neighborhood of points are efficiently and robustly detected using point-clouds and the 
parameters of the laser scanner. Then we simulate the laser beam emitted from the MMS and 
estimate the local connectivity of points. Once local connectivity of points are estimated using our 
method, points can be segmented using existing methods, such as region growing and RANSAC 
methods.  

2 OVERVIEW 

2.1 Point-Clouds Measured with the MMS  

In this paper, we process point-clouds captured by the MMS. We suppose that the MMS outputs 

point-clouds and the trajectory of the laser scanner. Since the vehicle position is measured using 
GPSs, IMUs, and odometers, the trajectory of the laser scanner can be obtained from the vehicle 

position using the relative position of the laser scanner on the vehicle. The trajectory data contain 
3D coordinates, positions and attitudes, and GPS times of the laser scanner. The coordinates are 
represented in the geodetic reference system, such as WGS84.  

Point-clouds contain a sequence of points with 3D coordinates, intensity values, and GPS times. 
Since the original coordinates from a laser scanner are represented in the scanner-centered 
coordinate system, they are transformed to coordinates based on the geodetic reference system by 
using the positions and attitudes of the laser scanner.  

Point-clouds in our examples were measured using the Mitsubishi MMS-X [18], as shown in Fig. 
1. The laser scanner mounted on this MMS is RIEGL VQ 250. The laser scanner measures 3D 
coordinates with laser beams with 360 degrees, as shown in Fig. 3(a). Then, there are two important 

parameters that affect point density. One is the rotation frequency, which indicates how many times 
the laser beam rotates per second. The other is the scan rate, which indicates how many 
measurements are made per second. The rotational frequency and the scan rate of RIEGL VQ 250 

is 100Hz and 300,000 measurements, respectively. Since the direction of the laser beam rotates at 
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a constant rotation frequency, the laser beam is spirally irradiated when the vehicle moves forward, 
as shown in Fig. 3(b). 

The reason why point-clouds become highly anisotropic can be explained by the two parameters 

and the vehicle speed. In the case of RIEGL VQ 250, the interval between consecutively scanned 

points can be calculated as about 1 cm at 5 m ahead because the laser beam rotates 2𝜋/3,000 radian 

in the time interval of point sampling. On the other hand, the intervals in the travelling direction are 
11 cm when the vehicle travels at 40 km/h, which is 11 m/sec. 

2.2 Process for Estimating Local Connectivity  

Fig. 4. shows a process of our method. First, point-clouds are mapped on the 2D lattice using GPS 

times and scanner parameters. The laser beam rotates at a constant speed, and coordinates are 
sampled at regular time intervals. Therefore, we can convert each coordinate captured using the 
MMS onto (I, J) on the 2D image. Then, neighbor points are obtained on the 2D image.  

For estimating local connectivity, distance thresholds are necessary to determine whether 
neighbor points are connected or not. Two neighbor points are connected only when the distance is 
smaller than a threshold. However, adequate thresholds depend on the scanner position, the velocity 

of the vehicle, and the scanner parameters, and the geometric property of target objects. Therefore, 
we simulate point clouds by supposing neighbor points were captured from continuous surfaces, and 
compare them with actual point-clouds. If the distance between actual neighbor points is much 
larger than the simulated distance, the assumption is discarded and they are not connected. In our 
method, the threshold is adaptively calculated for each pair of neighbor points, and local connectivity 

is estimated. Then point-clouds are segmented into continuous surfaces according to obtained local 
connectivity. 

3 MAPPING POINTS ONTO 2D LATTICE 

We project point-clouds onto the 2D lattice using GPS time and the parameters of laser scanners. 
Masuda, et al. projected point-clouds captured using the MMS onto a 2D plane for two types of laser 
scanners [16], and detected neighborhood using the Delaunay triangulation. Bruno, et al. projected 
point-clouds onto a 2D lattice using the discrete rotation angles and the rotation frequency [2]. 
Kohira, et al. formulated the mapping onto the 2D lattice using the rotation frequency and the pulse 
repetition frequency [10], and proposed image-based compression for point-clouds. Bruno and 

Kohira derived neighbor points on the 2D lattice, but they did not discuss local connectivity.   

In this paper, we use 2D mapping proposed in [10] using the laser scanner that spirally emits 

laser beams, such as Fig. 3(a). Let 𝑓 be the rotation frequency, 𝑁 be the scan rate, and 𝜔 be the 

pulse repetition frequency. The pulse repetition frequency 𝜔 is defined as 𝑁/𝑓.  

       

Figure 3: Trajectory of laser beams: (a) Direction of laser beams, (b) Trajectory of laser beam 

directions.  
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Since the laser beam rotates once every  1/𝑓 second, points are grouped into segments every  

1/𝑓 second, as shown in Fig. 5. We call points in each segment as a scan-line. As shown in Fig. 5, 

the adjacent scan-line includes points measured  1/𝑓 second later. In order to map point-clouds onto 

the 2D lattice, the phase number and rotation number are assigned to each point, as shown in Fig. 
6. The phase number indicates the order of measurement on each scan-line, and the rotation number 
is the sequential number of a scan-line.  

 

Figure 4: Process for surface detection. 

 

Then the phase number 𝐼 and the rotation number 𝐽 can be calculated using the following equations. 

 
𝐼 = int (𝜔 ∙ fmod ( 𝑡, 1/𝑓)) (3.1) 

𝐽 = int (𝑓 ∙ 𝑡) (3.2) 

 

fmod(𝑥, 𝑦) computes the floating-point remainder of 𝑥/𝑦. 𝑡 is the elapsed time from the start of the 

measurement and it is obtained as the difference in GPS time between the current point and the 
initial point.  

Point-clouds are converted to the 2D lattice by mapping each point to (𝐼, 𝐽). Fig. 7 shows an 

example of projected points. Blue pixels indicate that no points were mapped at the pixels.  

 

  

 

Figure 5: The nearest point adjacent scan-line.      
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Figure 6: The phase number and the rotation number. 

 

    
 

Figure 7: Mapping onto the 2D lattice: (a) Point-clouds, (b) points on the 2D lattice.  

4 SIMULATED POINT-CLOUDS 

4.1 Scanner Position and Laser Direction 

We represent a point-cloud as {𝐩𝑖,𝑗} and {𝑡𝑖,𝑗}, where 𝐩𝑖,𝑗 is a 3D coordinate mapped at (𝑖, 𝑗) on a 

point image, and 𝑡𝑖,𝑗 is the GPS time.  We also represent the trajectory of the scanner positions as 

3D coordinates {𝐪𝑘} and GPS times {𝑢𝑘}.   
 

For assigning a scanner position to point 𝐩𝑖,𝑗, the following index 𝑘 is detected. 

𝑢𝑘 ≤ 𝑡𝑖,𝑗 < 𝑢𝑘+1 (4.1) 

Then the scanner position 𝐬𝑖,𝑗 is calculated as: 

 

𝐬𝑖,𝑗 ≡ 𝐬(𝑡𝑖,𝑗) =
(𝑢𝑘+1 − 𝑡𝑖,𝑗)𝐪𝑘 + (𝑡𝑖,𝑗 − 𝑢𝑘)𝐪𝑘+1

𝑢𝑘+1 − 𝑢𝑘
 (4.2) 

 

The rotation axis of the laser beam can be calculated using vectors 𝐩𝑖,𝑗 − 𝐬𝑖,𝑗. We project points on 

scan-line 𝑗 on a unit sphere, and fit a plane to the projected points. The normal vector of the plane 

is estimated as the rotation axis of the laser scanner. We denote the rotation axis of scan-line 𝑗 as 

𝐚𝑗.  

In Fig. 8, the laser beam every 0.2 seconds is shown in red, and the trajectory of the laser 
scanner is shown in yellow.  
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4.2 Estimation of Connectivity  

The normal direction of each point can be roughly estimated by fitting a plane to neighbor points. 

Neighbor points are first selected as points in a circle with radius 𝑟2𝐷 on 2D lattice. Although point 

intervals in 3D space are largely different in the I and J directions, the nearly same number of points 
are selected in the both directions. Then we eliminate points outside the sphere with radius 𝑟3𝐷 in 

3D space. The normal vector is estimated for each point. We denote the estimated normal vector of 

𝐩𝑖,𝑗 as 𝐧𝑖,𝑗. In this paper, we specified 𝑟2𝐷 = 4 𝑝𝑖𝑥𝑒𝑙𝑠 and 𝑟3𝐷 = 30 𝑐𝑚. 

Then we consider whether neighbor points 𝐩𝑖,𝑗 and 𝐩𝑖+𝑘,𝑗+𝑙 are on the same continuous surface. 

We suppose that 𝑘 and 𝑙 are small integers. We denote the rotation matrix that rotates 𝜃 around the 

axis 𝐚𝑗 as 𝐑j(𝜃). Since the rotation angle between the two points are 2𝜋𝑘/𝜔, the laser beam direction 

for 𝐩𝑖+𝑘,𝑗+𝑙 can be estimated as:  

 

𝐑j (
2𝜋𝑘

𝜔
) (𝐩𝑖,𝑗 − 𝒔𝑖,𝑗) (4.3) 

We denote that the normalized direction as 𝐯̅𝑖+𝑘,𝑗+𝑙. The laser beam for 𝐩𝑖+𝑘,𝑗+𝑙 can be simulated as a 

straight line with the direction 𝐯̅𝑖+𝑘,𝑗+𝑙 through the scanner position 𝐬𝑖+𝑘,𝑗+𝑙. 

We suppose that  𝐩𝑖,𝑗 and 𝐩𝑖+𝑘,𝑗+𝑙 are on the same plane whose normal vector is (𝐧𝑖,𝑗 + 𝐧𝑖+𝑘,𝑗+𝑙)/2. 

Then the position of 𝐩𝑖+𝑘,𝑗+𝑙 can be simulated as the intersection point between the plane and the 

simulated laser beam, as shown in Fig. 9. We denote the estimated position as 𝐩̅𝑖+𝑘,𝑗+𝑙.  

If the assumption that the two points are on the same plane is correct, the actual distance 

|𝐩𝑖,𝑗 − 𝐩𝑖+𝑘,𝑗+𝑙| will be nearly equal to the simulated distance |𝐩𝑖,𝑗 − 𝐩̅𝑖+𝑘,𝑗+𝑙|. Therefore, we estimate 

that  𝐩𝑖,𝑗 and 𝐩𝑖+𝑘,𝑗+𝑙 are on the same surface only if: 

 

|𝐩𝑖,𝑗 − 𝐩𝑖+𝑘,𝑗+𝑙| < 𝜆|𝐩𝑖,𝑗 −  𝐩̅𝑖+𝑘,𝑗+𝑙| 
(4.4) 

𝜆 is a constant greater than 1. This value is experimentally determined depending the MMS. In our 

evaluation, we specified 𝜆 = 1.3. 

 

 

 

Figure 8: Laser beams emitted from MMS. 
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Figure 9: The simulated position of a neighbor point. 

  

5 SURFACE EXTRACTION  

5.1 Out-of-Core Processing  

When the MMS measures 300,000 to 1 million points per second, the data size becomes too large 
to be loaded on RAM when the MMS travels for several hours. Therefore, it is necessary to segment 
point-clouds for processing on common PCs. In our method, point-clouds are mapped on the 2D 

lattice, in which the width of the lattice is fixed, but the height increases according to the travelling 
time of the vehicle. Since the connectivity of neighbor points can be locally determined, point-clouds 
can be divided and processed in an out-of-core manner. 

Fig. 10 shows out-of-core processing for huge point-clouds. Since points are stored in files 
sequentially, they are loaded from a hard disk in order of GPS time. Therefore, we load a certain 
number of files and maintain the points for processing, as shown in Fig. 10(b). When processing of 
points in a file is completed, the points are removed from RAM and the next file is loaded.  

For segmenting buildings and other roadside objects, it is desirable to remove roads so that each 
object is represented as a connected component of points. Several methods have been proposed for 

detecting roads [9]. In our case, it is easy to detect roads, because the trajectory of the vehicle is 
given and it is known that the roads exists directly under the vehicle, as shown in Fig. 10(c). Points 
are regarded as roads when the Z coordinates are nearly equal to or less than the road height. Fig. 
10(d) shows road points extracted from points in Fig. 10(b). 

 

 

          (a) A part of point-clouds                                        (b) Loading of point-clouds 
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(c) Detection of road height                                              (d) Detection of points on roads 

Figure 10: Out-of-core processing for huge point-clouds. 

 

5.2  Segmentation into Continuous Surfaces  

Continuous surfaces are detected by connecting neighbor points that satisfy Eqn. (4.4).  In out-of-
core processing, continuous surfaces are updated each time a new file is loaded. If any point is not 
added to a continuous surface, the detection of the surface is completed. Fig. 11 shows detected 
continuous surfaces in different colors. The result shows that out method works adequately.  

Continuous surfaces can be further segmented to planes if necessary. In Fig. 12, a surface is 
subdivided into planar regions using the RANSAC method.  

 

 

 

Figure 11: Continuous surfaces. 

 

Figure 12: Segmentation into planar regions. 
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5.3 Experimental Results  

We evaluated our method using point-clouds measured in a Japanese urban area. In the MMS 

we used, points are stored in files every 300 thousand points. In our experiments, points were 
processed every 3 million points in an out-of-core manner. 

In our method, point-clouds are mapped on the 2D lattice. Therefore, local connectivity can be 
obtained by determining a threshold for the distance between neighbor points on the 2D lattice. First, 
we adaptively specified using our method and connected neighbor points if Eqn. (4.4) is satisfied. 
Fig. 13. shows connected components. 

For comparison, we extracted connected components using fixed thresholds. In Fig. 14, the 
thresholds were specified as 8cm, 16 cm, and 24 cm. In Fig. 14(a), many fragmented regions were 
generated. In Fig. 14 (b), front walls were adequately extracted, but some regions were fragmented. 

In Fig. 14(c), points were excessively connected.  The results show that adequate local connectivity 
requires adaptive thresholds because thresholds depend on the distance from the laser scanner, the 
irradiation angles, and the vehicle speed. 

CPU time was measured using a PC with 3.3GHz Intel Core i9 and 64GB RAM. In this evaluation, 

point-clouds with 3 million points were converted into a mesh model based on local connectivity. 
The calculation time is shown in Tab. 1. CPU time on mesh generation includes generation of 
triangular mesh models by connecting neighbor points on the lattice.  This result shows that our 
method can process point-clouds in a practical time. 
 

 

 
Figure 13: Points connected based on our method: (a) Point-clouds, (b) Connected points. 

 

 
 

Figure 14: Points connected using a fixed threshold d: (a) d = 8 cm, (b) d = 16 cm, (c) d = 24 cm. 
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Process CPU Time 

Loading Point-Cloud 4.1 sec 

Mapping onto Lattice 0.04 sec 

Position and Velocity 0.07 sec 

Connecting Points 8.3 sec 

Generation of Continuous Surfaces 3.8 sec 

 
Table 1: CPU Time for processing 3 million points. 

6 CONCLUSION 

In this paper, we proposed a method for deriving local connectivity of points and segmenting large-
scale anisotropic points into connected surfaces. We mapped points onto a 2D lattice using GPS 
times and scanner parameters, and introduced adaptive thresholds by simulating laser scanning with 

the MMS. By using adaptive thresholds, the connectivity of points could be obtained for anisotropic 
point-clouds. 

In future work, we would like to use this method for automatically detecting and classifying 
various objects from very large point-clouds. In addition, we would like to improve performance of 
our method. 
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